Volume 7 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
Linhu Ding, Xiaoshuai Han, Lihua Cao, Yiming Chen, Zhe Ling, Jingquan Han, Shuijian He, Shaohua Jiang. Characterization of natural fiber from manau rattan (Calamus manan) as a potential reinforcement for polymer-based composites[J]. Journal of Bioresources and Bioproducts, 2022, 7(3): 190-200. doi: 10.1016/j.jobab.2021.11.002
Citation: Linhu Ding, Xiaoshuai Han, Lihua Cao, Yiming Chen, Zhe Ling, Jingquan Han, Shuijian He, Shaohua Jiang. Characterization of natural fiber from manau rattan (Calamus manan) as a potential reinforcement for polymer-based composites[J]. Journal of Bioresources and Bioproducts, 2022, 7(3): 190-200. doi: 10.1016/j.jobab.2021.11.002

Characterization of natural fiber from manau rattan (Calamus manan) as a potential reinforcement for polymer-based composites

doi: 10.1016/j.jobab.2021.11.002
More Information
  • Corresponding author: E-mail address: hxs141424@163.com (X. Han); E-mail address: shaohua.jiang@njfu.edu.cn (S. Jiang)
  • Received Date: 2021-07-10
  • Accepted Date: 2021-09-28
  • Rev Recd Date: 2021-09-21
  • Available Online: 2021-11-06
  • Publish Date: 2022-07-31
  • Researches on novel natural fibers in polymer-based composites will help promote the invention of novel reinforcement and expand their possible applications. Herein, in this study, novel cellulosic fibers were extracted from the stem of manau rattan (Calamus manan) by mechanical separation. The chemical, thermal, mechanical and morphological properties of manau rattan fibers were comprehensively analyzed and studied by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), single fiber tensile test and scanning electron microscopy (SEM). Component analysis results showed that the cellulose, hemicellulose and lignin contents of C. manan fibers were 42wt%, 20wt%, and 27wt%, respectively. The surface of the rattan fiber was hydrophilic according to the oxygen/carbon ratio of 0.49. The C. manan has a crystalline index of 48.28%, inducing a maximum degradation temperature of 332.8 ℃. This reveals that it can be used as a reinforcement for thermoplastic composites whose operating temperature is below 300 ℃. The average tensile strength can reach (273.28 ± 52.88) MPa, which is beneficial to improve the mechanical properties of rattan fiber reinforced composites. The SEM images displayed the rough surface of the fiber, which helped to enhance the interfacial adhesion between the fibers and matrices in composites. These results indicate the great potential of C. manan fibers as the reinforcement in polymer-based composites.

     

  • loading
  • Abdal-Hay, A., Suardana, N.P.G., Jung, D.Y., Choi, K.S., Lim, J.K., 2012. Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites. Int. J. Precis. Eng. Manuf. 13, 1199–1206. doi: 10.1007/s12541-012-0159-3
    Alaaeddin, M.H., Sapuan, S.M., Zuhri, M.Y.M., Zainudin, E.S., AL- Oqla, F.M., 2019. Polymer matrix materials selection for short sugar palm composites using integrated multi criteria evaluation method. Compos. B: Eng. 176, 107342. doi: 10.1016/j.compositesb.2019.107342
    Al-Khanbashi, A., Al-Kaabi, K., Hammami, A., 2005. Date palm fibers as polymeric matrix reinforcement: Fiber characterization. Polym. Compos. 26, 486–497. doi: 10.1002/pc.20118
    Al-Oqla, F.M., El-Shekeil, Y.A., 2019. Investigating and predicting the performance deteriorations and trends of polyurethane bio-composites for more realistic sustainable design possibilities. J. Clean. Prod. 222, 865–870. doi: 10.1016/j.jclepro.2019.03.042
    Al-Oqla, F.M., Hayajneh, M.T., 2021. A hierarchy weighting preferences model to optimise green composite characteristics for better sustainable bio-products. Int. J. Sustain. Eng. 14, 1043–1048. doi: 10.1080/19397038.2020.1822951
    Al-Oqla, F.M., Hayajneh, M.T., Fares, O., 2019. Investigating the mechanical thermal and polymer interfacial characteristics of Jordanian lignocellulosic fibers to demonstrate their capabilities for sustainable green materials. J. Clean. Prod. 241, 118256. doi: 10.1016/j.jclepro.2019.118256
    Al-Oqla, F.M., Sapuan, S.M., 2014. Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 66, 347–354. doi: 10.1016/j.jclepro.2013.10.050
    Al-Oqla, F.M., Sapuan, S.M., Ishak, M.R., Nuraini, A.A., 2014. A novel evaluation tool for enhancing the selection of natural fibers for polymeric composites based on fiber moisture content criterion. BioResources 10, 299–312.
    Al-Oqla, F.M., Sapuan, S.M., Ishak, M.R., Nuraini, A.A., 2016. A decision-making model for selecting the most appropriate natural fiber: polypropylene-based composites for automotive applications. J. Compos. Mater. 50, 543–556. doi: 10.1177/0021998315577233
    Béakou, A., Ntenga, R., Lepetit, J., Atéba, J.A., Ayina, L.O., 2008. Physico-chemical and microstructural characterization of "Rhectophyllum camerunense" plant fiber. Compos. A: Appl. Sci. Manuf. 39, 67–74. doi: 10.1016/j.compositesa.2007.09.002
    Belouadah, Z., Ati, A., Rokbi, M., 2015. Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydr. Polym. 134, 429–437. doi: 10.1016/j.carbpol.2015.08.024
    Cárdenas-R, J.P., Cea, M., Santín, K., Valdés, G., Hunter, R., Navia, R., 2018. Characterization and application of a natural polymer obtained from Hydrangea macrophylla as a thermal insulation biomaterial. Compos. B: Eng. 132, 10–16. doi: 10.1016/j.compositesb.2017.07.086
    Dalmis, R., Köktaş, S., Seki, Y., Kılınç, A. Ç., 2020. Characterization of a new natural cellulose based fiber from Hierochloe Odarata. Cellulose 27, 127–139. doi: 10.1007/s10570-019-02779-1
    de Rosa, I.M., Kenny, J.M., Puglia, D., Santulli, C., Sarasini, F., 2010. Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos. Sci. Technol. 70, 116–122. doi: 10.1016/j.compscitech.2009.09.013
    de Silva, F.D.A., Chawla, N., Filho, R.D.D.T., 2008. Tensile behavior of high performance natural (sisal) fibers. Compos. Sci. Technol. 68, 3438–3443. doi: 10.1016/j.compscitech.2008.10.001
    Doronina, Y.V., Ryabovaya, V.O., 2013. A method of structural and functional synthesis in problems of restructuring environmental monitoring systems. J. Autom. Inf. Sci. 45, 63–74. doi: 10.1615/JAutomatInfScien.v45.i11.80
    Fiore, V., Scalici, T., Valenza, A., 2014. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydr. Polym. 106, 77–83.
    Han, X.S., Wang, Z.X., Ding, L.H., Chen, L., Wang, F., Pu, J.W., Jiang, S.H., 2021. Water molecule-induced hydrogen bonding between cellulose nanofibers toward highly strong and tough materials from wood aerogel. Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.03.044.
    Han, X.S., Ye, Y.H., Lam, F., Pu, J.W., Jiang, F., 2019. Hydrogen-bonding-induced assembly of aligned cellulose nanofibers into ultrastrong and tough bulk materials. J. Mater. Chem. A 7, 27023–27031. doi: 10.1039/C9TA11118B
    Hyness, N.R.J., Vignesh, N.J., Senthamaraikannan, P., Saravanakumar, S.S., Sanjay, M.R., 2018. Characterization of new natural cellulosic fiber from Heteropogon contortus plant. J. Nat. Fibers 15, 146–153. doi: 10.1080/15440478.2017.1321516
    Ilangovan, M., Guna, V., Hu, C.Y., Nagananda, G.S., Reddy, N., 2018. Curcuma longa L. plant residue as a source for natural cellulose fibers with antimicrobial activity. Ind. Crops Prod. 112, 556–560. doi: 10.1016/j.indcrop.2017.12.042
    Indran, S., Raj, R.E., 2015. Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydr. Polym. 117, 392–399. doi: 10.1016/j.carbpol.2014.09.072
    Ismail, H., Othman, N., Komethi, M., 2012. Curing characteristics and mechanical properties of rattan-powder-filled natural rubber composites as a function of filler loading and silane coupling agent. J. Appl. Polym. Sci. 123, 2805–2811. doi: 10.1002/app.34730
    Jiménez, L., Rodríguez, A., Pérez, A., Moral, A., Serrano, L., 2008. Alternative raw materials and pulping process using clean technologies. Ind. Crops Prod. 28, 11–16. doi: 10.1016/j.indcrop.2007.12.005
    Kathirselvam, M., Kumaravel, A., Arthanarieswaran, V.P., Saravanakumar, S.S., 2019a. Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydr. Polym. 217, 178–189. doi: 10.1016/j.carbpol.2019.04.063
    Kathirselvam, M., Kumaravel, A., Arthanarieswaran, V.P., Saravanakumar, S.S., 2019b. Isolation and characterization of cellulose fibers from Thespesia populnea barks: a study on physicochemical and structural properties. Int. J. Biol. Macromol. 129, 396–406. doi: 10.1016/j.ijbiomac.2019.02.044
    Kılınç, A. Ç., Köktaş, S., Seki, Y., Atagür, M., Dalmış, R., Erdoğan, Ü. H., Göktaş, A.A., Seydibeyoğlu, M. Ö., 2018. Extraction and investigation of lightweight and porous natural fiber from Conium maculatum as a potential reinforcement for composite materials in transportation. Compos. B: Eng. 140, 1–8. doi: 10.1016/j.compositesb.2017.11.059
    Kim, U.J., Eom, S.H., Wada, M., 2010. Thermal decomposition of native cellulose: Influence on crystallite size. Polym. Degrad. Stab. 95, 778–781. doi: 10.1016/j.polymdegradstab.2010.02.009
    Kumar, S., Prasad, L., Patel, V.K., Kumar, V., Kumar, A., Yadav, A., Winczek, J., 2021. Physical and mechanical properties of natural leaf fiber-reinforced epoxy polyester composites. Polymers 13, 1369. doi: 10.3390/polym13091369
    Li, R.J., Fei, J.M., Cai, Y.R., Li, Y.F., Feng, J.Q., Yao, J.M., 2009. Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr. Polym. 76, 94–99. doi: 10.1016/j.carbpol.2008.09.034
    Liu, L., Xu, W.H., Ding, Y.C., Agarwal, S., Greiner, A., Duan, G.G., 2020. A review of smart electrospun fibers toward textiles. Compos. Commun. 22, 100506. doi: 10.1016/j.coco.2020.100506
    Manimaran, P., Senthamaraikannan, P., Sanjay, M.R., Marichelvam, M.K., Jawaid, M, 2018. Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydr. Polym. 181, 650–658. doi: 10.1016/j.carbpol.2017.11.099
    Milan, S., Christopher, T., Manivannan, A., Mayandi, K., Jappes, J.T.W., 2021. Mechanical and thermal properties of a novel Spinifex Littoreus fiber reinforced polymer composites as an alternate for synthetic glass fiber composites. Mater. Res. Express 8, 035301. doi: 10.1088/2053-1591/abe73d
    Patt, R., Kordsachia, O., Fehr, J., 2006. European hardwoods versus Eucalyptus globulus as a raw material for pulping. Wood Sci. Technol. 40, 39–48. doi: 10.1007/s00226-005-0042-9
    Prata, J.C., Godoy, V., da Costa, J.P., Calero, M., Martín-Lara, M.A., Duarte, A.C., Rocha-Santos, T., 2021. Microplastics and fibers from three areas under different anthropogenic pressures in Douro river. Sci. Total. Environ. 776, 145999. doi: 10.1016/j.scitotenv.2021.145999
    Reddy, N., Yang, Y.Q., 2005. Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer 46, 5494–5500. doi: 10.1016/j.polymer.2005.04.073
    Saravanakumar, S.S., Kumaravel, A., Nagarajan, T., Sudhakar, P., Baskaran, R., 2013. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr. Polym. 92, 1928–1933. doi: 10.1016/j.carbpol.2012.11.064
    Sathishkumar, T.P., Navaneethakrishnan, P., Shankar, S., Rajasekar, R., Rajini, N., 2013. Characterization of natural fiber and composites: a review. J. Reinf. Plast. Compos. 32, 1457–1476. doi: 10.1177/0731684413495322
    Seki, Y., Sarikanat, M., Sever, K., Durmuşkahya, C., 2013. Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composites materials. Compos. B: Eng. 44, 517–523. doi: 10.1016/j.compositesb.2012.03.013
    Seki, Y., Seki, Y., Sarikanat, M., Sever, K., Durmuşkahya, C., Bozacı, E., 2016. Evaluation of linden fibre as a potential reinforcement material for polymer composites. J. Ind. Text. 45, 1221–1238. doi: 10.1177/1528083714557055
    Sgriccia, N., Hawley, M.C., Misra, M., 2008. Characterization of natural fiber surfaces and natural fiber composites. Compos. A: Appl. Sci. Manuf. 39, 1632–1637. doi: 10.1016/j.compositesa.2008.07.007
    Shanmugasundaram, N., Rajendran, I., Ramkumar, T., 2018. Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydr. Polym. 195, 566–575. doi: 10.1016/j.carbpol.2018.04.127
    Sinha, A.K., Bhattacharya, S., Narang, H.K., 2021. Abaca fibre reinforced polymer composites: a review. J. Mater. Sci. 56, 4569–4587.
    Vinod, A., Vijay, R., Lenin Singaravelu, D., Sanjay, M.R., Siengchin, S., Moure, M.M., 2019. Characterization of untreated and alkali treated natural fibers extracted from the stem of. Catharanthus roseus 6, 085406.
    Wang, Z.X., Han, X.S., Zhou, Z.J., Meng, W.Y., Han, X.W., Wang, S.J., Pu, J.W., 2021. Lightweight and elastic wood-derived composites for pressure sensing and electromagnetic interference shielding. Compos. Sci. Technol. 213, 108931. doi: 10.1016/j.compscitech.2021.108931
    Xu, Y.S., de Adekunle, K., Ramamoorthy, S.K., Skrifvars, M., Hakkarainen, M., 2020. Methacrylated lignosulfonate as compatibilizer for flax fiber reinforced biocomposites with soybean-derived polyester matrix. Compos. Commun. 22, 100536.
    Yao, K.Q., Chen, J., Li, P., Duan, G.G., Hou, H.Q., 2019. Robust strong electrospun polyimide composite nanofibers from a ternary polyamic acid blend. Compos. Commun. 15, 92–95.
    Yusuff, I., Sarifuddin, N., Ali, A.M., 2021. A review on kenaf fiber hybrid composites: mechanical properties, potentials, and challenges in engineering applications. Prog. Rubber Plast. Recycl. Technol. 37, 66–83.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (518) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return