Citation: | Khairatun Najwa Mohd Amin, Alireza Hosseinmardi, Darren J. Martin, Pratheep K. Annamalai. A mixed acid methodology to produce thermally stable cellulose nanocrystal at high yield using phosphoric acid[J]. Journal of Bioresources and Bioproducts, 2022, 7(2): 99-108. doi: 10.1016/j.jobab.2021.12.002 |
Cellulose nanocrystal (CNC) with distinctive shape-morphology, enhanced thermal stability and dispersibility is essential for overcoming the challenges in processing polymer/CNC nanocomposites through melt compounding at elevated temperatures. This study shows a mixed acid hydrolysis method to produce CNC with improved thermal stability and high productivity. The use of phosphoric acid (H3PO4), as a mild acid, in combination with a strong acid either sulphuric acid (H2SO4) or hydrochloric acid (HCl) leads to reduced use of strong acids and low impact on our environment. The influences of acid combination and sequence of addition on the production yield were investigated by retaining the proportion of H3PO4 to corrosive acid (H2SO4 and HCl) 4 to 1, and solid to liquid ratio 1:75. This methodology has enabled to isolate CNC with higher thermal stability, dispersibility and productivity in terms of amount acid used 1 g of CNC, as compared with single acid hydrolysis. The CNC produced using the combination of H3PO4 and HCl exhibits high thermal stability, dispersibility and rod-like shape morphology with length and width of (424 ± 86) and (22 ± 3) nm, respectively. Moreover, this approach has reduced H3PO4 consumption by 54% as compared with single acid hydrolysis method for the production of same amount of CNC.
Amin, K.N.M., Amiralian, N., Annamalai, P.K., Edwards, G., Chaleat, C., Martin, D.J., 2016. Scalable processing of thermoplastic polyurethane nanocomposites toughened with nanocellulose. Chem. Eng. J. 302, 406-416. doi: 10.1016/j.cej.2016.05.067
|
Annamalai, P.K., Dagnon, K.L., Monemian, S., Foster, E.J., Rowan, S.J., Weder, C., 2014. Water-responsive mechanically adaptive nanocomposites based on styrene-bu-tadiene rubber and cellulose nanocrystals: processing matters. ACS Appl. Mater. Interfaces 6, 967-976. doi: 10.1021/am404382x
|
Baek, J., Wahid-Pedro, F., Kim, K., Kim, K., Tam, K.C., 2019. Phosphorylated-CNC/modified-chitosan nano complexes for the stabilization of Pickering emulsions. Carbohydr. Polym. 206, 520-527. doi: 10.1016/j.carbpol.2018.11.006
|
Bagheriasl, D., Carreau, P.J., Dubois, C., Riedl, B., 2015. Properties of polypropylene and polypropylene/poly(ethylene-co-vinyl alcohol) blend/CNC nanocomposites. Compos. Sci. Technol. 117, 357-363. doi: 10.1016/j.compscitech.2015.07.012
|
Bai, W., Holbery, J., Li, K.C., 2009. A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16, 455-465. doi: 10.1007/s10570-009-9277-1
|
Bashar, M.M., Zhu, H.E., Yamamoto, S., Mitsuishi, M., 2019. Highly carboxylated and crystalline cellulose nanocrystals from jute fiber by facile ammonium persulfate oxidation. Cellulose 26, 3671-3684. doi: 10.1007/s10570-019-02363-7
|
Beck-Candanedo, S., Roman, M., Gray, D.G., 2005. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacro-molecules 6, 1048-1054. doi: 10.1021/bm049300p
|
Ben Azouz, K., Ramires, E.C., van den Fonteyne, W., El Kissi, N., Dufresne, A., 2012. Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1, 236-240. doi: 10.1021/mz2001737
|
Boerstoel, H., Maatman, H., Westerink, J.B., Koenders, B.M., 2001. Liquid crystalline solutions of cellulose in phosphoric acid. Polymer 42, 7371-7379. doi: 10.1016/S0032-3861(01)00210-5
|
Bondeson, D., Mathew, A., Oksman, K., 2006. Optimization of the isolation of nanocrystals from microcrystalline celluloseby acid hydrolysis. Cellulose 13, 171-180. doi: 10.1007/s10570-006-9061-4
|
Camarero Espinosa, S., Kuhnt, T., Foster, E.J., Weder, C., 2013. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14, 1223-1230. doi: 10.1021/bm400219u
|
Capadona, J.R., van den Berg, O., Capadona, L.A., Schroeter, M., Rowan, S.J., Tyler, D.J., Weder, C., 2007. A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat. Nanotechnol. 2, 765-769. doi: 10.1038/nnano.2007.379
|
Chen, L.H., Wang, Q.Q., Hirth, K., Baez, C., Agarwal, U.P., Zhu, J.Y., 2015. Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22, 1753-1762. doi: 10.1007/s10570-015-0615-1
|
Chen, L.H., Zhu, J.Y., Baez, C., Kitin, P., Elder, T., 2016. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18, 3835-3843. doi: 10.1039/C6GC00687F
|
Corrêa, A.C., Morais Teixeira, E., Pessan, L.A., Mattoso, L.H.C., 2010. Cellulose nanofibers from curaua fibers. Cellulose 17, 1183-1192. doi: 10.1007/s10570-010-9453-3
|
Dunlop, M.J., Acharya, B., Bissessur, R., 2018. Isolation of nanocrystalline cellulose from tunicates. J. Environ. Chem. Eng. 6, 4408-4412. doi: 10.1016/j.jece.2018.06.056
|
Fan, L.H., Lu, Y.Q., Yang, L.Y., Huang, F.F., Ouyang, X.K., 2019. Fabrication of polyethylenimine-functionalized sodium alginate/cellulose nanocrystal/polyvinyl alcohol core-shell microspheres ((PVA/SA/CNC)@PEI) for diclofenac sodium adsorption. J. Colloid Interface Sci. 554, 48-58. doi: 10.1016/j.jcis.2019.06.099
|
Filson, P.B., Dawson-Andoh, B.E., 2009. Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour. Technol. 100, 2259-2264. doi: 10.1016/j.biortech.2008.09.062
|
Gray, N., Hamzeh, Y., Kaboorani, A., Abdulkhani, A., 2018. Influence of cellulose nanocrystal on strength and properties of low density polyethylene and thermoplastic starch composites. Ind. Crops Prod. 115, 298-305. doi: 10.1016/j.indcrop.2018.02.017
|
Hamdan, M.A., Khairatun Najwa, M.A., Jose, R., Martin, D., Adam, F., 2021. Tuning mechanical properties of seaweeds for hard capsules: a step forward for a sustainable drug delivery medium. Food Hydrocoll. Heal. 1, 100023. doi: 10.1016/j.fhfh.2021.100023
|
Hasani, M., Cranston, E.D., Westman, G., Gray, D.G., 2008. Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4, 2238-2244. doi: 10.1039/B806789A
|
Hendren, K.D., Baughman, T.W., Deck, P.A., Foster, E.J., 2020. In situ dispersion and polymerization of polyethylene cellulose nanocrystal-based nanocomposites. J. Appl. Polym. Sci. 137, 48500. doi: 10.1002/app.48500
|
Hirayama, J., Kobayashi, H., Fukuoka, A., 2020. Amorphization and semi-dry conversion of crystalline cellulose to oligosaccharides by impregnated phosphoric acid. Bull. Chem. Soc. Jpn. 93, 273-278. doi: 10.1246/bcsj.20190287
|
Hosseinmardi, A., Annamalai, P.K., Martine, B., Pennells, J., Martin, D.J., Amiralian, N., 2018. Facile tuning of the surface energy of cellulose nanofibers for nanocom-posite reinforcement. ACS Omega 3, 15933-15942. doi: 10.1021/acsomega.8b02104
|
Jia, X.J., Chen, Y.W., Shi, C., Ye, Y.F., Wang, P., Zeng, X.X., Wu, T., 2013. Preparation and characterization of cellulose regenerated from phosphoric acid. J. Agric. Food Chem. 61, 12405-12414. doi: 10.1021/jf4042358
|
Jordan, J.H., Easson, M.W., Dien, B., Thompson, S., Condon, B.D., 2019. Extraction and characterization of nanocellulose crystals from cotton gin motes and cotton gin waste. Cellulose 26, 5959-5979. doi: 10.1007/s10570-019-02533-7
|
Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S.Y., Sheltami, R.M., 2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19, 855-866. doi: 10.1007/s10570-012-9684-6
|
Kupiainen, L., Ahola, J., Tanskanen, J., 2012. Distinct effect of formic and sulfuric acids on cellulose hydrolysis at high temperature. Ind. Eng. Chem. Res. 51, 3295-3300. doi: 10.1021/ie202323u
|
Lazko, J., Sénéchal, T., Landercy, N., Dangreau, L., Raquez, J.M., Dubois, P., 2014. Well defined thermostable cellulose nanocrystals via two-step ionic liquid swelling-hydrolysis extraction. Cellulose 21, 4195-4207. doi: 10.1007/s10570-014-0417-x
|
Leszczyńska, A., Radzik, P., Haraźna, K., Pielichowski, K., 2018. Thermal stability of cellulose nanocrystals prepared by succinic anhydride assisted hydrolysis. Thermochimica Acta 663, 145-156. doi: 10.1016/j.tca.2018.03.015
|
Li, D., Henschen, J., Ek, M., 2017. Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield. Green Chem 19, 5564-5567. doi: 10.1039/C7GC02489D
|
Li, W., Yue, J.Q., Liu, S.X., 2012. Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason. Sonochem. 19, 479-485. doi: 10.1016/j.ultsonch.2011.11.007
|
Lin, N., Dufresne, A., 2013. Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules 46, 5570-5583. doi: 10.1021/ma4010154
|
Mahmud, M.M., Perveen, A., Jahan, R.A., Matin, M.A., Wong, S.Y., Li, X., Arafat, M.T., 2019. Preparation of different polymorphs of cellulose from different acid hydrolysis medium. Int. J. Biol. Macromol. 130, 969-976. doi: 10.1016/j.ijbiomac.2019.03.027
|
Mendez, J., Annamalai, P.K., Eichhorn, S.J., Rusli, R., Rowan, S.J., Foster, E.J., Weder, C., 2011. Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect. Macromolecules 44, 6827-6835. doi: 10.1021/ma201502k
|
Miao, C.W., Hamad, W.Y., 2019. Critical insights into the reinforcement potential of cellulose nanocrystals in polymer nanocomposites. Curr. Opin. Solid State Mater. Sci. 23, 100761. doi: 10.1016/j.cossms.2019.06.005
|
Mohd Amin, K.N., Annamalai, P.K., Morrow, I.C., Martin, D., 2015. Production of cellulose nanocrystals via a scalable mechanical method. RSC Adv 5, 57133-57140. doi: 10.1039/C5RA06862B
|
Molnes, S.N., Paso, K.G., Strand, S., Syverud, K., 2017. The effects of pH, time and temperature on the stability and viscosity of cellulose nanocrystal (CNC) dispersions: implications for use in enhanced oil recovery. Cellulose 24, 4479-4491. doi: 10.1007/s10570-017-1437-0
|
Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941. doi: 10.1039/c0cs00108b
|
Nagalakshmaiah, M., Nechyporchuk, O, El Kissi, N., Dufresne, A., 2017. Melt extrusion of polystyrene reinforced with cellulose nanocrystals modified using poly [(styrene)-co-(2-ethylhexyl acrylate)] latex particles. Eur. Polym. J. 91, 297-306. doi: 10.1016/j.eurpolymj.2017.04.020
|
Norrrahim, M.N.F., Nurazzi, N.M., Jenol, M.A., Farid, M.A.A., Janudin, N., Ujang, F.A., Yasim-Anuar, T.A.T., Syed Najmuddin, S.U.F., Ilyas, R.A., 2021. Emerging development of nanocellulose as an antimicrobial material: an overview. Mater. Adv. 2, 3538-3551. doi: 10.1039/D1MA00116G
|
Pei, A.H., Malho, J.M., Ruokolainen, J., Zhou, Q., Berglund, L.A., 2011. Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44, 4422-4427. doi: 10.1021/ma200318k
|
Rahimi, S.K., Otaigbe, J.U., 2017. The effects of the interface on microstructure and rheo-mechanical properties of polyamide 6/cellulose nanocrystal nanocomposites prepared by in situ ring-opening polymerization and subsequent melt extrusion. Polymer 127, 269-285. doi: 10.1016/j.polymer.2017.08.064
|
Rämänen, P., Penttilä, P.A., Svedström, K., Maunu, S.L., Serimaa, R., 2012. The effect of drying method on the properties and nanoscale structure of cellulose whiskers. Cellulose 19, 901-912. doi: 10.1007/s10570-012-9695-3
|
Reid, M.S., Erlandsson, J., Wågberg, L., 2019. Interfacial polymerization of cellulose nanocrystal polyamide Janus nanocomposites with controlled architectures. ACS Macro Lett 8, 1334-1340. doi: 10.1021/acsmacrolett.9b00692
|
Roman, M., Winter, W.T., 2004. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5, 1671-1677. doi: 10.1021/bm034519+
|
Roohani, M., Habibi, Y., Belgacem, N.M., Ebrahim, G., Karimi, A.N., Dufresne, A., 2008. Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur. Polym. J. 44, 2489-2498. doi: 10.1016/j.eurpolymj.2008.05.024
|
Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G., Orts, W.J., Imam, S.H., 2010. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr. Polym. 81, 83-92. doi: 10.1016/j.carbpol.2010.01.059
|
Sadeghifar, H., Filpponen, I., Clarke, S.P., Brougham, D.F., Argyropoulos, D.S., 2011. Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J. Mater. Sci. 46, 7344-7355. doi: 10.1007/s10853-011-5696-0
|
Segal, L., Creely, J.J., Martin Jr, A.E., Conrad, C.M., 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffrac-tometer. Text. Res. J. 29, 786-794. doi: 10.1177/004051755902901003
|
Shamshina, J.L., Abidi, N., 2021. Cellulose nanocrystals from ionic liquids: a critical review. Green Chem 23, 6205-6222. doi: 10.1039/D1GC02507D
|
Sojoudiasli, H., Heuzey, M.C., Carreau, P.J., 2018. Mechanical and morphological properties of cellulose nanocrystal-polypropylene composites. Polym. Compos. 39, 3605-3617. doi: 10.1002/pc.24383
|
Song, X.Y., Zhou, L.J., Ding, B.B., Cui, X., Duan, Y.X., Zhang, J.M., 2018. Simultaneous improvement of thermal stability and redispersibility of cellulose nanocrystals by using ionic liquids. Carbohydr. Polym. 186, 252-259. doi: 10.1016/j.carbpol.2018.01.055
|
Sperotto, G., Stasiak, L.G., Godoi, J.P.M.G., Gabiatti, N.C., de Souza, S.S., 2021. A review of culture media for bacterial cellulose production: complex, chemically defined and minimal media modulations. Cellulose 28, 2649-2673. doi: 10.1007/s10570-021-03754-5
|
Sun, Y., Lin, L., Deng, H.B., Peng, H., Li, J.Z., Sun, R.C., Liu, S.J., 2008. Hydrolysis of bamboo fiber cellulose in formic acid. Front. For. China 3, 480-486. doi: 10.1007/s11461-008-0072-1
|
Tang, L.R., Huang, B., Ou, W., Chen, X.R., Chen, Y.D., 2011. Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Bioresour. Technol. 102, 10973-10977. doi: 10.1016/j.biortech.2011.09.070
|
Vanderfleet, O.M., Reid, M.S., Bras, J., Heux, L., Godoy-Vargas, J., Panga, M.K.R., Cranston, E.D., 2019. Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose 26, 507-528. doi: 10.1007/s10570-018-2175-7
|
Viet, D., Beck-Candanedo, S., Gray, D.G., 2007. Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14, 109-113. doi: 10.1007/s10570-006-9093-9
|
Vinogradov, V.V., Mizerovskii, L.N., Akaev, O.P., 2002. Reaction of cellulose with aqueous solutions of orthophosphoric acid. Fibre Chem 34, 167-171. doi: 10.1023/A:1020558829106
|
Wang, N., Ding, E.Y., Cheng, R.S., 2007. Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48, 3486-3493. doi: 10.1016/j.polymer.2007.03.062
|
Wei, S., Kumar, V., Banker, G.S., 1996. Phosphoric acid mediated depolymerization and decrystallization of cellulose: preparation of low crystallinity cellulose—A new pharmaceutical excipient. Int. J. Pharm. 142, 175-181. doi: 10.1016/0378-5173(96)04673-X
|
Xie, H.X., Zou, Z.F., Du, H.S., Zhang, X.Y., Wang, X.M., Yang, X.H., Wang, H., Li, G.B., Li, L., Si, C.L., 2019. Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H2SO4/Oxalic acid hydrolysis. Carbohydr. Polym. 223, 115116. doi: 10.1016/j.carbpol.2019.115116
|
Yu, H.Y., Abdalkarim, S.Y.H., Zhang, H., Wang, C., Tam, K.C., 2019. Simple process to produce high-yield cellulose nanocrystals using recyclable citric/hydrochloric acids. ACS Sustainable Chem. Eng. 7, 4912-4923. doi: 10.1021/acssuschemeng.8b05526
|
Yu, H.Y., Qin, Z.Y., Liang, B.L., Liu, N., Zhou, Z., Chen, L., 2013. Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J. Mater. Chem. A 1, 3938. doi: 10.1039/c3ta01150j
|
Yue, Y.Y., Zhou, C.J., French, A.D., Xia, G., Han, G.P., Wang, Q.W., Wu, Q.L., 2012. Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19, 1173-1187. doi: 10.1007/s10570-012-9714-4
|
Zhang, J.H., Zhang, J.Q., Lin, L., Chen, T.M., Zhang, J., Liu, S.J., Li, Z.J., Ouyang, P.K., 2009. Dissolution of microcrystalline cellulose in phosphoric acid: molecular changes and kinetics. Molecules 14, 5027-5041. doi: 10.3390/molecules14125027
|
Zhang, Y.H., Cui, J.B., Lynd, L.R., Kuang, L.R., 2006. A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7, 644-648. doi: 10.1021/bm050799c
|