Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Lansheng Wei, Weijie Deng, Shanshan Li, Zhengguo Wu, Jihai Cai, Jiwen Luo. Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors[J]. Journal of Bioresources and Bioproducts, 2022, 7(1): 63-72. doi: 10.1016/j.jobab.2021.10.001
Citation: Lansheng Wei, Weijie Deng, Shanshan Li, Zhengguo Wu, Jihai Cai, Jiwen Luo. Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors[J]. Journal of Bioresources and Bioproducts, 2022, 7(1): 63-72. doi: 10.1016/j.jobab.2021.10.001

Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors

doi: 10.1016/j.jobab.2021.10.001
More Information
  • Corresponding author: E-mail address: holdit@126.com (J. Luo)
  • Received Date: 2021-05-23
  • Accepted Date: 2021-08-12
  • Rev Recd Date: 2021-08-05
  • Available Online: 2021-10-15
  • Publish Date: 2022-02-20
  • The application of porous carbon microspheres derived from pure biomass in supercapacitors is restricted due to their limited reactive groups. MXene owns a combination of redox Faradic surface with good metallic conductivity and hydrophilicity, which assists to obtain high pseudocapacitance and energy density. Herein, Ti3C2Tx MXene was introduced to chitosan-based porous carbon microsphere (CPCM) to fabricated sandwich-like structure (CPCM/MXene) through electrostatic interaction. The Ti3C2Tx protected the spherical structure of CPCM. Meanwhile, CPCM hindered the reaggregation of Ti3C2Tx by inserting in the Ti3C2Tx layers, promoting the electrolyte migration kinetics. The synergistic effect endowed CPCM/MXene high specific capacitance of 362 F/g at current density of 0.5 A/g and acceptable cycling stability with 93.87% capacitance retention at a high current density of 10 A/g after 10, 000 cycles. Furthermore, CPCM/MXene displayed a high energy density of 27.8 W/(h·kg) at 500.0 W/kg of power density. These satisfactory performances prove that combining Ti3C2Tx MXene nanosheets with porous carbon microspheres is a considering method to construct a new generation electrode material of supercapacitor.

     

  • 1 Lansheng Wei and Weijie Deng contributed equally to this work and should be considered co-first authors.
  • loading
  • Albadarin, A.B., Collins, M.N., Naushad, M., Shirazian, S., Walker, G., Mangwandi, C., 2017. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem. Eng. J. 307, 264-272. doi: 10.1016/j.cej.2016.08.089
    Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., Gogotsi, Y., 2017. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633-7644. doi: 10.1021/acs.chemmater.7b02847
    Allah, A.E., Wang, J., Kaneti, Y.V., Li, T., Farghali, A.A., Khedr, M.H., Nanjundan, A.K., Ding, B., Dou, H., Zhang, X.G., Yoshio, B., Yamauchi, Y., 2019. Auto-programmed heteroarchitecturing: self-assembling ordered mesoporous carbon between two-dimensional Ti3C2Tx MXene layers. Nano Energy 65, 103991. doi: 10.1016/j.nanoen.2019.103991
    Bu, F.X., Zagho, M.M., Ibrahim, Y., Ma, B., Elzatahry, A., Zhao, D.Y., 2020. Porous MXenes: synthesis, structures, and applications. Nano Today 30, 100803. doi: 10.1016/j.nantod.2019.100803
    Chen, Z.H., Peng, X.W., Zhang, X.T., Jing, S.S., Zhong, L.X., Sun, R.C., 2017. Facile synthesis of cellulose-based carbon with tunable N content for potential supercapacitor application. Carbohydr. Polym. 170, 107-116. doi: 10.1016/j.carbpol.2017.04.063
    Fan, L.H., Yang, H., Yang, J., Peng, M., Hu, J., 2016. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr. Polym. 146, 427-434. doi: 10.1016/j.carbpol.2016.03.002
    Ferrero, G.A., Fuertes, A.B., Sevilla, M., 2015. N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. J. Mater. Chem. A 3, 2914-2923. doi: 10.1039/C4TA06022A
    Forghani, M., Donne, S.W., 2019. Complications when differentiating charge transfer processes in electrochemical capacitor materials: assessment of cyclic voltammetry data. J. Electrochem. Soc. 166, A1370-A1379. doi: 10.1149/2.1021906jes
    Frackowiak, E., Béguin, F., 2001. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937-950. doi: 10.1016/S0008-6223(00)00183-4
    Gao, S.Y., Li, X.G., Li, L.Y., Wei, X.J., 2017. A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation. Nano Energy 33, 334-342. doi: 10.1016/j.nanoen.2017.01.045
    Genovese, M., Wu, H.R., Virya, A., Li, J., Shen, P.Z., Lian, K., 2018. Ultrathin all-solid-state supercapacitor devices based on chitosan activated carbon electrodes and polymer electrolytes. Electrochimica Acta 273, 392-401. doi: 10.1016/j.electacta.2018.04.061
    Gu, J.L., Sun, L., Zhang, Y.X., Zhang, Q.Y., Li, X.W., Si, H.C., Shi, Y., Sun, C., Gong, Y., Zhang, Y.H., 2020. MOF-derived Ni-doped CoP@C grown on CNTs for high-performance supercapacitors. Chem. Eng. J. 385, 123454. doi: 10.1016/j.cej.2019.123454
    Guo, X.T., Zheng, S.S., Luo, Y.Q., Pang, H., 2020. Synthesis of confining cobalt nanoparticles within SiOx/nitrogen-doped carbon framework derived from sustainable bamboo leaves as oxygen electrocatalysts for rechargeable Zn-air batteries. Chem. Eng. J. 401, 126005. doi: 10.1016/j.cej.2020.126005
    He, C.L., Xiao, Y., Dong, H.W., Liu, Y.L., Zheng, M.T., Xiao, K., Liu, X.R., Zhang, H.R., Lei, B.F., 2014. Mosaic-structured SnO2@C porous microspheres for high-performance supercapacitor electrode materials. Electrochimica Acta 142, 157-166. doi: 10.1016/j.electacta.2014.07.077
    Hu, Y.J., Zhuo, H., Luo, Q.S., Wu, Y.X., Wen, R., Chen, Z.H., Liu, L.X., Zhong, L.X., Peng, X.W., Sun, R.C., 2019. Biomass polymer-assisted fabrication of aerogels from MXenes with ultrahigh compression elasticity and pressure sensitivity. J. Mater. Chem. A 7, 10273-10281. doi: 10.1039/C9TA01448A
    Huang, J.Y., Liang, Y.R., Hu, H., Liu, S.M., Cai, Y.J., Dong, H.W., Zheng, M.T., Xiao, Y., Liu, Y.L., 2017. Ultrahigh-surface-area hierarchical porous carbon from chitosan: acetic acid mediated efficient synthesis and its application in superior supercapacitors. J. Mater. Chem. A 5, 24775-24781. doi: 10.1039/C7TA08046H
    Huang, Y.B., Jiang, S.H., Liang, R.C., Sun, P., Hai, Y., Zhang, L., 2020. Thermal-triggered insulating fireproof layers: a novel fire-extinguishing MXene composites coating. Chem. Eng. J. 391, 123621. doi: 10.1016/j.cej.2019.123621
    Hwang, H., Byun, S., Yuk, S., Kim, S., Song, S.H., Lee, D., 2021. High-rate electrospun Ti3C2Tx MXene/carbon nanofiber electrodes for flexible supercapacitors. Appl. Surf. Sci. 556, 149710. doi: 10.1016/j.apsusc.2021.149710
    Inada, M., Enomoto, N., Hojo, J., Hayashi, K., 2017. Structural analysis and capacitive properties of carbon spheres prepared by hydrothermal carbonization. Adv. Powder Technol. 28, 884-889. doi: 10.1016/j.apt.2016.12.014
    Jun, B.M., Kim, S., Heo, J., Park, C.M., Her, N., Jang, M., Huang, Y., Han, J., Yoon, Y., 2019. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res 12, 471-487. doi: 10.1007/s12274-018-2225-3
    Kim, C., Kim, K., Moon, J.H., 2017. Highly N-doped microporous carbon nanospheres with high energy storage and conversion efficiency. Sci. Rep. 7, 14400. doi: 10.1038/s41598-017-14686-1
    Kshetri, T., Tran, D.T., Singh, T.I., Kim, N.H., Lau, K.T., Lee, J.H., 2019. Effects of the composition of reduced graphene oxide/carbon nanofiber nanocomposite on charge storage behaviors. Compos. B: Eng. 178, 107500. doi: 10.1016/j.compositesb.2019.107500
    Li, T., Ding, B., Wang, J., Qin, Z.Y., Fernando, J.F.S., Bando, Y., Nanjundan, A.K., Kaneti, Y.V., Golberg, D., Yamauchi, Y., 2020. Sandwich-structured ordered mesoporous polydopamine/MXene hybrids as high-performance anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 12, 14993-15001. doi: 10.1021/acsami.9b18883
    Lillo-Ródenas, M.A., Cazorla-Amorós, D., Linares-Solano, A., 2003. Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon 41, 267-275. doi: 10.1016/S0008-6223(02)00279-8
    Liu, C.L., Bai, Y., Wang, J., Qiu, Z.M., Pang, H., 2021. Controllable synthesis of ultrathin layered transition metal hydroxide/zeolitic imidazolate framework-67 hybrid nanosheets for high-performance supercapacitors. J. Mater. Chem. A 9, 11201-11209. doi: 10.1039/D1TA02065J
    Liu, J.J., Deng, Y.F., Li, X.H., Wang, L.F., 2016. Promising nitrogen-rich porous carbons derived from one-step calcium chloride activation of biomass-based waste for high performance supercapacitors. ACS Sustainable Chem. Eng. 4, 177-187. doi: 10.1021/acssuschemeng.5b00926
    Lukatskaya, M.R., Mashtalir, O., Ren, C.E., Dall'Agnese, Y., Rozier, P., Taberna, P.L., Naguib, M., Simon, P., Barsoum, M.W., Gogotsi, Y., 2013. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502-1505. doi: 10.1126/science.1241488
    Lv, L., Huang, Y., Cao, D.P., 2018. Nitrogen-doped porous carbons with ultrahigh specific surface area as bifunctional materials for dye removal of wastewater and supercapacitors. Appl. Surf. Sci. 456, 184-194. doi: 10.1016/j.apsusc.2018.06.116
    Malaki, M., Maleki, A., Varma, R.S., 2019. MXenes and ultrasonication. J. Mater. Chem. A 7, 10843-10857. doi: 10.1039/C9TA01850F
    Mashtalir, O., Naguib, M., Mochalin, V.N., Dall'Agnese, Y., Heon, M., Barsoum, M.W., Gogotsi, Y., 2013. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716. doi: 10.1038/ncomms2664
    Miao, F.J., Shao, C.L., Li, X.H., Wang, K.X., Lu, N., Liu, Y.C., 2016. Three-dimensional freestanding hierarchically porous carbon materials as binder-free electrodes for supercapacitors: high capacitive property and long-term cycling stability. J. Mater. Chem. A 4, 5623-5631. doi: 10.1039/C6TA00830E
    Paraknowitsch, J.P., Thomas, A., 2013. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6, 2839. doi: 10.1039/c3ee41444b
    Poonam, Sharma, K., Arora, A., Tripathi, S.K., 2019. Review of supercapacitors: Materials and devices. J. Energy Storage 21, 801-825. doi: 10.1016/j.est.2019.01.010
    Sanchez-Sanchez, A., Izquierdo, M.T., Ghanbaja, J., Medjahdi, G., Mathieu, S., Celzard, A., Fierro, V., 2017. Excellent electrochemical performances of nanocast ordered mesoporous carbons based on tannin-related polyphenols as supercapacitor electrodes. J. Power Sources 344, 15-24. doi: 10.1016/j.jpowsour.2017.01.099
    Senthil, R.A., Yang, V., Pan, J.Q., Sun, Y.Z., 2021. A green and economical approach to derive biomass porous carbon from freely available feather finger grass flower for advanced symmetric supercapacitors. J. Energy Storage 35, 102287. doi: 10.1016/j.est.2021.102287
    Song, S.J., Ma, F.W., Wu, G., Ma, D., Geng, W.D., Wan, J.F., 2015. Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J. Mater. Chem. A 3, 18154-18162. doi: 10.1039/C5TA04721H
    Sun, F., Wu, H.B., Liu, X., Liu, F., Zhou, H.H., Gao, J.H., Lu, Y.F., 2016. Nitrogen-rich carbon spheres made by a continuous spraying process for high-performance supercapacitors. Nano Res 9, 3209-3221. doi: 10.1007/s12274-016-1199-2
    Tong, X., Chen, Z.H., Zhuo, H., Hu, Y.J., Jing, S.S., Liu, J.C., Zhong, L.X., 2019. Tailoring the physicochemical properties of chitosan-derived N-doped carbon by controlling hydrothermal carbonization time for high-performance supercapacitor application. Carbohydr. Polym. 207, 764-774. doi: 10.1016/j.carbpol.2018.12.048
    Tran, C.D., Ho, H.C., Keum, J.K., Chen, J.H., Gallego, N.C., Naskar, A.K., 2017. Sustainable energy-storage materials from lignin-graphene nanocomposite-derived porous carbon film. Energy Technol 5, 1927-1935. doi: 10.1002/ente.201700090
    Venkateshalu, S., Grace, A.N., 2020. MXenes-A new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond. Appl. Mater. Today 18, 100509. doi: 10.1016/j.apmt.2019.100509
    Wang, Y.G., Song, Y.F., Xia, Y.Y., 2016. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925-5950. doi: 10.1039/C5CS00580A
    Yan, K., Kong, L.B., Shen, K.W., Dai, Y.H., Shi, M., Hu, B., Luo, Y.C., Kang, L., 2016. Facile preparation of nitrogen-doped hierarchical porous carbon with high performance in supercapacitors. Appl. Surf. Sci. 364, 850-861. doi: 10.1016/j.apsusc.2015.12.193
    Yoo, E., Nakamura, J., Zhou, H.S., 2012. N-Doped graphene nanosheets for Li-air fuel cells under acidic conditions. Energy Environ. Sci. 5, 6928. doi: 10.1039/c2ee02830a
    Young, C., Park, T., Yi, J.W., Kim, J., Hossain, M.S.A., Kaneti, Y.V., Yamauchi, Y., 2018. Advanced functional carbons and their hybrid nanoarchitectures towards supercapacitor applications. ChemSusChem 11, 3546-3558. doi: 10.1002/cssc.201801525
    Yuan, M.J., Guo, X.T., Liu, Y., Pang, H., 2019. Si-based materials derived from biomass: synthesis and applications in electrochemical energy storage. J. Mater. Chem. A 7, 22123-22147. doi: 10.1039/C9TA06934H
    Zhang, S.H., Xia, W., Yang, Q., Valentino Kaneti, Y., Xu, X.T., Alshehri, S.M., Ahamad, T., Hossain, M.S.A., Na, J., Tang, J., Yamauchi, Y., 2020. Core-shell motif construction: highly graphitic nitrogen-doped porous carbon electrocatalysts using MOF-derived carbon@COF heterostructures as sacrificial templates. Chem. Eng. J. 396, 125154. doi: 10.1016/j.cej.2020.125154
    Zhang, X.L., Feng, C.N., Li, H.P., Zheng, X.C., 2021. N, O self-codoped hierarchical porous carbon from chitosan for supercapacitor electrode active materials. Cellulose 28, 437-451. doi: 10.1007/s10570-020-03536-5
    Zheng, L.P., Tang, B., Dai, X.C., Xing, T., Ouyang, Y.H., Wang, Y., Chang, B.B., Shu, H.B., Wang, X.Y., 2020a. High-yield synthesis of N-rich polymer-derived porous carbon with nanorod-like structure and ultrahigh N-doped content for high-performance supercapacitors. Chem. Eng. J. 399, 125671. doi: 10.1016/j.cej.2020.125671
    Zheng, S.S., Li, Q., Xue, H.G., Pang, H., Xu, Q., 2020b. A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage. Natl Sci Rev 7, 305-314. doi: 10.1093/nsr/nwz137
    Zhou, Y.H., Maleski, K., Anasori, B., Thostenson, J.O., Pang, Y.K., Feng, Y.Y., Zeng, K.X., Parker, C.B., Zauscher, S., Gogotsi, Y., Glass, J.T., Cao, C.Y., 2020. Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano 14, 3576-3586. doi: 10.1021/acsnano.9b10066
    Zhu, Y.C., Rajouâ, K., Le Vot, S., Fontaine, O., Simon, P., Favier, F., 2020. Modifications of MXene layers for supercapacitors. Nano Energy 73, 104734. doi: 10.1016/j.nanoen.2020.104734
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (646) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return