Citation: | Gotore Obey, Munodawafa Adelaide, Rameshprabu Ramaraj. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment[J]. Journal of Bioresources and Bioproducts, 2022, 7(2): 109-115. doi: 10.1016/j.jobab.2021.12.001 |
This study of Matamba shell reviled them as material with outstanding surface morphology, elemental and kinetic mechanism characteristics. Mutamba biochar revealed irregular honeycomb morphological transformation from the field emission scanning electron microscope after pyrolysis at 600 ℃ for 2 h. Energy dispersive X-ray spectroscopy revealed high content of carbon (72.68wt%), nitrogen (14.14wt%) and oxygen (10.35wt%) on the biochar surface. The available oxygen composition provides enough polarization ability for high iodine adsorption (43.65 mmol/g) from the experimental data which were significantly induced by weak van der Waals forces and π-π and π-stacking interaction on the biochar surface and its micropores. The carbon content above 50% in ash rich biochar with an increase in pyrolysis can be ascribed to elements incorporated into aromatic or heterocyclic ring system established through preferential loss of oxygen at 600 ℃ pyrolysis. The adsorption kinetics were conducted to evaluate the equilibrium adsorption of the novel material and Elovich and Intra particle diffusion better described well the kinetic adsorption through Iodine adsorption than pseudo first order and pseudo second order models. Elovich was the best model to fit the adsorption kinetics with 45.41 mmol/(g·min) adsorption rate. The second order Akaike Information Criterion (38.26), adjusted correlation coefficient R2 (0.9898) and sum of squares error (1.442) were used to fit the data. Consequently, the biochar in this study can serve as a promising green material for efficiently removing organic and inorganic contaminants from the environmental water ecosystem. The environmental significance of biochar will be of fundamental meaning to rural areas in developing countries in aquatic contaminants immobilization for water reuse. These results indicate that the Matamba fruit shells has the possibility to be used as an eco-friendly and low-cost effective adsorbent for anionic dye removal from the water environment. They also demonstrate the immense potential of the fruit shell waste to produce high performance biochar as an alternative green carbonaceous material that can be applied to adsorb organic and inorganic unwanted constituencies from wastewater as well as improvement of waste management in developing countries at a low cost. Its application as a pathway mitigation for diminishing greenhouse gasses and reducing the global warming potential could not be underestimated.
Abechi, E.S., Gimba, C.E., Uzairu, A., Kagbu, J.A., 2011. Kinetics of adsorption of methylene blue onto activated carbon prepared from palm kernel shell. Arch. Appl. Sci. Res. 3, 154-164.
|
Abu Talha, M., Goswami, M., Giri, B.S., Sharma, A., Rai, B.N., Singh, R.S., 2018. Bioremediation of Congo red dye in immobilized batch and continuous packed bed bioreactor by Brevibacillus parabrevis using coconut shell bio-char. Bioresour. Technol. 252, 37-43. doi: 10.1016/j.biortech.2017.12.081
|
Abuh, M.A., Akpomie, G.K., Nwagbara, N.K., Abia-Bassey, N., Ape, D.I., Ayabie, B.U., 2013. Kinetic rate equations application on the removal of copper (Ⅱ) and zinc (Ⅱ) by unmodified lignocellulosic fibrous layer of palm tree trunk-single component system studies. Int. J. Basic Appl. Sci. 1, 800-809.
|
Al-Qahtani, K.M., 2016. Water purification using different waste fruit cortexes for the removal of heavy metals. J. Taibah Univ. Sci. 10, 700-708. doi: 10.1016/j.jtusci.2015.09.001
|
Amela, K., Hassen, M.A., Kerroum, D., 2012. Isotherm and kinetics study of biosorption of cationic dye onto banana peel. Energy Procedia 19, 286-295. doi: 10.1016/j.egypro.2012.05.208
|
Bedin, K.C., Martins, A.C., Cazetta, A.L., Pezoti, O., Almeida, V.C., 2016. KOH-activated carbon prepared from sucrose spherical carbon: adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal. Chem. Eng. J. 286, 476-484. doi: 10.1016/j.cej.2015.10.099
|
Bekçi, Z., Ozveri, C., Seki, Y., Yurdakoç, K., 2008. Sorption of malachite green on chitosan bead. J. Hazard. Mater. 154, 254-261. doi: 10.1016/j.jhazmat.2007.10.021
|
Bello, O.S., Ahmad, M.A., Ahmad, N., 2012. Adsorptive features of banana (Musa paradisiaca) stalk-based activated carbon for malachite green dye removal. Chem. Ecol. 28, 153-167. doi: 10.1080/02757540.2011.628318
|
Bharti, V., Shahi, A., Geed, S.R., Kureel, M.K., Rai, B.N., Kumar, S., Singh, R.S., 2017. Biodegradation of reactive orange 16 (RO-16) dye in packed bed bioreactor using seeds of Ashoka and Casuarina as packing medium. Indian J. Biotechnol. 16, 216-221.
|
Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K., 2018. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol. Environ. Saf. 148, 702-712. doi: 10.1016/j.ecoenv.2017.11.034
|
Chandra, S., Bhattacharya, J., 2019. Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils. J. Clean. Prod. 215, 1123-1139. doi: 10.1016/j.jclepro.2019.01.079
|
Chen, R., Wang, W., Zhao, X.R., Zhang, Y.J., Wu, S.Z., Li, F., 2014. Rapid hydrothermal synthesis of magnetic CoxNi1-xFe2O4 nanoparticles and their application on removal of Congo red. Chem. Eng. J. 242, 226-233. doi: 10.1016/j.cej.2013.12.016
|
Cheung, C.W., Porter, J.F., McKay, G., 2000. Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char. J. Chem. Technol. Biotechnol. 75, 963-970. doi: 10.1002/1097-4660(200011)75:11<963::AID-JCTB302>3.0.CO;2-Z
|
de Sousa, A. É. A., Gomes, E.C.C., de Quadros Melo, D., Diógenes, I.C.N., Becker, H., Longhinotti, E., 2014. Adsorption of safranin on pseudostem banana fibers. Sep. Sci. Technol. 49, 2681-2688. doi: 10.1080/01496395.2014.937496
|
Dotto, G.L., Pinto, L.A.A., 2011. Adsorption of food dyes onto chitosan: optimization process and kinetic. Carbohydr. Polym. 84, 231-238. doi: 10.1016/j.carbpol.2010.11.028
|
Gan, C., Liu, Y.G., Tan, X.F., Wang, S.F., Zeng, G.M., Zheng, B.H., Li, T.T., Jiang, Z.J., Liu, W., 2015. Effect of porous zinc-biochar nanocomposites on Cr(vi) adsorption from aqueous solution. RSC Adv. 5, 35107-35115. doi: 10.1039/C5RA04416B
|
Gautam, U.K., Panchakarla, L.S., Dierre, B., Fang, X.S., Bando, Y., Sekiguchi, T., Govindaraj, A., Golberg, D., Rao, C.N.R., 2009. Solvothermal synthesis, cathodolumi-nescence, and field-emission properties of pure and N-doped ZnO nanobullets. Adv. Funct. Mater. 19, 131-140. doi: 10.1002/adfm.200801259
|
Giri, B.S., Goswami, M., Singh, R.S., 2017. Review on application of agro-waste biomass biochar for adsorption and bioremediation dye. Biomed. J. Sci. Tech. Res. 1, 1-3.
|
Gupta, D.K., Gupta, C.K., Dubey, R., Fagodiya, R.K., Sharma, G., Keerthika, A., Noor Mohamed, M.B., Dev, R., Shukla, A.K., 2020. Role of biochar in carbon sequestration and greenhouse gas mitigation. Biochar Applications in Agriculture and Environment Management. Springer International Publishing, Heidelberg, pp. 141-165.
|
Hashem, F.S., Amin, M.S., 2016. Adsorption of methylene blue by activated carbon derived from various fruit peels. Desalinat. Water Treat. 57, 22573-22584. doi: 10.1080/19443994.2015.1132476
|
Hevira, L., Ighalo, J.O., Aziz, H., Zein, R., 2021. Terminalia catappa shell as low-cost biosorbent for the removal of methylene blue from aqueous solutions. J. Ind. Eng. Chem. 97, 188-199. doi: 10.1016/j.jiec.2021.01.028
|
Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process. Biochem. 34, 451-465. doi: 10.1016/S0032-9592(98)00112-5
|
Jafarisani, M., Cheshme Khavar, A.H., Mahjoub, A.R., Luque, R., Rodríguez-Padrón, D., Satari, M., Gharravi, A.M., Khastar, H., Kazemi, S.S., Masoumikarimi, M., 2020. Enhanced visible-light-driven photocatalytic degradation of emerging water contaminants by a modified zinc oxide-based photocatalyst; In-vivo and in-vitro toxicity evaluation of wastewater and PCO-treated water. Sep. Purif. Technol. 243, 116430. doi: 10.1016/j.seppur.2019.116430
|
Kong, W.X., Zhao, F., Guan, H.J., Zhao, Y.F., Zhang, H.S., Zhang, B., 2016. Highly adsorptive mesoporous carbon from biomass using molten-salt route. J. Mater. Sci. 51, 6793-6800. doi: 10.1007/s10853-016-9966-8
|
Kumar, K.V., 2007. Optimum sorption isotherm by linear and non-linear methods for malachite green onto lemon peel. Dyes Pigments 74, 595-597. doi: 10.1016/j.dyepig.2006.03.026
|
Kumar, M., Giri, B.S., Kim, K.H., Singh, R.P., Rene, E.R., López, M.E., Rai, B.N., Singh, H., Prasad, D., Singh, R.S., 2019. Performance of a biofilter with compost and activated carbon based packing material for gas-phase toluene removal under extremely high loading rates. Bioresour. Technol. 285, 121317. doi: 10.1016/j.biortech.2019.121317
|
Lagergren, S., 1898. About the theory of so-called adsorption of solution substances. Sven. Vetenskapsakad. Handingarl. 24, 1-39.
|
Liu, S.J., Liu, Y.G., Tan, X.F., Liu, S.B., Li, M.F., Liu, N., Yin, Z.H., Tian, S.R., Zhou, Y.H., 2019. Facile synthesis of MnOx-loaded biochar for the removal of doxycycline hydrochloride: effects of ambient conditions and co-existing heavy metals. J. Chem. Technol. Biotechnol. 94, 2187-2197.
|
Mahmoud Nasef, M., Saidi, H., Ujang, Z., Mohd Dahlan, K.Z., 2010. Removal of metal ions from aqueous solutions using crosslinked polyethylene-gtmfj-polystyrene sulfonic acid adsorbent prepared by radiation grafting. J. Chil. Chem. Soc. 55, 421-427. doi: 10.4067/S0717-97072010000400002
|
Mazari, S.A., Alaba, P., Saeed, I.M., 2019. Formation and elimination of nitrosamines and nitramines in freshwaters involved in post-combustion carbon capture process. J. Environ. Chem. Eng. 7, 103111. doi: 10.1016/j.jece.2019.103111
|
McBeath, A.V., Wurster, C.M., Bird, M.I., 2015. Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis. Biomass Bioenergy 73, 155-173. doi: 10.1016/j.biombioe.2014.12.022
|
Meyer, S., Bright, R.M., Fischer, D., Schulz, H., Glaser, B., 2012. Albedo impact on the suitability of biochar systems to mitigate global warming. Environ. Sci. Technol. 46, 12726-12734. doi: 10.1021/es302302g
|
O'Connor, D., Peng, T.Y., Zhang, J.L., Tsang, D.C.W., Alessi, D.S., Shen, Z.T., Bolan, N.S., Hou, D.Y., 2018. Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci. Total. Environ. 619/620, 815-826. doi: 10.1016/j.scitotenv.2017.11.132
|
Pulicharla, R., Proulx, F., Behmel, S., Sérodes, J.B., Rodriguez, M.J., 2021. Occurrence and seasonality of raw and drinking water contaminants of emerging interest in five water facilities. Sci. Total. Environ. 751, 141748. doi: 10.1016/j.scitotenv.2020.141748
|
Rai, M.K., Giri, B.S., Nath, Y., Bajaj, H., Soni, S., Singh, R.P., Singh, R.S., Rai, B.N., 2018. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from almond shell: kinetics, equilibrium and thermodynamics study. J. Water Supply 67, 724-737. doi: 10.2166/aqua.2018.047
|
Taha, S.M., Amer, M.E., Elmarsafy, A.E., Elkady, M.Y., 2014. Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water. J. Environ. Chem. Eng. 2, 2013-2025. doi: 10.1016/j.jece.2014.09.001
|
Ubando, A.T., Africa, A.D.M., Maniquiz-Redillas, M.C., Culaba, A.B., Chen, W.H., Chang, J.S., 2021. Microalgal biosorption of heavy metals: a comprehensive biblio-metric review. J. Hazard. Mater. 402, 123431. doi: 10.1016/j.jhazmat.2020.123431
|
Vikrant, K., Giri, B.S., Raza, N., Roy, K., Kim, K.H., Rai, B.N., Singh, R.S., 2018. Recent advancements in bioremediation of dye: current status and challenges. Bioresour. Technol. 253, 355-367. doi: 10.1016/j.biortech.2018.01.029
|
Weber, W.J., Jr, Morris, J.C., 1963. Kinetics of adsorption on carbon from solution. J. Sanit. Engrg. Div. 89, 31-59. doi: 10.1061/JSEDAI.0000430
|
Whitman, T., Nicholson, C.F., Torres, D., Lehmann, J., 2011. Climate change impact of biochar cook stoves in western Kenyan farm households: system dynamics model analysis. Environ. Sci. Technol. 45, 3687-3694. doi: 10.1021/es103301k
|
Yang, P.G., Mao, R.Z., Shao, H.B., Gao, Y.F., 2009. An investigation on the distribution of eight hazardous heavy metals in the suburban farmland of China. J. Hazard. Mater. 167, 1246-1251. doi: 10.1016/j.jhazmat.2009.01.127
|
Zhao, L., Cao, X.D., Mašek, O., Zimmerman, A., 2013. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 256/257, 1-9. doi: 10.1016/j.jhazmat.2013.04.015
|
Zhou, L., Liu, Y.G., Liu, S.B., Yin, Y.C., Zeng, G.M., Tan, X.F., Hu, X., Hu, X.J., Jiang, L.H., Ding, Y., Liu, S.H., Huang, X.X., 2016. Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresour. Technol. 218, 351-359. doi: 10.1016/j.biortech.2016.06.102
|