Citation: | Haixin Guo, Ryota Higashiguchi, Yuya Abe, Smith Richard Lee. Effective conversion of fructose to 5-ethoxymethylfurfural with brønsted acid site (S/Cl)-functional carbon catalysts[J]. Journal of Bioresources and Bioproducts, 2022, 7(1): 33-42. doi: 10.1016/j.jobab.2021.11.001 |
Brønsted acid site (S/Cl)-functional carbon materials were prepared by ball-milling (bm) L-cysteine and ammonium chloride to form chemical complex solids, by post-heat treatment (Q) of the solids at 500 ℃ under a nitrogen gas atmosphere to stabilize and fortify amino and functional group solid structures and by post-oxidative treatment with H2O2 to add Brønsted acidity. The as-prepared carbon materials (S/Cl@bmxQy; x, y in hours) contained Brønsted acid sites (sul-fonates, chlorides), oxygen-containing groups (-COOH, -OH) and amino functional groups. The S/Cl@bmxQy materials were applied as catalysts to promote conversion of fructose in ethanol solvent to 5-hydroxymethylfurfural (5-HMF) and 5-ethoxymethylfurfural (5-EMF). Among the carbon materials, S/Cl@bm3Q1 gave 5-EMF and 5-HMF yields of 67.0% and 22.8%, respectively, in pure ethanol at 140 ℃ for 24 h reaction time, while a reaction time of 18 h gave total 5-EMF and 5-HMF yields of 96.4%. Dimethyl sulfoxide (DMSO) was applied as additive to the ethanol-fructose- S/Cl@bm3Q1 reaction system which showed that 5-HMF product selectivity could be controlled with DMSO concentration. The protocol developed allows simple preparation of func-tional carbon materials that have high catalytic activity and are effective for conversion of fructose to 5-HMF and 5-EMF in ethanol.
Balakrishnan, M., Sacia, E.R., Bell, A.T., 2012. Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl)furfurals and 2, 5-bis(alkoxymethyl)furans as potential bio-diesel candidates. Green Chem 14, 1626. doi: 10.1039/c2gc35102a
|
Chen, D.W., Liang, F.B., Feng, D.X., Xian, M., Zhang, H.B., Liu, H.Z., Du, F.L., 2016. An efficient route from reproducible glucose to 5-hydroxymethylfurfural catalyzed by porous coordination polymer heterogeneous catalysts. Chem. Eng. J. 300, 177-184. doi: 10.1016/j.cej.2016.04.039
|
Chen, Y.F., Peng, L.C., Zhang, J.H., He, L., 2020. Synergy of Al2(SO4)3 and H3PO4 in co-solvents converts starch to 5-ethoxymethylfurfural. Catal. Commun. 137, 105947. doi: 10.1016/j.catcom.2020.105947
|
Dai, J.H., Liu, Z.B., Hu, Y.X., Liu, S.Q., Chen, L.F., Qi, T., Yang, H.Q., Zhu, L.F., Hu, C.W., 2019. Adjusting the acidity of sulfonated organocatalyst for the one-pot production of 5-ethoxymethylfurfural from fructose. Catal. Sci. Technol. 9, 483-492. doi: 10.1039/C8CY02010H
|
Guo, H.X., Duereh, A., Su, Y.Q., Hensen, E.J.M., Qi, X.H., Smith, R.L. Jr, 2020a. Mechanistic role of protonated polar additives in ethanol for selective transformation of biomass-related compounds. Appl. Catal. B: Environ. 264, 118509. doi: 10.1016/j.apcatb.2019.118509
|
Guo, H.X., Hiraga, Y., Qi, X.H., Smith Jr, R.L., 2019a. Hydrogen gas-free processes for single-step preparation of transition-metal bifunctional catalysts and one-pot -valerolactone synthesis in supercritical CO2-ionic liquid systems. J. Supercrit. Fluids 147, 263-270. doi: 10.1016/j.supflu.2018.11.010
|
Guo, H.X., Hirosaki, Y., Qi, X.H., Lee Smith Jr, R., 2020b. Synthesis of ethyl levulinate over amino-sulfonated functional carbon materials. Renew. Energy 157, 951-958. doi: 10.1016/j.renene.2020.05.103
|
Guo, H.X., Qi, X.H., Hiraga, Y., Aida, T.M., Smith Jr, R.L., 2017. Efficient conversion of fructose into 5-ethoxymethylfurfural with hydrogen sulfate ionic liquids as co-solvent and catalyst. Chem. Eng. J. 314, 508-514. doi: 10.1016/j.cej.2016.12.008
|
Guo, K., Guan, Q.Y., Xu, J.M., Tan, W.H., 2019b. Mechanism of preparation of platform compounds from lignocellulosic biomass. J. Bioresour. Bioprod. 4, 202-213.
|
Gupta, S.S.R., Kantam, M.L., 2019. Catalytic conversion of furfuryl alcohol or levulinic acid into alkyl levulinates using a sulfonic acid-functionalized hafnium-based MOF. Catal. Commun. 124, 62-66. doi: 10.1016/j.catcom.2019.03.003
|
Hu, L., Li, Z., Wu, Z., Lin, L., Zhou, S.Y., 2016. Catalytic hydrolysis of microcrystalline and rice straw-derived cellulose over a chlorine-doped magnetic carbonaceous solid acid. Ind. Crops Prod. 84, 408-417. doi: 10.1016/j.indcrop.2016.02.039
|
Kumari, P.K., Rao, B.S., Mallesh, D., Lingaiah, N., 2021. Niobium exchanged tungstophosphoric acid supported on titania catalysts for selective synthesis of 5-ethoxymethylfurfural from fructose. Mol. Catal. 508, 111607. doi: 10.1016/j.mcat.2021.111607
|
Li, H., Govind, K.S., Kotni, R., Shunmugavel, S., Riisager, A., Yang, S., 2014. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid-base bifunctional hybrid nanospheres. Energy Convers. Manag. 88, 1245-1251. doi: 10.1016/j.enconman.2014.03.037
|
Li, J.J., Jing, Y.R., Liu, C.B., Zhang, D.J., 2017. A theoretical elucidation: why does a SO3H-functionalized imidazolium-based ionic liquid catalyze the conversion of 5-hydroxymethylfurfural to levulinic acid? New J. Chem. 41, 8714-8720. doi: 10.1039/C7NJ00878C
|
Li, X.F., Zhang, J.F., Huo, Y., Dai, K., Li, S.W., Chen, S.F., 2021. Two-dimensional sulfur- and chlorine-codoped g-C3N4/CdSe-amine heterostructures nanocomposite with effective interfacial charge transfer and mechanism insight. Appl. Catal. B: Environ. 280, 119452. doi: 10.1016/j.apcatb.2020.119452
|
Liu, B., Zhang, Z.H., 2013. One-pot conversion of carbohydrates into 5-ethoxymethylfurfural and ethyl d-glucopyranoside in ethanol catalyzed by a silica supported sulfonic acid catalyst. RSC Adv 3, 12313. doi: 10.1039/c3ra41043a
|
Liu, B., Zhang, Z.H., Huang, K.C., Fang, Z. F, 2013. Efficient conversion of carbohydrates into 5-ethoxymethylfurfural in ethanol catalyzed by AlCl3. Fuel 113, 625-631. doi: 10.1016/j.fuel.2013.06.015
|
Lopes da Costa, N., Guedes Pereira, L., Mendes Resende, J.V., Diaz Mendoza, C.A., Kaiser Ferreira, K., Detoni, C., M V M Souza, M., N D C Gomes, F., 2021. Phospho-tungstic acid on activated carbon: a remarkable catalyst for 5-hydroxymethylfurfural production. Mol. Catal. 500, 111334. doi: 10.1016/j.mcat.2020.111334
|
Shen, F., Smith, R.L., Li, L.Y., Yan, L.L., Qi, X.H., 2017. Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst. ACS Sustain. Chem. Eng. 5, 2421-2427.
|
Sivaranjini, B., Mangaiyarkarasi, R., Ganesh, V., Umadevi, S., 2018. Vertical alignment of liquid crystals over a functionalized flexible substrate. Sci. Rep. 8, 1-13.
|
Sreekanth, P., Kim, S.W., Hyeon, T., Kim, B.M., 2003. A novel mesoporous silica-supported lewis acid catalyst for C=C bond formation reactions in water. Adv. Synth. Catal. 345, 936-938. doi: 10.1002/adsc.200303061
|
Srinivasa Rao, B., Dhana Lakshmi, D., Krishna Kumari, P., Rajitha, P., Lingaiah, N., 2020. Dehydrative etherification of carbohydrates to 5-ethoxymethylfurfural over SBA-15-supported Sn-modified heteropolysilicate catalysts. Sustain. Energy Fuels 4, 3428-3437. doi: 10.1039/D0SE00509F
|
Su, M.X., Li, W.Z., Ma, Q.Z., Zhu, B. W, 2020. Production of jet fuel intermediates from biomass platform compounds via aldol condensation reaction over iron-modified MCM-41 lewis acid zeolite. J. Bioresour. Bioprod. 5, 256-265. doi: 10.1016/j.jobab.2020.10.004
|
Szczęśniak, B., Borysiuk, S., Choma, J., Jaroniec, M., 2020. Mechanochemical synthesis of highly porous materials. Mater. Horiz. 7, 1457-1473.
|
Tyufekchiev, M., Duan, P., Schmidt-Rohr, K., Granados Focil, S., Timko, M.T., Emmert, M.H., 2018. Cellulase-inspired solid acids for cellulose hydrolysis: structural explanations for high catalytic activity. ACS Catal 8, 1464-1468.
|
Wang, S.G., Zhang, Z.H., Liu, B., Li, J.L., 2013. Silica coated magnetic Fe3O4 nanoparticles supported phosphotungstic acid: a novel environmentally friendly catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose. Catal. Sci. Technol. 3, 2104.
|
Wang, Z.H., Chen, Q.W., 2016. Conversion of 5-hydroxymethylfurfural into 5-ethoxymethylfurfural and ethyl levulinate catalyzed by MOF-based heteropolyacid materials. Green Chem 18, 5884-5889.
|
Wataniyakul, P., Boonnoun, P., Quitain, A.T., Sasaki, M., Kida, T., Laosiripojana, N., Shotipruk, A., 2018. Preparation of hydrothermal carbon as catalyst support for conversion of biomass to 5-hydroxymethylfurfural. Catal. Commun. 104, 41-47.
|
Wu, H.N., Zhu, Y., Bian, S.W., Ko, J.H., Li, S.F.Y., Xu, Q.Y., 2018. H2S adsorption by municipal solid waste incineration (MSWI) fly ash with heavy metals immobilization. Chemosphere 195, 40-47.
|
Xu, S.J., Liu, C., Ye, F., Guo, Y.J., Wiezorek, J., 2017. Alkali-assisted hydrothermal route to control submicron-sized nanoporous carbon spheres with uniform distri-bution. Colloids Surf. A: Physicochem. Eng. Aspects 515, 1-11.
|
Zhang, J., Dong, K.J., Luo, W.M., Guan, H.F., 2018a. Catalytic upgrading of carbohydrates into 5-ethoxymethylfurfural using SO3H functionalized hyper-cross-linked polymer based carbonaceous materials. Fuel 234, 664-673.
|
Zhang, L.X., Zhu, Y.J., Tian, L., He, Y.F., Wang, H., Deng, F.Y., 2019. One-pot alcoholysis of carbohydrates to biofuel 5-ethoxymethylfufural and 5-methoxymethylfufural via a sulfonic porous polymer. Fuel Process. Technol. 193, 39-47.
|
Zhang, R., Tao, C.A., Chen, R., Wu, L.F., Zou, X.X., Wang, J.F., 2018b. Ultrafast synthesis of Ni-MOF in one minute by ball milling. Nanomaterials 8, 1067.
|