Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Yanling Zhang, Chao Duan, Swetha Kumari Bokka, Zhibin He, Yonghao Ni. Molded fiber and pulp products as green and sustainable alternatives to plastics: A mini review[J]. Journal of Bioresources and Bioproducts, 2022, 7(1): 14-25. doi: 10.1016/j.jobab.2021.10.003
Citation: Yanling Zhang, Chao Duan, Swetha Kumari Bokka, Zhibin He, Yonghao Ni. Molded fiber and pulp products as green and sustainable alternatives to plastics: A mini review[J]. Journal of Bioresources and Bioproducts, 2022, 7(1): 14-25. doi: 10.1016/j.jobab.2021.10.003

Molded fiber and pulp products as green and sustainable alternatives to plastics: A mini review

doi: 10.1016/j.jobab.2021.10.003
More Information
  • Corresponding author: E-mail address: duanchaonba@126.com (C. Duan); E-mail address: yonghao@unb.ca (Y. Ni)
  • Received Date: 2021-07-15
  • Accepted Date: 2021-09-07
  • Rev Recd Date: 2021-09-01
  • Available Online: 2021-10-14
  • Publish Date: 2022-02-20
  • There are significant incentives/pressures on decreasing the use of plastics and their related prod-ucts in the packaging industry, correspondingly, strong demands are emerging for clean, renew-able, recyclable/biodegradable packaging products. In this context, molded fiber/pulp products have attracted increasing attention, due to their green/sustainable advantages, simply because the raw materials used are plant-based and/or recycled fibers. Many companies have switched their packing practices from plastics to more environmentally friendly products, such as molded fiber products, which already have had and will continue to have obvious effect on packaging industries. This paper initially provides an overview on the general concept of molded pulp prod-ucts, and further summarizes the different types of molded fiber products in terms of natural fiber sources, manufacturing processes, current and emerging applications as well as the environmental sustainability of molded products.

     

  • loading
  • Almeshal, I., Tayeh, B.A., Alyousef, R., Alabduljabbar, H., Mustafa Mohamed, A., Alaskar, A., 2020. Use of recycled plastic as fine aggregate in cementitious composites: a review. Constr. Build. Mater. 253, 119146. doi: 10.1016/j.conbuildmat.2020.119146
    Andrady, A.L., 2011. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596-1605. doi: 10.1016/j.marpolbul.2011.05.030
    Andrés, F.N., Beltramini, L.B., Guilarducci, A.G., Romano, M.S., Ulibarrie, N.O., 2015. Waste of molded pulp industry. filler panel production for construction. Procedia Mater. Sci. 8, 824-830. doi: 10.1016/j.mspro.2015.04.141
    Azeredo, H.M.C., Rosa, M.F., Mattoso, L.H.C., 2017. Nanocellulose in bio-based food packaging applications. Ind. Crops Prod. 97, 664-671. doi: 10.1016/j.indcrop.2016.03.013
    Azmin, S.N.H.M., Hayat, N.A.B.M., Nor, M.S.M., 2020. Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. J. Bioresour. Bioprod. 5, 248-255. doi: 10.1016/j.jobab.2020.10.003
    Bajpai, P., 2014. Recycling and Deinking of Recovered Paper. Elsevier, Amsterdam, pp. 139-153.
    Bamigboye, G.O., Bassey, D.E., Olukanni, D.O., Ngene, B.U., Adegoke, D., Odetoyan, A.O., Kareem, M.A., Enabulele, D.O., Nworgu, A.T., 2021. Waste materials in highway applications: an overview on generation and utilization implications on sustainability. J. Clean. Prod. 283, 124581. doi: 10.1016/j.jclepro.2020.124581
    Bouwmeester, H., Hollman, P.C.H., Peters, R.J.B., 2015. Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology. Environ. Sci. Technol. 49, 8932-8947. doi: 10.1021/acs.est.5b01090
    Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., Galloway, T.S., 2013. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47, 6646-6655. doi: 10.1021/es400663f
    Collins, P.J., Field, J.A., Teunissen, P., Dobson, A.D., 1997. Stabilization of lignin peroxidases in white rot fungi by tryptophan. Appl. Environ. Microbiol. 63, 2543-2548. doi: 10.1128/aem.63.7.2543-2548.1997
    Dai, L., Chen, J., Yang, B., Su, Y.Q., Chen, L., Long, Z., Ni, Y.H., 2017. TEMPO-oxidized waste cellulose as reinforcement for recycled fiber networks. Ind. Eng. Chem. Res. 56, 15065-15071. doi: 10.1021/acs.iecr.7b04135
    de Souza Machado, A.A., Kloas, W., Zarfl, C., Hempel, S., Rillig, M.C., 2018. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 24, 1405-1416. doi: 10.1111/gcb.14020
    Didone, M., Saxena, P., Brilhuis-Meijer, E., Tosello, G., Bissacco, G., Mcaloone, T.C., Pigosso, D.C.A., Howard, T.J., 2017. Moulded pulp manufacturing: overview and prospects for the process technology. Packag. Technol. Sci. 30, 231-249. doi: 10.1002/pts.2289
    Didone, M., Tosello, G., 2019. Moulded pulp products manufacturing with thermoforming. Packag. Technol. Sci. 32, 7-22. doi: 10.1002/pts.2412
    Duan, C., Li, J.G., Ma, X.J., Chen, C.X., Liu, Y.S., Stavik, J., Ni, Y.H., 2015. Comparison of acid sulfite (AS)- and prehydrolysis kraft (PHK)-based dissolving pulps. Cellulose 22, 4017-4026. doi: 10.1007/s10570-015-0781-1
    Duan, C., Meng, X., Meng, J.R., Khan, M.I.H., Dai, L., Khan, A., An, X.Y., Zhang, J.H., Huq, T., Ni, Y.H., 2019. Chitosan as a preservative for fruits and vegetables: a review on chemistry and antimicrobial properties. J. Bioresour. Bioprod. 4, 11-21. doi: 10.21967/jbb.v4i1.189
    Eerkes-Medrano, D., Thompson, R.C., Aldridge, D.C., 2015. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 75, 63-82. doi: 10.1016/j.watres.2015.02.012
    Eriksen, M., Lebreton, L.C.M., Carson, H.S., Thiel, M., Moore, C.J., Borerro, J.C., Galgani, F., Ryan, P.G., Reisser, J., 2014. Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250, 000 tons afloat at sea. PLoS One 9, e111913. doi: 10.1371/journal.pone.0111913
    Garcia, J.M., Robertson, M.L., 2017. The future of plastics recycling. Science 358, 870-872. doi: 10.1126/science.aaq0324
    Geyer, R., Jambeck, J.R., Law, K.L., 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782. doi: 10.1126/sciadv.1700782
    Gouw, V.P., Jung, J., Simonsen, J., Zhao, Y., 2017. Fruit pomace as a source of alternative fibers and cellulose nanofiber as reinforcement agent to create molded pulp packaging boards. Compos. Part A Appl. Sci. Manuf. 99, 48-57. doi: 10.1016/j.compositesa.2017.04.007
    Gu, P., Liu, W., Hou, Q.X., Ni, Y.H., 2021. Lignocellulose-derived hydrogel/aerogel-based flexible quasi-solid-state supercapacitors with high-performance: a review. J. Mater. Chem. A 9, 14233-14264. doi: 10.1039/D1TA02281D
    Horejs, C., 2020. Solutions to plastic pollution. Nat. Rev. Mater. 5, 641. doi: 10.1038/s41578-020-00237-0
    Hosseinpour, R., Fatehi, P., Latibari, A.J., Ni, Y.H., Javad Sepiddehdam, S., 2010. Canola straw chemimechanical pulping for pulp and paper production. Bioresour. Technol. 101, 4193-4197. doi: 10.1016/j.biortech.2010.01.055
    Hubbe, M.A., Venditti, R.A., Rojas, O.J., 2007. What happens to cellulosic fibers during papermaking and recycling? A review. BioResources 2, 739-788. doi: 10.15376/biores.2.4.739-788
    Huo, L.J., Saito, K., 2009. Multidimensional life cycle assessment on various moulded pulp production systems. Packag. Technol. Sci. 22, 261-273. doi: 10.1002/pts.852
    Jahan, M.S., Rahman, M.M., Ni, Y.H., 2021. Alternative initiatives for non-wood chemical pulping and integration with the biorefinery concept: a review. Biofuels, Bioprod. Bioref. 15, 100-118. doi: 10.1002/bbb.2143
    Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L., 2015. Plastic waste inputs from land into the ocean. Science 347, 768-771. doi: 10.1126/science.1260352
    Keswani, A., Oliver, D.M., Gutierrez, T., Quilliam, R.S., 2016. Microbial hitchhikers on marine plastic debris: human exposure risks at bathing waters and beach environments. Mar. Environ. Res. 118, 10-19. doi: 10.1016/j.marenvres.2016.04.006
    Khan, A., Wen, Y.B., Huq, T., Ni, Y.H., 2018. Cellulosic nanomaterials in food and nutraceutical applications: a review. J. Agric. Food Chem. 66, 8-19. doi: 10.1021/acs.jafc.7b04204
    Lambert, S., Wagner, M., 2016. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145, 265-268. doi: 10.1016/j.chemosphere.2015.11.078
    Li, B., Li, H.M., Zha, Q.Q., Bandekar, R., Alsaggaf, A., Ni, Y.H., 2011. Review: effects of wood quality and refining process on TMP pulp and paper quality. BioResources 6, 3569-3584. doi: 10.15376/biores.6.3.Li
    Li, H.L., Zhang, H.J., Legere, S., Ni, Y.H., Qian, X.J., Cheng, H.S., Zhang, F.S., Li, X.L., 2017. Estimating the inter-fiber bonding capacities of high-yield pulp (HYP) fibers by analyzing the fiber surface lignin and surface charge. BioResources 13, 1122-1131.
    Li, W.C., Tse, H.F., Fok, L., 2016. Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci. Total. Environ. 333-349 566/567.
    Liu, C., Luan, P.C., Li, Q., Cheng, Z., Sun, X., Cao, D.X., Zhu, H.L., 2020. Biodegradable, hygienic, and compostable tableware from hybrid sugarcane and bamboo fibers as plastic alternative. Matter 3, 2066-2079. doi: 10.1016/j.matt.2020.10.004
    MacArthur, E., 2017. Beyond plastic waste. Science 358, 843. doi: 10.1126/science.aao6749
    MacLeod, M., Arp, H.P.H., Tekman, M.B., Jahnke, A., 2021. The global threat from plastic pollution. Science 373, 61-65. doi: 10.1126/science.abg5433
    Oyeoka, H.C., Ewulonu, C.M., Nwuzor, I.C., Obele, C.M., Nwabanne, J.T., 2021. Packaging and degradability properties of polyvinyl alcohol/gelatin nanocomposite films filled water hyacinth cellulose nanocrystals. J. Bioresour. Bioprod. 6, 168-185. doi: 10.1016/j.jobab.2021.02.009
    Qin, X.Y., Duan, C., Feng, X.M., Zhang, Y.L., Dai, L., Xu, Y.J., Ni, Y.H., 2021. Integrating phosphotungstic acid-assisted prerefining with cellulase treatment for enhancing the reactivity of kraft-based dissolving pulp. Bioresour. Technol. 320, 124283. doi: 10.1016/j.biortech.2020.124283
    Sarwar Jahan, M., Shamsuzzaman, M., Rahman, M.M., Iqbal Moeiz, S.M., Ni, Y., 2012. Effect of pre-extraction on soda-anthraquinone (AQ) pulping of rice straw. Ind. Crops Prod. 37, 164-169. doi: 10.1016/j.indcrop.2011.11.035
    Saxena, P., Bissacco, G., Bedka, F.J., Stolfi, A., 2018. Tooling for production of the green fiber bottle. Procedia CIRP 69, 348-353. doi: 10.1016/j.procir.2017.12.001
    Schneiderman, D.K., Hillmyer, M.A., 2017. 50th anniversary perspective: there is a great future in sustainable polymers. Macromolecules 50, 3733-3749. doi: 10.1021/acs.macromol.7b00293
    Schnurr, R.E.J., Alboiu, V., Chaudhary, M., Corbett, R.A., Quanz, M.E., Sankar, K., Srain, H.S., Thavarajah, V., Xanthos, D., Walker, T.R., 2018. Reducing marine pollution from single-use plastics (SUPs): a review. Mar. Pollut. Bull. 137, 157-171. doi: 10.1016/j.marpolbul.2018.10.001
    Sengupta, P., Dey, A., Alam, T., Pramanik, N.K., 2020. Paper and other pulp based eco-friendly moulded materials for food packaging applications: a review. J. Postharvest Technol. 8, 1-21.
    Su, Y.Q., Yang, B., Liu, J.G., Sun, B., Cao, C.Y., Zou, X.J., Lutes, R., He, Z.B., 2018. Prospects for replacement of some plastics in packaging with lignocellulose materials: a brief review. BioResources 13, 4550-4576.
    Tan, R.B.H., Khoo, H.H., 2005. Life cycle assessment of EPS and CPB inserts: design considerations and end of life scenarios. J. Environ. Manag. 74, 195-205. doi: 10.1016/j.jenvman.2004.09.003
    Wang, W., Yang, S., Ding, K., Jiao, L., Yan, J., Zhao, W., Ma, Y.Y., Wang, T.Y., Cheng, B.W., Ni, Y.H., 2021. Biomaterials- and biostructures Inspired high-performance flexible stretchable strain sensors: a review. Chem. Eng. J. 425, 129949. doi: 10.1016/j.cej.2021.129949
    Wei, D.W., Wei, H.Y., Gauthier, A.C., Song, J.L., Jin, Y.C., Xiao, H.N., 2020. Superhydrophobic modification of cellulose and cotton textiles: methodologies and applications. J. Bioresour. Bioprod. 5, 1-15. doi: 10.1016/j.jobab.2020.03.001
    Wistara, N., Young, R.A., 1999. Properties and treatments of pulps from recycled paper. Part I. Physical and chemical properties of pulps. Cellulose 6, 291-324.
    Wright, S.L., Kelly, F.J., 2017. Plastic and human health: a micro issue? Environ. Sci. Technol. 51, 6634-6647. doi: 10.1021/acs.est.7b00423
    Wright, S.L., Rowe, D., Thompson, R.C., Galloway, T.S., 2013. Microplastic ingestion decreases energy reserves in marine worms. Curr. Biol. 23, R1031-R1033. doi: 10.1016/j.cub.2013.10.068
    Yang, X., Berthold, F., Berglund, L.A., 2019. High-density molded cellulose fibers and transparent biocomposites based on oriented holocellulose. ACS Appl. Mater. Interfaces 11, 10310-10319. doi: 10.1021/acsami.8b22134
    Zabaniotou, A., Kassidi, E., 2003. Life cycle assessment applied to egg packaging made from polystyrene and recycled paper. J. Clean. Prod. 11, 549-559. doi: 10.1016/S0959-6526(02)00076-8
    Zhang, H.J., He, Z.B., Ni, Y.H., 2011. Improvement of high-yield pulp properties by using a small amount of bleached wheat straw pulp. Bioresour. Technol. 102, 2829-2833. doi: 10.1016/j.biortech.2010.10.053
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (662) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return