Citation: | Linhu Ding, Xiaoshuai Han, Lian Chen, Shaohua Jiang. Preparation and properties of hydrophobic and transparent wood[J]. Journal of Bioresources and Bioproducts, 2022, 7(4): 295-305. doi: 10.1016/j.jobab.2022.02.001 |
Asada, C., Sasaki, C., Suzuki, A., Nakamura, Y., 2018. Total biorefinery process of lignocellulosic waste using steam explosion followed by water and acetone extractions. Waste Biomass Valorizat. 9, 2423–2432 doi: 10.1007/s12649-017-0157-x
|
Berglund, L.A., Burgert, I., 2018. Bioinspired wood nanotechnology for functional materials. Adv. Mater. 30, e1704285 doi: 10.1002/adma.201704285
|
Burgert, I., Cabane, E., Zollfrank, C., Berglund, L., 2015. Bio-inspired functional wood-based materials: hybrids and replicates. Int. Mater. Rev. 60, 431–450 doi: 10.1179/1743280415Y.0000000009
|
Chang, H.J., Tu, K.K., Wang, X.Q., Liu, J.L., 2015. Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Adv. 5, 30647–30653 doi: 10.1039/C5RA03070F
|
Chen, L., Xu, Z.W., Wang, F., Duan, G.G., Xu, W.H., Zhang, G.Y., Yang, H.Q., Liu, J.B., Jiang, S.H., 2020. A flame-retardant and transparent wood/polyimide composite with excellent mechanical strength. Compos. Commun. 20, 100355 doi: 10.1016/j.coco.2020.05.001
|
Feng, T.S., Qin, J.K., Shao, Y.L., Jia, L.L., Li, Q., Hu, Y.C., 2019. Size-controlled transparent jute fiber for replacing transparent wood in industry production area. Coatings9, 433 doi: 10.3390/coatings9070433
|
Fink, S., 1992. Transparent wood: a new approach in the functional study of wood structure. Holzforschung46, 403–408 doi: 10.1515/hfsg.1992.46.5.403
|
Grassie, N., Guy, M.I., Tennent, N.H., 1986. Degradation of epoxy polymers: Part 4—Thermal degradation of bisphenol-A diglycidyl ether cured with ethylene diamine. Polym. Degrad. Stab. 14, 125–137 doi: 10.1016/0141-3910(86)90011-X
|
Guo, K.Y., Wu, Q., Mao, M., Chen, H., Zhang, G.D., Zhao, L., Gao, J.F., Song, P.G., Tang, L.C., 2020. Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Compos. B Eng. 193, 108017 doi: 10.1016/j.compositesb.2020.108017
|
Gwon, J.G., Lee, S.Y., Doh, G.H., Kim, J.H., 2010. Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J. Appl. Polym. Sci. 116, 3212–3219
|
Han, X.S., Wang, Z.X., Ding, L.H., Chen, L., Wang, F., Pu, J.W., Jiang, S.H., 2021. Water molecule-induced hydrogen bonding between cellulose nanofibers toward highly strong and tough materials from wood aerogel. Chin. Chem. Lett. 32, 3105–3108 doi: 10.1016/j.cclet.2021.03.044
|
Han, X.S., Ye, Y.H., Lam, F., Pu, J.W., Jiang, F., 2019. Hydrogen-bonding-induced assembly of aligned cellulose nanofibers into ultrastrong and tough bulk materials. J. Mater. Chem. A7, 27023–27031 doi: 10.1039/c9ta11118b
|
Hou, D.X., Li, T., Chen, X., He, S.M., Dai, J.Q., Mofid, S.A., Hou, D.Y., Iddya, A., Jassby, D., Yang, R.G., Hu, L.B., Ren, Z.J., 2019. Hydrophobic nanostructured wood membrane for thermally efficient distillation. Sci. Adv. 5, eaaw3203 doi: 10.1126/sciadv.aaw3203
|
KılınÇ, A. Ç., Köktaş, S., Atagür, M., Seydibeyoglu, M. Ö., 2018. Effect of extraction methods on the properties of althea officinalis L. fibers. J. Nat. Fibers15, 325–336 doi: 10.1080/15440478.2017.1325813
|
Kudanga, T., Prasetyo, E., Sipilä, J., Nousiainen, P., Widsten, P., Kandelbauer, A., Nyanhongo, G., Guebitz, G., 2008. Laccase-mediated wood surface functionalization. Eng. Life Sci. 8, 297–302 doi: 10.1002/elsc.200800011
|
Li, Q., Qin, J.K., Li, S., Zhao, X., Hu, Y.C., 2020. Transparent fiber wood composite materials containing long afterglow as lighting equipment. J. Appl. Polym. Sci. 137, 49203 doi: 10.1002/app.49203
|
Li, Y.Y., Fu, Q.L., Yang, X., Berglund, L., 2018. Transparent wood for functional and structural applications. Philos. Trans. A Math. Phys. Eng. Sci. 376, 20170182 doi: 10.1098/rsta.2017.0182
|
Li, Y.Y., Fu, Q.L., Yu, S., Yan, M., Berglund, L., 2016. Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromolecules17, 1358–1364 doi: 10.1021/acs.biomac.6b00145
|
Lin, W.S., Huang, Y.D., Li, J., Liu, Z.Q., Yang, W.B., Li, R., Chen, H.X., Zhang, X.X., 2018. Preparation of highly hydrophobic and anti-fouling wood using poly(methylhydrogen)siloxane. Cellulose25, 7341–7353 doi: 10.1007/s10570-018-2074-y
|
Liu, M.H., Lyu, S.Y., Peng, L.M., Lyu, J.X., Huang, Z.H., 2021. Radiata pine fretboard material of string instruments treated with furfuryl alcohol followed by tung oil. Holzforschung75, 480–493 doi: 10.1515/hf-2020-0048
|
Lu, M.T., He, W., Li, Z., Qiang, H., Cao, J.Z., Guo, F.Y., Wang, R., Guo, Z.H., 2020. Effect of lignin content on properties of flexible transparent poplar veneer fabricated by impregnation with epoxy resin. Polymers12, 2602 doi: 10.3390/polym12112602
|
Manimaran, P., Senthamaraikannan, P., Sanjay, M.R., Marichelvam, M.K., Jawaid, M., 2018. Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydr. Polym. 181, 650–658 doi: 10.1016/j.carbpol.2017.11.099
|
Matsunaga, M., Hewage, D., Kataoka, Y., Ishikawa, A., Kobayashi, M., Kiguchi, M., 2016. Acetylation of wood using supercritical carbon dioxide. J. Trop. For. Sci. 28, 132–138
|
Mi, R.Y., Chen, C.J., Keplinger, T., Pei, Y., He, S.M., Liu, D.P., Li, J.G., Dai, J.Q., Hitz, E., Yang, B., Burgert, I., Hu, L.B., 2020. Scalable aesthetic transparent wood for energy efficient buildings. Nat. Commun. 11, 3836 doi: 10.1038/s41467-020-17513-w
|
Nejat, P., Jomehzadeh, F., Taheri, M.M., Gohari, M., Abd Majid, M.Z., 2015. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 43, 843–862 doi: 10.1016/j.rser.2014.11.066
|
Nguila Inari, G., Petrissans, M., Gerardin, P., 2006. Chemical reactivity of heat-treated wood. Wood Sci. Technol. 41, 157–168
|
Qiang, F., Hu, L.L., Gong, L.X., Zhao, L., Li, S.N., Tang, L.C., 2018. Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states. Chem. Eng. J. 334, 2154–2166 doi: 10.1016/j.cej.2017.11.054
|
Sudin, R., Swamy, N., 2006. Bamboo and wood fibre cement composites for sustainable infrastructure regeneration. J. Mater. Sci. 41, 6917–6924 doi: 10.1007/s10853-006-0224-3
|
Tu, K.K., Wang, X.Q., Kong, L.Z., Chang, H.J., Liu, J.L., 2016. Fabrication of robust, damage-tolerant superhydrophobic coatings on naturally micro-grooved wood surfaces. RSC Adv. 6, 701–707 doi: 10.1039/C5RA24407B
|
Wang, K.L., Dong, Y.M., Yan, Y.T., Zhang, W., Qi, C.S., Han, C.R., Li, J.Z., Zhang, S.F., 2017. Highly hydrophobic and self-cleaning bulk wood prepared by grafting long-chain alkyl onto wood cell walls. Wood Sci. Technol. 51, 395–411 doi: 10.1007/s00226-016-0862-9
|
Wu, J.M., Wu, Y., Yang, F., Tang, C.Y., Huang, Q.T., Zhang, J.L., 2019. Impact of delignification on morphological, optical and mechanical properties of transparent wood. Compos. A Appl. Sci. Manuf. 117, 324–331 doi: 10.1016/j.compositesa.2018.12.004
|
Wu, Q., Gong, L.X., Li, Y., Cao, C.F., Tang, L.C., Wu, L.B., Zhao, L., Zhang, G.D., Li, S.N., Gao, J.F., Li, Y.J., Mai, Y.W., 2018. Efficient flame detection and early warning sensors on combustible materials using hierarchical graphene oxide/silicone coatings. ACS Nano12, 416–424 doi: 10.1021/acsnano.7b06590
|
Wu, Y., Wang, Y.J., Yang, F., 2021. Comparison of multilayer transparent wood and single layer transparent wood with the same thickness. Front. Mater. 8, 633345 doi: 10.3389/fmats.2021.633345
|
Wu, Y., Wang, Y.J., Yang, F., Wang, J., Wang, X.H., 2020. Study on the properties of transparent bamboo prepared by epoxy resin impregnation. Polymers12, 863 doi: 10.3390/polym12040863
|
Yang, H.P., Yan, R., Chen, H.P., Lee, D.H., Zheng, C.G., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel86, 1781–1788 doi: 10.1016/j.fuel.2006.12.013
|
Yu, Z.Y., Yao, Y.J., Yao, J.N., Zhang, L.M., Chen, Z., Gao, Y.F., Luo, H.J., 2017. Transparent wood containing CsxWO3 nanoparticles for heat-shielding window applications. J. Mater. Chem. A5, 6019–6024 doi: 10.1039/C7TA00261K
|
Zhang, G.D., Wu, Z.H., Xia, Q.Q., Qu, Y.X., Pan, H.T., Hu, W.J., Zhao, L., Cao, K., Chen, E.Y., Yuan, Z., Gao, J.F., Mai, Y.W., Tang, L.C., 2021. Ultrafast flame-induced pyrolysis of poly(dimethylsiloxane) foam materials toward exceptional superhydrophobic surfaces and reliable mechanical robustness. ACS Appl. Mater. Interfaces13, 23161–23172 doi: 10.1021/acsami.1c03272
|
Zhang, L.M., Wang, A., Zhu, T.L., Chen, Z., Wu, Y.P., Gao, Y.F., 2020a. Transparent wood composites fabricated by impregnation of epoxy resin and W-doped VO2 nanoparticles for application in energy-saving windows. ACS Appl. Mater. Interfaces12, 34777–34783 doi: 10.1021/acsami.0c06494
|
Zhang, Z.H., Zhang, J.W., Cao, C.F., Guo, K.Y., Zhao, L., Zhang, G.D., Gao, J.F., Tang, L.C., 2020b. Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response. Chem. Eng. J. 386, 123894 doi: 10.1016/j.cej.2019.123894
|
Zhou, H., Wang, H.X., Niu, H.T., Zhao, Y., Xu, Z.G., Lin, T., 2017. A waterborne coating system for preparing robust, self-healing, superamphiphobic surfaces. Adv. Funct. Mater. 27, 1604261 doi: 10.1002/adfm.201604261
|
Zhu, M.W., Song, J.W., Li, T., Gong, A., Wang, Y.B., Dai, J.Q., Yao, Y.G., Luo, W., Henderson, D., Hu, L.B., 2016. Highly anisotropic, highly transparent wood composites. Adv. Mater. 28, 7563 doi: 10.1002/adma.201604084
|