Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Andrew Adamatzky, Antoni Gandia. Living mycelium composites discern weights via patterns of electrical activity[J]. Journal of Bioresources and Bioproducts, 2022, 7(1): 26-32. doi: 10.1016/j.jobab.2021.09.003
Citation: Andrew Adamatzky, Antoni Gandia. Living mycelium composites discern weights via patterns of electrical activity[J]. Journal of Bioresources and Bioproducts, 2022, 7(1): 26-32. doi: 10.1016/j.jobab.2021.09.003

Living mycelium composites discern weights via patterns of electrical activity

doi: 10.1016/j.jobab.2021.09.003
More Information
  • Corresponding author: E-mail address: andrew.adamatzky@uwe.ac.uk (A. Adamatzky)
  • Received Date: 2021-08-04
  • Accepted Date: 2021-09-06
  • Rev Recd Date: 2021-09-02
  • Available Online: 2021-09-30
  • Publish Date: 2022-02-20
  • Fungal construction materials—substrates colonised by mycelium—are getting increased recog-nition as viable ecologically friendly alternatives to conventional building materials. A function-ality of the constructions made from fungal materials would be enriched if blocks with living mycelium, known for their ability to respond to chemical, optical and tactile stimuli, were in-serted. We investigated how large blocks of substrates colonised with mycelium of Ganoderma resinaceum responded to stimulation with heavy weights. We analysed details of the electrical re-sponses to the stimulation with weights and show that ON and OFF stimuli can be discriminated by the living mycelium composites and that a habituation to the stimulation occurs. Novelty of the results cast in the reporting on changes in electrical spiking activity of mycelium bound composites in response to a heavy loads.

     

  • 1 At the time of experiments AG was affiliated with Mogu S.r.l., Inarzo, Italy.
  • loading
  • Adamatzky, A., 2018a. On spiking behaviour of oyster fungi Pleurotus djamor. Sci. Rep. 8, 1-7.
    Adamatzky, A., 2018b. Towards fungal computer. Interface Focus 8, 20180029. doi: 10.1098/rsfs.2018.0029
    Adamatzky, A., Ayres, P., Belotti, G., Wösten, H., 2019. Fungal architecture position paper. Int. J. Unconvent. Comput. 14.
    Adamatzky, A., Gandia, A., Ayres, P., Wösten, H., Tegelaar, M., 2021a. Adaptive fungal architectures. LINKs-series 5, 66-77.
    Adamatzky, A., Gandia, A., Chiolerio, A., 2021b. Towards fungal sensing skin. Fungal Biol. Biotechnol. 8, 1-7. doi: 10.1186/s40694-021-00108-5
    Adamatzky, A., Nikolaidou, A., Gandia, A., Chiolerio, A., Dehshibi, M.M., 2021c. Reactive fungal wearable. Biosystems 199, 104304. doi: 10.1016/j.biosystems.2020.104304
    Adamatzky, A., Tegelaar, M., Wosten, H.A.B., Powell, A.L., Beasley, A.E., Mayne, R., 2020. On Boolean gates in fungal colony. Biosystems 193/194, 104138. doi: 10.1016/j.biosystems.2020.104138
    Appels, F.V.W., 2020. The Use of Fungal Mycelium for the Production of Bio-based Materials. Utrecht University, Utrecht.
    Applewhite, P.B., 1975. Learning in bacteria, fungi, and plants. Invertebrate Learn. 3, 179-186.
    Beasley, A.E., Powell, A.L., Adamatzky, A., 2020a. Fungal photosensors. arXiv 2003.07825.
    Beasley, A.E., Abdelouahab, M.S., Lozi, R., Powell, A.L., Adamatzky, A., 2020b. Mem-fractive properties of mushrooms. arXiv 2002.06413.
    Beasley, A.E., Powell, A.L., Adamatzky, A., 2020c. Capacitive storage in mycelium substrate. arXiv 2003.07816.
    Boussard, A., Delescluse, J., Pérez-Escudero, A., Dussutour, A., 2019. Memory inception and preservation in slime moulds: the quest for a common mechanism. Philos. Trans. Royal Soc. Lond. Ser. B Biol. Sci. 374, 20180368. doi: 10.1098/rstb.2018.0368
    Cárdenas-R, J.P., 2020. Thermal Insulation Biomaterial Based on Hydrangea macrophylla. Bio-Based Materials and Biotechnologies for Eco-Efficient Construction. Elsevier, Amsterdam, pp. 187-201.
    Cerimi, K., Akkaya, K.C., Pohl, C., Schmidt, B., Neubauer, P., 2019. Fungi as source for new bio-based materials: a patent review. Fungal Biol. Biotechnol. 6, 17. doi: 10.1186/s40694-019-0080-y
    Dias, P.P., Jayasinghe, L.B., Waldmann, D., 2021. Investigation of mycelium-miscanthus composites as building insulation material. Results Mater 10, 100189. doi: 10.1016/j.rinma.2021.100189
    Elsacker, E., Vandelook, S., van Wylick, A., Ruytinx, J., De Laet, L., Peeters, E., 2020. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total. Environ. 725, 138431. doi: 10.1016/j.scitotenv.2020.138431
    Fukasawa, Y., Savoury, M., Boddy, L., 2020. Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources. Isme J 14, 380-388. doi: 10.1038/s41396-019-0536-3
    Ginsburg, S., Jablonka, E., 2021. Evolutionary transitions in learning and cognition. Philos. Trans. Royal Soc. Lond. Ser. B Biol. Sci. 376, 20190766. doi: 10.1098/rstb.2019.0766
    Girometta, C., Picco, A.M., Baiguera, R.M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., Savino, E., 2019. Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: a review. Sustainability 11, 281.
    Hernández-Oñate, M.A., Herrera-Estrella, A., 2015. Damage response involves mechanisms conserved across plants, animals and fungi. Curr. Genet. 61, 359-372. Holt, G.A., McIntyre, G., Flagg, D., Bayer, E., Wanjura, J.D., Pelletier, M.G., 2012. Fungal mycelium and cotton plant materials in the manufacture of biodegradable doi: 10.1007/s00294-014-0467-5
    molded packaging material: evaluation study of select blends of cotton byproducts. J. Biobased Mater. Bioenergy 6, 431-439. doi: 10.1166/jbmb.2012.1241
    Jones, M., Gandia, A., John, S., Bismarck, A., 2021. Leather-like material biofabrication using fungi. Nat. Sustain. 4, 9-16. doi: 10.1038/s41893-020-00606-1
    Jones, M., Mautner, A., Luenco, S., Bismarck, A., John, S., 2020. Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater. Des. 187, 108397. doi: 10.1016/j.matdes.2019.108397
    Karana, E., Blauwhoff, D., Hultink, E.J., Camere, S., 2018. When the material grows: a case study ondesigning (with) mycelium-based materials. International Journal of Design 12, 2018.
    Mojumdar, A., Behera, H.T., Ray, L., 2021. Mushroom mycelia-based material: an environmental friendly alternative to synthetic packaging. Microb. Polym. 131-141.
    Olsson, S., Hansson, B.S., 1995. Action potential-like activity found in fungal mycelia is sensitive to stimulation. Naturwissenschaften 82, 30-31. doi: 10.1007/BF01167867
    Omer, A.M., 2008. Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 12, 2265-2300. doi: 10.1016/j.rser.2007.05.001
    Onat, N.C., Kucukvar, M., 2020. Carbon footprint of construction industry: a global review and supply chain analysis. Renew. Sustain. Energy Rev. 124, 109783. doi: 10.1016/j.rser.2020.109783
    Pelletier, M.G., Holt, G.A., Wanjura, J.D., Bayer, E., McIntyre, G., 2013. An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Ind. Crops Prod. 51, 480-485. doi: 10.1016/j.indcrop.2013.09.008
    Pellicer, E., Nikolic, D., Sort, J., Baró, M., Zivic, F., Grujovic, N., Grujic, R., Pelemis, S., 2017. Advances in Applications of Industrial Biomaterials. Springer International Publishing, Cham.
    Robertson, O., Høgdal, F., McKay, L., Lenau, T., 2020. Fungal Future: A Review Of Mycelium Biocomposites as an Ecological Alternative Insulation Material. Balancing Innovation and Operation. The Design Society, Lyngby, Denmark, pp. 1-13.
    Schwartz, Y., Raslan, R., Mumovic, D., 2018. The life cycle carbon footprint of refurbished and new buildings: a systematic review of case studies. Renew. Sustain. Energy Rev. 81, 231-241. doi: 10.1016/j.rser.2017.07.061
    Silverman, J., Cao, H.T., Cobb, K., 2020. Development of mushroom mycelium composites for footwear products. Cloth. Text. Res. J. 38, 119-133. doi: 10.1177/0887302X19890006
    Sivaprasad, S., Byju, S.K., Prajith, C., Shaju, J., Rejeesh, C.R., 2021. Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. In: Materials Today: Proceedings.
    Wang, F., Li, H.Q., Kang, S.S., Bai, Y.F., Cheng, G.Z., Zhang, G.Q., 2016. The experimental study of mycelium/expanded perlite thermal insulation composite material for buildings. Sci. Technol. Eng. 20.
    Williams, D., 2014. Essential Biomaterials Science. Cambridge University Press, Cambridge.
    Xing, Y.G., Brewer, M., El-Gharabawy, H., Griffith, G., Jones, P., 2018. Growing and testing mycelium bricks as building insulation materials. IOP Conf. Ser. : Earth Environ. Sci. 121, 022032. doi: 10.1088/1755-1315/121/2/022032
    Yang, Z.J., Zhang, F., Still, B., White, M., Amstislavski, P., 2017. Physical and mechanical properties of fungal mycelium-based biofoam. J. Mater. Civ. Eng. 29, 04017030. doi: 10.1061/(ASCE)MT.1943-5533.0001866
    Yokochi, K., 1926. An investigation on the habituation of amoeba. J. Aichi Med. Soc. 33, 3.
    Zeller, P., Zocher, D., 2012. Ecovative's breakthrough biomaterials. Fungi Mag. 5, 51-56.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (362) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return