Citation: | Jiaxiu Wang, Markus Euring, Kolja Ostendorf, Kai Zhang. Biobased materials for food packaging[J]. Journal of Bioresources and Bioproducts, 2022, 7(1): 1-13. doi: 10.1016/j.jobab.2021.11.004 |
Abral, H., Pratama, A.B., Handayani, D., Mahardika, M., Ilyas, R.A., 2021. Antimicrobial edible film prepared from bacterial cellulose nanofibers/starch/chitosan for a food packaging alternative. Int. J. Polym. Sci. 2021, 1-11.
|
Akhter, R., Masoodi, F.A., Wani, T.A., Rather, S.A., 2019. Functional characterization of biopolymer based composite film: Incorporation of natural essential oils and antimicrobial agents. Int. J. Biol. Macromol. 137, 1245-1255. doi: 10.1016/j.ijbiomac.2019.06.214
|
Almasi, H., Azizi, S., Amjadi, S., 2020. Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocoll 99, 105338. doi: 10.1016/j.foodhyd.2019.105338
|
Alves, L., Ferraz, E., Gamelas, J.A.F., 2019. Composites of nanofibrillated cellulose with clay minerals: a review. Adv. Colloid Interface Sci. 272, 101994. doi: 10.1016/j.cis.2019.101994
|
Alzagameem, A., Klein, S.E., Bergs, M., Xuan, T.D., Schulze, M., 2019. Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms. Polymers 11, 670. doi: 10.3390/polym11040670
|
Azmin, S.N.H.M., Hayat, N.A.B.M., Nor, M.S.M., 2020. Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. J. Bioresour. Bioprod. 5, 248-255. doi: 10.1016/j.jobab.2020.10.003
|
Bandyopadhyay, S., Saha, N., Brodnjak, U.V., Saha, P., 2018. Bacterial cellulose based greener packaging material: a bioadhesive polymeric film. Mater. Res. Express 5, 115405. doi: 10.1088/2053-1591/aadb01
|
Bedane, A.H., Eić, M., Farmahini-Farahani, M., Xiao, H.N., 2015a. Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films. J. Membr. Sci. 493, 46-57. doi: 10.1016/j.memsci.2015.06.009
|
Bedane, A.H., Xiao, H.N., Eić, M., Farmahini-Farahani, M., 2015b. Structural and thermodynamic characterization of modified cellulose fiber-based materials and related interactions with water vapor. Appl. Surf. Sci. 351, 725-737. doi: 10.1016/j.apsusc.2015.06.022
|
Berthet, M.A., Angellier-Coussy, H., Guillard, V., Gontard, N., 2016. Vegetal fiber-based biocomposites: Which stakes for food packaging applications? J. Appl. Polym. Sci. 133, 42528.
|
Berthet, M.A., Angellier-Coussy, H., Machado, D., Hilliou, L., Staebler, A., Vicente, A., Gontard, N., 2015. Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging. Ind. Crops Prod. 69, 110-122. doi: 10.1016/j.indcrop.2015.01.028
|
Bhardwaj, A., Alam, T., Sharma, V., Alam, M.S., Hamid, H., Deshwal, G.K., 2020. Lignocellulosic agricultural biomass as a biodegradable and eco-friendly alternative for polymer-based food packaging. J. Packag. Technol. Res. 4, 205-216. doi: 10.1007/s41783-020-00089-7
|
Bhardwaj, S., Bhardwaj, N.K., Negi, Y.S., 2019. Cleaner approach for improving the papermaking from agro and hardwood blended pulps using biopolymers. J. Clean. Prod. 213, 134-142. doi: 10.1016/j.jclepro.2018.12.143
|
Buist, H., van Harmelen, T., van den Berg, C., Leeman, W., Meima, M., Krul, L., 2020. Evaluation of measures to mitigate mineral oil migration from recycled paper in food packaging. Packag. Technol. Sci. 33, 531-546. doi: 10.1002/pts.2534
|
Chen, G.G., Qi, X.M., Guan, Y., Peng, F., Yao, C.L., Sun, R.C., 2016. High strength hemicellulose-based nanocomposite film for food packaging applications. ACS Sustain. Chem. Eng. 4, 1985-1993. doi: 10.1021/acssuschemeng.5b01252
|
Chen, H.B., Wang, J.J., Cheng, Y.H., Wang, C.S., Liu, H.C., Bian, H.G., Pan, Y.R., Sun, J.Y., Han, W.W., 2019. Application of protein-based films and coatings for food packaging: a review. Polymers 11, 2039. doi: 10.3390/polym11122039
|
Chong, T.Y., Law, M.C., Chan, Y.S., 2021. The potentials of corn waste lignocellulosic fibre as an improved reinforced bioplastic composites. J. Polym. Environ. 29, 363-381. doi: 10.1007/s10924-020-01888-4
|
Coltelli, M.B., Wild, F., Bugnicourt, E., Cinelli, P., Lindner, M., Schmid, M., Weckel, V., Müller, K., Rodriguez, P., Staebler, A., Rodríguez-Turienzo, L., Lazzeri, A., 2015. State of the art in the development and properties of protein-based films and coatings and their applicability to cellulose based products: an extensive review. Coatings 6, 1. doi: 10.3390/coatings6010001
|
Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., Tobback, P., 2008. Active and intelligent food packaging: legal aspects and safety concerns. Trends Food Sci. Technol. 19, S103-S112. doi: 10.1016/j.tifs.2008.09.011
|
Das, S., Rani, P., Tripathy, P.P., 2020. Development and characterization of betel nut fiber composite as a food packaging material. J. Nat. Fibers 1-14.
|
Domenek, S., Louaifi, A., Guinault, A., Baumberger, S., 2013. Potential of lignins as antioxidant additive in active biodegradable packaging materials. J. Polym. Environ. 21, 692-701. doi: 10.1007/s10924-013-0570-6
|
Dudnyk, I., Janeček, E.R., Vaucher-Joset, J., Stellacci, F., 2018. Edible sensors for meat and seafood freshness. Sens. Actuat. B: Chem. 259, 1108-1112. doi: 10.1016/j.snb.2017.12.057
|
El Achaby, M., El Miri, N., Aboulkas, A., Zahouily, M., Bilal, E., Barakat, A., Solhy, A., 2017. Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int. J. Biol. Macromol. 96, 340-352. doi: 10.1016/j.ijbiomac.2016.12.040
|
El-Nemr, K.F., Mohamed, H.R., Ali, M.A., Fathy, R.M., Dhmees, A.S., 2020. Polyvinyl alcohol/gelatin irradiated blends filled by lignin as green filler for antimicrobial packaging materials. Int. J. Environ. Anal. Chem. 100, 1578-1602. doi: 10.1080/03067319.2019.1657108
|
Fabra, M.J., López-Rubio, A., Ambrosio-Martín, J., Lagaron, J.M., 2016. Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging. Food Hydrocoll 61, 261-268. doi: 10.1016/j.foodhyd.2016.05.025
|
Farmahini-Farahani, M., Xiao, H.N., Khan, A., Pan, Y.F., Yang, Y., 2015. Preparation and characterization of exfoliated PHBV nanocomposites to enhance water vapor barriers of calendared paper. Ind. Eng. Chem. Res. 54, 11277-11284. doi: 10.1021/acs.iecr.5b02734
|
Faruk, O., Bledzki, A.K., Fink, H.P., Sain, M., 2012. Biocomposites reinforced with natural fibers: 2000-2010. Prog. Polym. Sci. 37, 1552-1596. doi: 10.1016/j.progpolymsci.2012.04.003
|
Gaikwad, K.K., Singh, S., Lee, Y.S., 2018. Oxygen scavenging films in food packaging. Environ. Chem. Lett. 16, 523-538. doi: 10.1007/s10311-018-0705-z
|
Gan, I., Chow, W.S., 2018. Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: a review. Food Packag. Shelf Life 17, 150-161. doi: 10.1016/j.fpsl.2018.06.012
|
Gouvêa, D.M., Mendonça, R.C.S., Soto, M.L., Cruz, R.S., 2015. Acetate cellulose film with bacteriophages for potential antimicrobial use in food packaging. LWT Food Sci. Technol. 63, 85-91. doi: 10.1016/j.lwt.2015.03.014
|
Guerra, N.P., Macias, C.L., Agrasar, A.T., Castro, L.P., 2005. Development of a bioactive packaging cellophane using NisaplinR as biopreservative agent. Lett. Appl. Microbiol. 40, 106-110. doi: 10.1111/j.1472-765X.2004.01649.x
|
Guo, Y., Tian, D., Shen, F., Yang, G., Long, L., He, J., Song, C., Zhang, J., Zhu, Y., Huang, C., 2019. Transparent cellulose/technical lignin composite films for advanced packaging. Polymers 11, 1455. doi: 10.3390/polym11091455
|
Haghighi, H., Gullo, M., La China, S., Pfeifer, F., Siesler, H.W., Licciardello, F., Pulvirenti, A., 2021. Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocoll 113, 106454. doi: 10.1016/j.foodhyd.2020.106454
|
Han, J.W., Ruiz-Garcia, L., Qian, J.P., Yang, X.T., 2018. Food packaging: a comprehensive review and future trends. Compr. Rev. Food Sci. Food Saf. 17, 860-877. doi: 10.1111/1541-4337.12343
|
Huang, S.T., Liu, X.H., Chang, C.Y., Wang, Y.X., 2020. Recent developments and prospective food-related applications of cellulose nanocrystals: a review. Cellulose 27, 2991-3011. doi: 10.1007/s10570-020-02984-3
|
Indrarti, L., 2017. Incorporation of Citrus essential oils into bacterial cellulose-based edible films and assessment of their physical properties. Conf. Ser. : Earth Environ. Sci. 60, 012018. doi: 10.1088/1755-1315/60/1/012018
|
Jin, K.Y., Tang, Y.J., Liu, J.C., Wang, J.M., Ye, C.J., 2021. Nanofibrillated cellulose as coating agent for food packaging paper. Int. J. Biol. Macromol. 168, 331-338. doi: 10.1016/j.ijbiomac.2020.12.066
|
Jung, S., Cui, Y.F., Barnes, M., Satam, C., Zhang, S.X., Chowdhury, R.A., Adumbumkulath, A., Sahin, O., Miller, C., Sajadi, S.M., Sassi, L.M., Ji, Y., Bennett, M.R., Yu, M., Friguglietti, J., Merchant, F.A., Verduzco, R., Roy, S., Vajtai, R., Meredith, J.C., Youngblood, J.P., Koratkar, N., Rahman, M.M., Ajayan, P.M., 2020. Multifunctional bio-nanocomposite coatings for perishable fruits. Adv. Mater. Deerfield Beach Fla 32, e1908291. doi: 10.1002/adma.201908291
|
Khosravi, A., Fereidoon, A., Khorasani, M.M., Naderi, G., Ganjali, M.R., Zarrintaj, P., Saeb, M.R., Gutiérrez, T.J., 2020. Soft and hard sections from cellulose-reinforced poly(lactic acid)-based food packaging films: a critical review. Food Packag. Shelf Life 23, 100429. doi: 10.1016/j.fpsl.2019.100429
|
Kumar, A., Gupta, V., Singh, S., Saini, S., Gaikwad, K.K., 2021. Pine needles lignocellulosic ethylene scavenging paper impregnated with nanozeolite for active packaging applications. Ind. Crops Prod. 170, 113752. doi: 10.1016/j.indcrop.2021.113752
|
Kumar, M., Tomar, M., Saurabh, V., Mahajan, T., Punia, S., Contreras, M.D.M., Rudra, S.G., Kaur, C., Kennedy, J.F., 2020a. Emerging trends in pectin extraction and its anti-microbial functionalization using natural bioactives for application in food packaging. Trends Food Sci. Technol. 105, 223-237. doi: 10.1016/j.tifs.2020.09.009
|
Kumar, S., Mukherjee, A., Dutta, J., 2020b. Chitosan based nanocomposite films and coatings: emerging antimicrobial food packaging alternatives. Trends Food Sci. Technol. 97, 196-209. doi: 10.1016/j.tifs.2020.01.002
|
Lavoine, N., Guillard, V., Desloges, I., Gontard, N., Bras, J., 2016. Active bio-based food-packaging: diffusion and release of active substances through and from cellulose nanofiber coating toward food-packaging design. Carbohydr. Polym. 149, 40-50. doi: 10.1016/j.carbpol.2016.04.048
|
Lee, J.E., Kim, K.M., 2010. Characteristics of soy protein isolate-montmorillonite composite films. J. Appl. Polym. Sci. 118, 2257-2263.
|
Lei, Y.L., Wu, H.J., Jiao, C., Jiang, Y., Liu, R., Xiao, D., Lu, J.Y., Zhang, Z.Q., Shen, G.H., Li, S.S., 2019. Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol. Food Hydrocoll 94, 128-135. doi: 10.1016/j.foodhyd.2019.03.011
|
Lu, P., Xiao, H.N., Zhang, W.W., Gong, G., 2014. Reactive coating of soybean oil-based polymer on nanofibrillated cellulose film for water vapor barrier packaging. Carbohydr. Polym. 111, 524-529. doi: 10.1016/j.carbpol.2014.04.071
|
Lu, P., Yang, Y., Liu, R., Liu, X., Ma, J.X., Wu, M., Wang, S.F., 2020. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Carbohydr. Polym. 249, 116831. doi: 10.1016/j.carbpol.2020.116831
|
Lu, P., Zhang, W.W., He, M., Yan, Y.J., Xiao, H.N., 2016. Cellulase-assisted refining of bleached softwood kraft pulp for making water vapor barrier and grease-resistant paper. Cellulose 23, 891-900. doi: 10.1007/s10570-015-0833-6
|
Majeed, K., Jawaid, M., Hassan, A., Abu Bakar, A., Abdul Khalil, H.P.S., Salema, A.A., Inuwa, I., 2013. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater. Des. 46, 391-410. doi: 10.1016/j.matdes.2012.10.044
|
Malheiros, P.S., Jozala, A.F., Pessoa-Jr, A., Vila, M.M.D.C., Balcão, V.M., Franco, B.D.G.M., 2018. Immobilization of antimicrobial peptides from Lactobacillus sakei subsp. sakei 2a in bacterial cellulose: structural and functional stabilization. Food Packag. Shelf Life 17, 25-29.
|
Martino, L., Berthet, M.A., Angellier-Coussy, H., Gontard, N., 2015. Understanding external plasticization of melt extruded PHBV-wheat straw fibers biodegradable composites for food packaging. J. Appl. Polym. Sci. 132, 41611.
|
Mellinas, C., Ramos, M., Jiménez, A., Garrigós, M.C., 2020. Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials 13, 673. doi: 10.3390/ma13030673
|
Mendes, F.R.S., Bastos, M.S.R., Mendes, L.G., Silva, A.R.A., Sousa, F.D., Monteiro-Moreira, A.C.O., Cheng, H.N., Biswas, A., Moreira, R.A., 2017. Preparation and evaluation of hemicellulose films and their blends. Food Hydrocoll 70, 181-190. doi: 10.1016/j.foodhyd.2017.03.037
|
Mendes, J.F., Norcino, L.B., Martins, H.H.A., Manrich, A., Otoni, C.G., Carvalho, E.E.N., Piccoli, R.H., Oliveira, J.E., Pinheiro, A.C.M., Mattoso, L.H.C., 2020. Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil. Food Hydrocoll 100, 105428. doi: 10.1016/j.foodhyd.2019.105428
|
Mugwagwa, L.R., Chimphango, A.F.A., 2020. Enhancing the functional properties of acetylated hemicellulose films for active food packaging using acetylated nanocel-lulose reinforcement and polycaprolactone coating. Food Packag. Shelf Life 24, 100481. doi: 10.1016/j.fpsl.2020.100481
|
Munteanu, S.B., Vasile, C., 2019. Vegetable additives in food packaging polymeric materials. Polymers 12, 28. doi: 10.3390/polym12010028
|
Nasibi, S., Nargesi khoramabadi, H., Arefian, M., Hojjati, M., Tajzad, I., Mokhtarzade, A, Mazhar, M., Jamavari, A., 2020. A review of polyvinyl alcohol/carboxiy methyl cellulose (PVA/CMC) composites for various applications. J. Compos. Compd. 2, 68-75.
|
Nechita, P., Roman (Iana-Roman), M., 2020. Review on polysaccharides used in coatings for food packaging papers. Coatings 10, 566.
|
Nešić, A., Gordić, M., Davidović, S., Radovanović, Ž., Nedeljković, J., Smirnova, I., Gurikov, P., 2018. Pectin-based nanocomposite aerogels for potential insulated food packaging application. Carbohydr. Polym. 195, 128-135. doi: 10.1016/j.carbpol.2018.04.076
|
Niini, A., Leminen, V., Tanninen, P., Varis, J., 2021. Humidity effect in heating and cooling of press-formed paperboard food packages: Comparison of storing and heating conditions. Packag. Technol. Sci. 34, 2578.
|
Nisar, T., Wang, Z.C., Yang, X., Tian, Y., Iqbal, M., Guo, Y.R., 2018. Characterization of Citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Int. J. Biol. Macromol. 106, 670-680. doi: 10.1016/j.ijbiomac.2017.08.068
|
Padrão, J., Gonçalves, S., Silva, J.P., Sencadas, V., Lanceros-Méndez, S., Pinheiro, A.C., Vicente, A.A., Rodrigues, L.R., Dourado, F., 2016. Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocoll 58, 126-140. doi: 10.1016/j.foodhyd.2016.02.019
|
Pan, X.J., Kadla, J.F., Ehara, K., Gilkes, N., Saddler, J.N., 2006. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J. Agric. Food Chem. 54, 5806-5813. doi: 10.1021/jf0605392
|
Robertson, G.L., 2013. Food Packaging—Principles and Practice. Taylor & Francis Group, Abingdon third ed.
|
Sadat Ebrahimi, M.M., Voss, Y., Schönherr, H., 2015. Rapid detection of Escherichia coli via enzymatically triggered reactions in self-reporting chitosan hydrogels. ACS Appl. Mater. Interfaces 7, 20190-20199. doi: 10.1021/acsami.5b05746
|
Salari, M., Sowti Khiabani, M., Rezaei Mokarram, R., Ghanbarzadeh, B., Samadi Kafil, H., 2018. Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocoll 84, 414-423. doi: 10.1016/j.foodhyd.2018.05.037
|
Sánchez-Safont, E.L., Aldureid, A., Lagarón, J.M., Gámez-Pérez, J., Cabedo, L., 2018. Biocomposites of different lignocellulosic wastes for sustainable food packaging applications. Compos. B: Eng. 145, 215-225. doi: 10.1016/j.compositesb.2018.03.037
|
Selin, E., Svensson, K., Gravenfors, E., Giovanoulis, G., Iida, M., Oskarsson, A., Lundqvist, J., 2021. Food contact materials: an effect-based evaluation of the presence of hazardous chemicals in paper and cardboard packaging. Food Addit. Contam. : A 38, 1594-1607. doi: 10.1080/19440049.2021.1930200
|
Shahmohammadi Jebel, F., Almasi, H., 2016. Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydr. Polym. 149, 8-19. doi: 10.1016/j.carbpol.2016.04.089
|
Simoneau, C., 2008. Chapter 21 food contact materials. Food Contaminants and Residue Analysis. Elsevier, Amsterdam, pp. 733-773.
|
Song, Z.P., Xiao, H.N., Zhao, Y., 2014. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohydr. Polym. 111, 442-448. doi: 10.1016/j.carbpol.2014.04.049
|
Sood, S., Sharma, C., 2021. Study on fiber furnishes and fiber morphological properties of commonly used Indian food packaging papers and paperboards. Cellulose Chem. Technol. 55, 125-131. doi: 10.35812/CelluloseChemTechnol.2021.55.13
|
Stark, N.M., 2016. Opportunities for cellulose nanomaterials in packaging films: a review and future trends. J. Renew. Mater. 4, 313-326. doi: 10.7569/JRM.2016.634115
|
Sucheta, Chaturvedi, K., Sharma, N., Yadav, S.K., 2019. Composite edible coatings from commercial pectin, corn flour and beetroot powder minimize post-harvest decay, reduces ripening and improves sensory liking of tomatoes. Int. J. Biol. Macromol. 133, 284-293. doi: 10.1016/j.ijbiomac.2019.04.132
|
Torpol, K., Sriwattana, S., Sangsuwan, J., Wiriyacharee, P., Prinyawiwatkul, W., 2019. Optimising chitosan-pectin hydrogel beads containing combined garlic and holy basil essential oils and their application as antimicrobial inhibitor. Int. J. Food Sci. Technol. 54, 2064-2074. doi: 10.1111/ijfs.14107
|
Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K.J., Madalena, D., Cabedo, L., Covas, J.A., Vicente, A.A., Lagaron, J.M., 2018. Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packag. Shelf Life 17, 39-49. doi: 10.1016/j.fpsl.2018.05.002
|
Valdés, A., Mellinas, A.C., Ramos, M., Garrigós, M.C., Jiménez, A., 2014. Natural additives and agricultural wastes in biopolymer formulations for food packaging. Front. Chem. 2, 6.
|
Viana, R.M., Sá, N.M.S.M., Barros, M.O., Borges, M.D.F., Azeredo, H.M.C., 2018. Nanofibrillated bacterial cellulose and pectin edible films added with fruit purees. Carbohydr. Polym. 196, 27-32. doi: 10.1016/j.carbpol.2018.05.017
|
Vilela, C., Kurek, M., Hayouka, Z., Röcker, B., Yildirim, S., Antunes, M.D.C., Nilsen-Nygaard, J., Pettersen, M.K., Freire, C.S.R., 2018. A concise guide to active agents for active food packaging. Trends Food Sci. Technol. 80, 212-222. doi: 10.1016/j.tifs.2018.08.006
|
Vostrejs, P., Adamcová, D., Vaverková, M.D., Enev, V., Kalina, M., Machovsky, M., Šourková, M., Marova, I., Kovalcik, A., 2020. Active biodegradable packaging films modified with grape seeds lignin. RSC Adv 10, 29202-29213. doi: 10.1039/D0RA04074F
|
Wang, H.X., Qian, J., Ding, F.Y., 2018. Emerging chitosan-based films for food packaging applications. J. Agric. Food Chem. 66, 395-413. doi: 10.1021/acs.jafc.7b04528
|
Wang, J.X., Cao, Y., Jaquet, B., Gerhard, C., Li, W., Xia, X.D., Rauschendorfer, J.E., Vana, P., Zhang, K., 2021a. Self-compounded nanocomposites: toward multifunc-tional membranes with superior mechanical, gas/oil barrier, UV-shielding, and photothermal conversion properties. ACS Appl. Mater. Interfaces 13, 28668-28678. doi: 10.1021/acsami.1c06376
|
Wang, J.X., Emmerich, L., Wu, J.F., Vana, P., Zhang, K., 2021b. Hydroplastic polymers as eco-friendly hydrosetting plastics. Nat. Sustain. 1-7.
|
Wei, D.F., Li, Z.L., Wang, H., Liu, J., Xiao, H.N., Zheng, A.N., Guan, Y., 2017. Antimicrobial paper obtained by dip-coating with modified guanidine-based particle aqueous dispersion. Cellulose 24, 3901-3910. doi: 10.1007/s10570-017-1386-7
|
Welle, F., 2014. Food law compliance of poly(ethylene terephthalate) (PET) food packaging materials. American Chemical Society, Washington, DC, pp. 167-195 ACS Symposium Series.
|
Yan, J.W., Luo, Z.S., Ban, Z.J., Lu, H.Y., Li, D., Yang, D.M., Aghdam, M.S., Li, L., 2019. The effect of the layer-by-layer (LBL) edible coating on strawberry quality and metabolites during storage. Postharvest Biol. Technol. 147, 29-38. doi: 10.1016/j.postharvbio.2018.09.002
|
Zhang, D., Xiao, H.N., 2013. Dual-functional beeswaxes on enhancing antimicrobial activity and water vapor barrier property of paper. ACS Appl. Mater. Interfaces 5, 3464-3468. doi: 10.1021/am400585m
|
Zhang, W., Lu, P., Qian, L.Y., Xiao, H.N., 2014a. Fabrication of superhydrophobic paper surface via wax mixture coating. Chem. Eng. J. 250, 431-436. doi: 10.1016/j.cej.2014.04.050
|
Zhang, W.W., Xiao, H.N., Qian, L.Y., 2014b. Beeswax-chitosan emulsion coated paper with enhanced water vapor barrier efficiency. Appl. Surf. Sci. 300, 80-85. doi: 10.1016/j.apsusc.2014.02.005
|
Zhang, X.H., Lu, S.S., Chen, X., 2014c. A visual pH sensing film using natural dyes from Bauhinia blakeana Dunn. Sens. Actuat. B: Chem. 198, 268-273. doi: 10.1016/j.snb.2014.02.094
|
Zhou, W., Fang, J.W., Tang, S.W., Wu, Z.G., Wang, X.Y., 2021. 3D-printed nanocellulose-based cushioning-antibacterial dual-function food packaging aerogel. Molecules 26, 3543. doi: 10.3390/molecules26123543
|
Zubair, M., Ullah, A., 2020. Recent advances in protein derived bionanocomposites for food packaging applications. Crit. Rev. Food Sci. Nutr. 60, 406-434. doi: 10.1080/10408398.2018.1534800
|