Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Jiaxiu Wang, Markus Euring, Kolja Ostendorf, Kai Zhang. Biobased materials for food packaging[J]. Journal of Bioresources and Bioproducts, 2022, 7(1): 1-13. doi: 10.1016/j.jobab.2021.11.004
Citation: Jiaxiu Wang, Markus Euring, Kolja Ostendorf, Kai Zhang. Biobased materials for food packaging[J]. Journal of Bioresources and Bioproducts, 2022, 7(1): 1-13. doi: 10.1016/j.jobab.2021.11.004

Biobased materials for food packaging

doi: 10.1016/j.jobab.2021.11.004
More Information
  • Corresponding author: E-mail address: kai.zhang@uni-goettingen.de (K. Zhang)
  • Received Date: 2021-07-17
  • Accepted Date: 2021-09-30
  • Rev Recd Date: 2021-09-26
  • Available Online: 2021-11-06
  • Publish Date: 2022-02-20
  • Consumers prefer foods that are healthier with high quality and safety. Food packaging are demanded to effectively extend the shelf-life, preserve the nutrients and decrease the microbial contamination during the transport and storage of food. With the increasing concern on the environmental impacts caused by food packaging wastes, sustainable and green packaging are highly demanded to minimize the harmful effects of food packaging waste on the environment. Bio-based materials are derived from sustainable and renewable biomass, instead of finite petrochemicals. The applications of bio-based materials for food packaging are highlighted in this review. The emphasis is placed on the categories of related biobased materials, their characteristics and advantages for food packaging, as well as the strategies used to improve their performances. Though a lot of trials have been done on biobased materials for food packaging, further attempts to improve their performances, understand the functioning mechanisms and develop greener methods for the production, processing and destiny of these bio-based materials are still highly needed for the future research.

     

  • loading
  • Abral, H., Pratama, A.B., Handayani, D., Mahardika, M., Ilyas, R.A., 2021. Antimicrobial edible film prepared from bacterial cellulose nanofibers/starch/chitosan for a food packaging alternative. Int. J. Polym. Sci. 2021, 1-11.
    Akhter, R., Masoodi, F.A., Wani, T.A., Rather, S.A., 2019. Functional characterization of biopolymer based composite film: Incorporation of natural essential oils and antimicrobial agents. Int. J. Biol. Macromol. 137, 1245-1255. doi: 10.1016/j.ijbiomac.2019.06.214
    Almasi, H., Azizi, S., Amjadi, S., 2020. Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocoll 99, 105338. doi: 10.1016/j.foodhyd.2019.105338
    Alves, L., Ferraz, E., Gamelas, J.A.F., 2019. Composites of nanofibrillated cellulose with clay minerals: a review. Adv. Colloid Interface Sci. 272, 101994. doi: 10.1016/j.cis.2019.101994
    Alzagameem, A., Klein, S.E., Bergs, M., Xuan, T.D., Schulze, M., 2019. Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms. Polymers 11, 670. doi: 10.3390/polym11040670
    Azmin, S.N.H.M., Hayat, N.A.B.M., Nor, M.S.M., 2020. Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. J. Bioresour. Bioprod. 5, 248-255. doi: 10.1016/j.jobab.2020.10.003
    Bandyopadhyay, S., Saha, N., Brodnjak, U.V., Saha, P., 2018. Bacterial cellulose based greener packaging material: a bioadhesive polymeric film. Mater. Res. Express 5, 115405. doi: 10.1088/2053-1591/aadb01
    Bedane, A.H., Eić, M., Farmahini-Farahani, M., Xiao, H.N., 2015a. Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films. J. Membr. Sci. 493, 46-57. doi: 10.1016/j.memsci.2015.06.009
    Bedane, A.H., Xiao, H.N., Eić, M., Farmahini-Farahani, M., 2015b. Structural and thermodynamic characterization of modified cellulose fiber-based materials and related interactions with water vapor. Appl. Surf. Sci. 351, 725-737. doi: 10.1016/j.apsusc.2015.06.022
    Berthet, M.A., Angellier-Coussy, H., Guillard, V., Gontard, N., 2016. Vegetal fiber-based biocomposites: Which stakes for food packaging applications? J. Appl. Polym. Sci. 133, 42528.
    Berthet, M.A., Angellier-Coussy, H., Machado, D., Hilliou, L., Staebler, A., Vicente, A., Gontard, N., 2015. Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging. Ind. Crops Prod. 69, 110-122. doi: 10.1016/j.indcrop.2015.01.028
    Bhardwaj, A., Alam, T., Sharma, V., Alam, M.S., Hamid, H., Deshwal, G.K., 2020. Lignocellulosic agricultural biomass as a biodegradable and eco-friendly alternative for polymer-based food packaging. J. Packag. Technol. Res. 4, 205-216. doi: 10.1007/s41783-020-00089-7
    Bhardwaj, S., Bhardwaj, N.K., Negi, Y.S., 2019. Cleaner approach for improving the papermaking from agro and hardwood blended pulps using biopolymers. J. Clean. Prod. 213, 134-142. doi: 10.1016/j.jclepro.2018.12.143
    Buist, H., van Harmelen, T., van den Berg, C., Leeman, W., Meima, M., Krul, L., 2020. Evaluation of measures to mitigate mineral oil migration from recycled paper in food packaging. Packag. Technol. Sci. 33, 531-546. doi: 10.1002/pts.2534
    Chen, G.G., Qi, X.M., Guan, Y., Peng, F., Yao, C.L., Sun, R.C., 2016. High strength hemicellulose-based nanocomposite film for food packaging applications. ACS Sustain. Chem. Eng. 4, 1985-1993. doi: 10.1021/acssuschemeng.5b01252
    Chen, H.B., Wang, J.J., Cheng, Y.H., Wang, C.S., Liu, H.C., Bian, H.G., Pan, Y.R., Sun, J.Y., Han, W.W., 2019. Application of protein-based films and coatings for food packaging: a review. Polymers 11, 2039. doi: 10.3390/polym11122039
    Chong, T.Y., Law, M.C., Chan, Y.S., 2021. The potentials of corn waste lignocellulosic fibre as an improved reinforced bioplastic composites. J. Polym. Environ. 29, 363-381. doi: 10.1007/s10924-020-01888-4
    Coltelli, M.B., Wild, F., Bugnicourt, E., Cinelli, P., Lindner, M., Schmid, M., Weckel, V., Müller, K., Rodriguez, P., Staebler, A., Rodríguez-Turienzo, L., Lazzeri, A., 2015. State of the art in the development and properties of protein-based films and coatings and their applicability to cellulose based products: an extensive review. Coatings 6, 1. doi: 10.3390/coatings6010001
    Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., Tobback, P., 2008. Active and intelligent food packaging: legal aspects and safety concerns. Trends Food Sci. Technol. 19, S103-S112. doi: 10.1016/j.tifs.2008.09.011
    Das, S., Rani, P., Tripathy, P.P., 2020. Development and characterization of betel nut fiber composite as a food packaging material. J. Nat. Fibers 1-14.
    Domenek, S., Louaifi, A., Guinault, A., Baumberger, S., 2013. Potential of lignins as antioxidant additive in active biodegradable packaging materials. J. Polym. Environ. 21, 692-701. doi: 10.1007/s10924-013-0570-6
    Dudnyk, I., Janeček, E.R., Vaucher-Joset, J., Stellacci, F., 2018. Edible sensors for meat and seafood freshness. Sens. Actuat. B: Chem. 259, 1108-1112. doi: 10.1016/j.snb.2017.12.057
    El Achaby, M., El Miri, N., Aboulkas, A., Zahouily, M., Bilal, E., Barakat, A., Solhy, A., 2017. Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int. J. Biol. Macromol. 96, 340-352. doi: 10.1016/j.ijbiomac.2016.12.040
    El-Nemr, K.F., Mohamed, H.R., Ali, M.A., Fathy, R.M., Dhmees, A.S., 2020. Polyvinyl alcohol/gelatin irradiated blends filled by lignin as green filler for antimicrobial packaging materials. Int. J. Environ. Anal. Chem. 100, 1578-1602. doi: 10.1080/03067319.2019.1657108
    Fabra, M.J., López-Rubio, A., Ambrosio-Martín, J., Lagaron, J.M., 2016. Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging. Food Hydrocoll 61, 261-268. doi: 10.1016/j.foodhyd.2016.05.025
    Farmahini-Farahani, M., Xiao, H.N., Khan, A., Pan, Y.F., Yang, Y., 2015. Preparation and characterization of exfoliated PHBV nanocomposites to enhance water vapor barriers of calendared paper. Ind. Eng. Chem. Res. 54, 11277-11284. doi: 10.1021/acs.iecr.5b02734
    Faruk, O., Bledzki, A.K., Fink, H.P., Sain, M., 2012. Biocomposites reinforced with natural fibers: 2000-2010. Prog. Polym. Sci. 37, 1552-1596. doi: 10.1016/j.progpolymsci.2012.04.003
    Gaikwad, K.K., Singh, S., Lee, Y.S., 2018. Oxygen scavenging films in food packaging. Environ. Chem. Lett. 16, 523-538. doi: 10.1007/s10311-018-0705-z
    Gan, I., Chow, W.S., 2018. Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: a review. Food Packag. Shelf Life 17, 150-161. doi: 10.1016/j.fpsl.2018.06.012
    Gouvêa, D.M., Mendonça, R.C.S., Soto, M.L., Cruz, R.S., 2015. Acetate cellulose film with bacteriophages for potential antimicrobial use in food packaging. LWT Food Sci. Technol. 63, 85-91. doi: 10.1016/j.lwt.2015.03.014
    Guerra, N.P., Macias, C.L., Agrasar, A.T., Castro, L.P., 2005. Development of a bioactive packaging cellophane using NisaplinR as biopreservative agent. Lett. Appl. Microbiol. 40, 106-110. doi: 10.1111/j.1472-765X.2004.01649.x
    Guo, Y., Tian, D., Shen, F., Yang, G., Long, L., He, J., Song, C., Zhang, J., Zhu, Y., Huang, C., 2019. Transparent cellulose/technical lignin composite films for advanced packaging. Polymers 11, 1455. doi: 10.3390/polym11091455
    Haghighi, H., Gullo, M., La China, S., Pfeifer, F., Siesler, H.W., Licciardello, F., Pulvirenti, A., 2021. Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocoll 113, 106454. doi: 10.1016/j.foodhyd.2020.106454
    Han, J.W., Ruiz-Garcia, L., Qian, J.P., Yang, X.T., 2018. Food packaging: a comprehensive review and future trends. Compr. Rev. Food Sci. Food Saf. 17, 860-877. doi: 10.1111/1541-4337.12343
    Huang, S.T., Liu, X.H., Chang, C.Y., Wang, Y.X., 2020. Recent developments and prospective food-related applications of cellulose nanocrystals: a review. Cellulose 27, 2991-3011. doi: 10.1007/s10570-020-02984-3
    Indrarti, L., 2017. Incorporation of Citrus essential oils into bacterial cellulose-based edible films and assessment of their physical properties. Conf. Ser. : Earth Environ. Sci. 60, 012018. doi: 10.1088/1755-1315/60/1/012018
    Jin, K.Y., Tang, Y.J., Liu, J.C., Wang, J.M., Ye, C.J., 2021. Nanofibrillated cellulose as coating agent for food packaging paper. Int. J. Biol. Macromol. 168, 331-338. doi: 10.1016/j.ijbiomac.2020.12.066
    Jung, S., Cui, Y.F., Barnes, M., Satam, C., Zhang, S.X., Chowdhury, R.A., Adumbumkulath, A., Sahin, O., Miller, C., Sajadi, S.M., Sassi, L.M., Ji, Y., Bennett, M.R., Yu, M., Friguglietti, J., Merchant, F.A., Verduzco, R., Roy, S., Vajtai, R., Meredith, J.C., Youngblood, J.P., Koratkar, N., Rahman, M.M., Ajayan, P.M., 2020. Multifunctional bio-nanocomposite coatings for perishable fruits. Adv. Mater. Deerfield Beach Fla 32, e1908291. doi: 10.1002/adma.201908291
    Khosravi, A., Fereidoon, A., Khorasani, M.M., Naderi, G., Ganjali, M.R., Zarrintaj, P., Saeb, M.R., Gutiérrez, T.J., 2020. Soft and hard sections from cellulose-reinforced poly(lactic acid)-based food packaging films: a critical review. Food Packag. Shelf Life 23, 100429. doi: 10.1016/j.fpsl.2019.100429
    Kumar, A., Gupta, V., Singh, S., Saini, S., Gaikwad, K.K., 2021. Pine needles lignocellulosic ethylene scavenging paper impregnated with nanozeolite for active packaging applications. Ind. Crops Prod. 170, 113752. doi: 10.1016/j.indcrop.2021.113752
    Kumar, M., Tomar, M., Saurabh, V., Mahajan, T., Punia, S., Contreras, M.D.M., Rudra, S.G., Kaur, C., Kennedy, J.F., 2020a. Emerging trends in pectin extraction and its anti-microbial functionalization using natural bioactives for application in food packaging. Trends Food Sci. Technol. 105, 223-237. doi: 10.1016/j.tifs.2020.09.009
    Kumar, S., Mukherjee, A., Dutta, J., 2020b. Chitosan based nanocomposite films and coatings: emerging antimicrobial food packaging alternatives. Trends Food Sci. Technol. 97, 196-209. doi: 10.1016/j.tifs.2020.01.002
    Lavoine, N., Guillard, V., Desloges, I., Gontard, N., Bras, J., 2016. Active bio-based food-packaging: diffusion and release of active substances through and from cellulose nanofiber coating toward food-packaging design. Carbohydr. Polym. 149, 40-50. doi: 10.1016/j.carbpol.2016.04.048
    Lee, J.E., Kim, K.M., 2010. Characteristics of soy protein isolate-montmorillonite composite films. J. Appl. Polym. Sci. 118, 2257-2263.
    Lei, Y.L., Wu, H.J., Jiao, C., Jiang, Y., Liu, R., Xiao, D., Lu, J.Y., Zhang, Z.Q., Shen, G.H., Li, S.S., 2019. Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol. Food Hydrocoll 94, 128-135. doi: 10.1016/j.foodhyd.2019.03.011
    Lu, P., Xiao, H.N., Zhang, W.W., Gong, G., 2014. Reactive coating of soybean oil-based polymer on nanofibrillated cellulose film for water vapor barrier packaging. Carbohydr. Polym. 111, 524-529. doi: 10.1016/j.carbpol.2014.04.071
    Lu, P., Yang, Y., Liu, R., Liu, X., Ma, J.X., Wu, M., Wang, S.F., 2020. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Carbohydr. Polym. 249, 116831. doi: 10.1016/j.carbpol.2020.116831
    Lu, P., Zhang, W.W., He, M., Yan, Y.J., Xiao, H.N., 2016. Cellulase-assisted refining of bleached softwood kraft pulp for making water vapor barrier and grease-resistant paper. Cellulose 23, 891-900. doi: 10.1007/s10570-015-0833-6
    Majeed, K., Jawaid, M., Hassan, A., Abu Bakar, A., Abdul Khalil, H.P.S., Salema, A.A., Inuwa, I., 2013. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater. Des. 46, 391-410. doi: 10.1016/j.matdes.2012.10.044
    Malheiros, P.S., Jozala, A.F., Pessoa-Jr, A., Vila, M.M.D.C., Balcão, V.M., Franco, B.D.G.M., 2018. Immobilization of antimicrobial peptides from Lactobacillus sakei subsp. sakei 2a in bacterial cellulose: structural and functional stabilization. Food Packag. Shelf Life 17, 25-29.
    Martino, L., Berthet, M.A., Angellier-Coussy, H., Gontard, N., 2015. Understanding external plasticization of melt extruded PHBV-wheat straw fibers biodegradable composites for food packaging. J. Appl. Polym. Sci. 132, 41611.
    Mellinas, C., Ramos, M., Jiménez, A., Garrigós, M.C., 2020. Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials 13, 673. doi: 10.3390/ma13030673
    Mendes, F.R.S., Bastos, M.S.R., Mendes, L.G., Silva, A.R.A., Sousa, F.D., Monteiro-Moreira, A.C.O., Cheng, H.N., Biswas, A., Moreira, R.A., 2017. Preparation and evaluation of hemicellulose films and their blends. Food Hydrocoll 70, 181-190. doi: 10.1016/j.foodhyd.2017.03.037
    Mendes, J.F., Norcino, L.B., Martins, H.H.A., Manrich, A., Otoni, C.G., Carvalho, E.E.N., Piccoli, R.H., Oliveira, J.E., Pinheiro, A.C.M., Mattoso, L.H.C., 2020. Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil. Food Hydrocoll 100, 105428. doi: 10.1016/j.foodhyd.2019.105428
    Mugwagwa, L.R., Chimphango, A.F.A., 2020. Enhancing the functional properties of acetylated hemicellulose films for active food packaging using acetylated nanocel-lulose reinforcement and polycaprolactone coating. Food Packag. Shelf Life 24, 100481. doi: 10.1016/j.fpsl.2020.100481
    Munteanu, S.B., Vasile, C., 2019. Vegetable additives in food packaging polymeric materials. Polymers 12, 28. doi: 10.3390/polym12010028
    Nasibi, S., Nargesi khoramabadi, H., Arefian, M., Hojjati, M., Tajzad, I., Mokhtarzade, A, Mazhar, M., Jamavari, A., 2020. A review of polyvinyl alcohol/carboxiy methyl cellulose (PVA/CMC) composites for various applications. J. Compos. Compd. 2, 68-75.
    Nechita, P., Roman (Iana-Roman), M., 2020. Review on polysaccharides used in coatings for food packaging papers. Coatings 10, 566.
    Nešić, A., Gordić, M., Davidović, S., Radovanović, Ž., Nedeljković, J., Smirnova, I., Gurikov, P., 2018. Pectin-based nanocomposite aerogels for potential insulated food packaging application. Carbohydr. Polym. 195, 128-135. doi: 10.1016/j.carbpol.2018.04.076
    Niini, A., Leminen, V., Tanninen, P., Varis, J., 2021. Humidity effect in heating and cooling of press-formed paperboard food packages: Comparison of storing and heating conditions. Packag. Technol. Sci. 34, 2578.
    Nisar, T., Wang, Z.C., Yang, X., Tian, Y., Iqbal, M., Guo, Y.R., 2018. Characterization of Citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Int. J. Biol. Macromol. 106, 670-680. doi: 10.1016/j.ijbiomac.2017.08.068
    Padrão, J., Gonçalves, S., Silva, J.P., Sencadas, V., Lanceros-Méndez, S., Pinheiro, A.C., Vicente, A.A., Rodrigues, L.R., Dourado, F., 2016. Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocoll 58, 126-140. doi: 10.1016/j.foodhyd.2016.02.019
    Pan, X.J., Kadla, J.F., Ehara, K., Gilkes, N., Saddler, J.N., 2006. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J. Agric. Food Chem. 54, 5806-5813. doi: 10.1021/jf0605392
    Robertson, G.L., 2013. Food Packaging—Principles and Practice. Taylor & Francis Group, Abingdon third ed.
    Sadat Ebrahimi, M.M., Voss, Y., Schönherr, H., 2015. Rapid detection of Escherichia coli via enzymatically triggered reactions in self-reporting chitosan hydrogels. ACS Appl. Mater. Interfaces 7, 20190-20199. doi: 10.1021/acsami.5b05746
    Salari, M., Sowti Khiabani, M., Rezaei Mokarram, R., Ghanbarzadeh, B., Samadi Kafil, H., 2018. Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocoll 84, 414-423. doi: 10.1016/j.foodhyd.2018.05.037
    Sánchez-Safont, E.L., Aldureid, A., Lagarón, J.M., Gámez-Pérez, J., Cabedo, L., 2018. Biocomposites of different lignocellulosic wastes for sustainable food packaging applications. Compos. B: Eng. 145, 215-225. doi: 10.1016/j.compositesb.2018.03.037
    Selin, E., Svensson, K., Gravenfors, E., Giovanoulis, G., Iida, M., Oskarsson, A., Lundqvist, J., 2021. Food contact materials: an effect-based evaluation of the presence of hazardous chemicals in paper and cardboard packaging. Food Addit. Contam. : A 38, 1594-1607. doi: 10.1080/19440049.2021.1930200
    Shahmohammadi Jebel, F., Almasi, H., 2016. Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydr. Polym. 149, 8-19. doi: 10.1016/j.carbpol.2016.04.089
    Simoneau, C., 2008. Chapter 21 food contact materials. Food Contaminants and Residue Analysis. Elsevier, Amsterdam, pp. 733-773.
    Song, Z.P., Xiao, H.N., Zhao, Y., 2014. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohydr. Polym. 111, 442-448. doi: 10.1016/j.carbpol.2014.04.049
    Sood, S., Sharma, C., 2021. Study on fiber furnishes and fiber morphological properties of commonly used Indian food packaging papers and paperboards. Cellulose Chem. Technol. 55, 125-131. doi: 10.35812/CelluloseChemTechnol.2021.55.13
    Stark, N.M., 2016. Opportunities for cellulose nanomaterials in packaging films: a review and future trends. J. Renew. Mater. 4, 313-326. doi: 10.7569/JRM.2016.634115
    Sucheta, Chaturvedi, K., Sharma, N., Yadav, S.K., 2019. Composite edible coatings from commercial pectin, corn flour and beetroot powder minimize post-harvest decay, reduces ripening and improves sensory liking of tomatoes. Int. J. Biol. Macromol. 133, 284-293. doi: 10.1016/j.ijbiomac.2019.04.132
    Torpol, K., Sriwattana, S., Sangsuwan, J., Wiriyacharee, P., Prinyawiwatkul, W., 2019. Optimising chitosan-pectin hydrogel beads containing combined garlic and holy basil essential oils and their application as antimicrobial inhibitor. Int. J. Food Sci. Technol. 54, 2064-2074. doi: 10.1111/ijfs.14107
    Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K.J., Madalena, D., Cabedo, L., Covas, J.A., Vicente, A.A., Lagaron, J.M., 2018. Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packag. Shelf Life 17, 39-49. doi: 10.1016/j.fpsl.2018.05.002
    Valdés, A., Mellinas, A.C., Ramos, M., Garrigós, M.C., Jiménez, A., 2014. Natural additives and agricultural wastes in biopolymer formulations for food packaging. Front. Chem. 2, 6.
    Viana, R.M., Sá, N.M.S.M., Barros, M.O., Borges, M.D.F., Azeredo, H.M.C., 2018. Nanofibrillated bacterial cellulose and pectin edible films added with fruit purees. Carbohydr. Polym. 196, 27-32. doi: 10.1016/j.carbpol.2018.05.017
    Vilela, C., Kurek, M., Hayouka, Z., Röcker, B., Yildirim, S., Antunes, M.D.C., Nilsen-Nygaard, J., Pettersen, M.K., Freire, C.S.R., 2018. A concise guide to active agents for active food packaging. Trends Food Sci. Technol. 80, 212-222. doi: 10.1016/j.tifs.2018.08.006
    Vostrejs, P., Adamcová, D., Vaverková, M.D., Enev, V., Kalina, M., Machovsky, M., Šourková, M., Marova, I., Kovalcik, A., 2020. Active biodegradable packaging films modified with grape seeds lignin. RSC Adv 10, 29202-29213. doi: 10.1039/D0RA04074F
    Wang, H.X., Qian, J., Ding, F.Y., 2018. Emerging chitosan-based films for food packaging applications. J. Agric. Food Chem. 66, 395-413. doi: 10.1021/acs.jafc.7b04528
    Wang, J.X., Cao, Y., Jaquet, B., Gerhard, C., Li, W., Xia, X.D., Rauschendorfer, J.E., Vana, P., Zhang, K., 2021a. Self-compounded nanocomposites: toward multifunc-tional membranes with superior mechanical, gas/oil barrier, UV-shielding, and photothermal conversion properties. ACS Appl. Mater. Interfaces 13, 28668-28678. doi: 10.1021/acsami.1c06376
    Wang, J.X., Emmerich, L., Wu, J.F., Vana, P., Zhang, K., 2021b. Hydroplastic polymers as eco-friendly hydrosetting plastics. Nat. Sustain. 1-7.
    Wei, D.F., Li, Z.L., Wang, H., Liu, J., Xiao, H.N., Zheng, A.N., Guan, Y., 2017. Antimicrobial paper obtained by dip-coating with modified guanidine-based particle aqueous dispersion. Cellulose 24, 3901-3910. doi: 10.1007/s10570-017-1386-7
    Welle, F., 2014. Food law compliance of poly(ethylene terephthalate) (PET) food packaging materials. American Chemical Society, Washington, DC, pp. 167-195 ACS Symposium Series.
    Yan, J.W., Luo, Z.S., Ban, Z.J., Lu, H.Y., Li, D., Yang, D.M., Aghdam, M.S., Li, L., 2019. The effect of the layer-by-layer (LBL) edible coating on strawberry quality and metabolites during storage. Postharvest Biol. Technol. 147, 29-38. doi: 10.1016/j.postharvbio.2018.09.002
    Zhang, D., Xiao, H.N., 2013. Dual-functional beeswaxes on enhancing antimicrobial activity and water vapor barrier property of paper. ACS Appl. Mater. Interfaces 5, 3464-3468. doi: 10.1021/am400585m
    Zhang, W., Lu, P., Qian, L.Y., Xiao, H.N., 2014a. Fabrication of superhydrophobic paper surface via wax mixture coating. Chem. Eng. J. 250, 431-436. doi: 10.1016/j.cej.2014.04.050
    Zhang, W.W., Xiao, H.N., Qian, L.Y., 2014b. Beeswax-chitosan emulsion coated paper with enhanced water vapor barrier efficiency. Appl. Surf. Sci. 300, 80-85. doi: 10.1016/j.apsusc.2014.02.005
    Zhang, X.H., Lu, S.S., Chen, X., 2014c. A visual pH sensing film using natural dyes from Bauhinia blakeana Dunn. Sens. Actuat. B: Chem. 198, 268-273. doi: 10.1016/j.snb.2014.02.094
    Zhou, W., Fang, J.W., Tang, S.W., Wu, Z.G., Wang, X.Y., 2021. 3D-printed nanocellulose-based cushioning-antibacterial dual-function food packaging aerogel. Molecules 26, 3543. doi: 10.3390/molecules26123543
    Zubair, M., Ullah, A., 2020. Recent advances in protein derived bionanocomposites for food packaging applications. Crit. Rev. Food Sci. Nutr. 60, 406-434. doi: 10.1080/10408398.2018.1534800
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (1188) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return