Volume 7 Issue 4
Oct.  2022
Turn off MathJax
Article Contents
Linhu Ding, Xiaoshuai Han, Lian Chen, Shaohua Jiang. Preparation and properties of hydrophobic and transparent wood[J]. Journal of Bioresources and Bioproducts, 2022, 7(4): 295-305. doi: 10.1016/j.jobab.2022.02.001
Citation: Linhu Ding, Xiaoshuai Han, Lian Chen, Shaohua Jiang. Preparation and properties of hydrophobic and transparent wood[J]. Journal of Bioresources and Bioproducts, 2022, 7(4): 295-305. doi: 10.1016/j.jobab.2022.02.001

Preparation and properties of hydrophobic and transparent wood

doi: 10.1016/j.jobab.2022.02.001
More Information
  • Corresponding author: E-mail address: hxs141424@163.com (X. Han); E-mail address: shaohua.jiang@njfu.edu.cn (S. Jiang)
  • Received Date: 2021-11-15
  • Accepted Date: 2022-02-26
  • Rev Recd Date: 2022-02-19
  • Available Online: 2022-07-20
  • Publish Date: 2022-11-01
  • Natural wood (NW) was treated with sodium chlorite to obtain delignified wood (DW) in this study, then epoxy was impregnated to get transparent wood (TW), and finally the TW was coated with perfluorodecyltriethoxysilane (FAS) to acquire hydrophobic and transparent wood (HTW). The hydroxyl group generated by the hydrolysis of the FAS and the hydroxyl group of the epoxy underwent a dehydration condensation reaction to generate a Si–O–C bond, while the FAS molecules were also dehydrated and condensed to form a Si–O–Si bond according to Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Therefore, the mechanical property and thermal stability of the HTW were better than the TW based on their tensile tests and thermogravimetric analysis (TGA). Due to the large reduction of hydroxyl in epoxy, the hydrophobicity of the HTW was greatly improved compared with the TW, and their contact angles were 113° and 77°, respectively. The results of scanning electron microscopy (SEM) showed that epoxy was filled in the voids of wood. In addition, the coating of the FAS did not obviously reduce the transmittance, and the transmittance of the TW and HTW was 69% and 67% at 750 nm. All in all, the HTW has potential for application in transparent decoration.

     

  • Declaration of competing interest  All authors declare that they have no conflict of interest.
  • loading
  • Asada, C., Sasaki, C., Suzuki, A., Nakamura, Y., 2018. Total biorefinery process of lignocellulosic waste using steam explosion followed by water and acetone extractions. Waste Biomass Valorizat. 9, 2423–2432 doi: 10.1007/s12649-017-0157-x
    Berglund, L.A., Burgert, I., 2018. Bioinspired wood nanotechnology for functional materials. Adv. Mater. 30, e1704285 doi: 10.1002/adma.201704285
    Burgert, I., Cabane, E., Zollfrank, C., Berglund, L., 2015. Bio-inspired functional wood-based materials: hybrids and replicates. Int. Mater. Rev. 60, 431–450 doi: 10.1179/1743280415Y.0000000009
    Chang, H.J., Tu, K.K., Wang, X.Q., Liu, J.L., 2015. Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Adv. 5, 30647–30653 doi: 10.1039/C5RA03070F
    Chen, L., Xu, Z.W., Wang, F., Duan, G.G., Xu, W.H., Zhang, G.Y., Yang, H.Q., Liu, J.B., Jiang, S.H., 2020. A flame-retardant and transparent wood/polyimide composite with excellent mechanical strength. Compos. Commun. 20, 100355 doi: 10.1016/j.coco.2020.05.001
    Feng, T.S., Qin, J.K., Shao, Y.L., Jia, L.L., Li, Q., Hu, Y.C., 2019. Size-controlled transparent jute fiber for replacing transparent wood in industry production area. Coatings9, 433 doi: 10.3390/coatings9070433
    Fink, S., 1992. Transparent wood: a new approach in the functional study of wood structure. Holzforschung46, 403–408 doi: 10.1515/hfsg.1992.46.5.403
    Grassie, N., Guy, M.I., Tennent, N.H., 1986. Degradation of epoxy polymers: Part 4—Thermal degradation of bisphenol-A diglycidyl ether cured with ethylene diamine. Polym. Degrad. Stab. 14, 125–137 doi: 10.1016/0141-3910(86)90011-X
    Guo, K.Y., Wu, Q., Mao, M., Chen, H., Zhang, G.D., Zhao, L., Gao, J.F., Song, P.G., Tang, L.C., 2020. Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Compos. B Eng. 193, 108017 doi: 10.1016/j.compositesb.2020.108017
    Gwon, J.G., Lee, S.Y., Doh, G.H., Kim, J.H., 2010. Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J. Appl. Polym. Sci. 116, 3212–3219
    Han, X.S., Wang, Z.X., Ding, L.H., Chen, L., Wang, F., Pu, J.W., Jiang, S.H., 2021. Water molecule-induced hydrogen bonding between cellulose nanofibers toward highly strong and tough materials from wood aerogel. Chin. Chem. Lett. 32, 3105–3108 doi: 10.1016/j.cclet.2021.03.044
    Han, X.S., Ye, Y.H., Lam, F., Pu, J.W., Jiang, F., 2019. Hydrogen-bonding-induced assembly of aligned cellulose nanofibers into ultrastrong and tough bulk materials. J. Mater. Chem. A7, 27023–27031 doi: 10.1039/c9ta11118b
    Hou, D.X., Li, T., Chen, X., He, S.M., Dai, J.Q., Mofid, S.A., Hou, D.Y., Iddya, A., Jassby, D., Yang, R.G., Hu, L.B., Ren, Z.J., 2019. Hydrophobic nanostructured wood membrane for thermally efficient distillation. Sci. Adv. 5, eaaw3203 doi: 10.1126/sciadv.aaw3203
    KılınÇ, A. Ç., Köktaş, S., Atagür, M., Seydibeyoglu, M. Ö., 2018. Effect of extraction methods on the properties of althea officinalis L. fibers. J. Nat. Fibers15, 325–336 doi: 10.1080/15440478.2017.1325813
    Kudanga, T., Prasetyo, E., Sipilä, J., Nousiainen, P., Widsten, P., Kandelbauer, A., Nyanhongo, G., Guebitz, G., 2008. Laccase-mediated wood surface functionalization. Eng. Life Sci. 8, 297–302 doi: 10.1002/elsc.200800011
    Li, Q., Qin, J.K., Li, S., Zhao, X., Hu, Y.C., 2020. Transparent fiber wood composite materials containing long afterglow as lighting equipment. J. Appl. Polym. Sci. 137, 49203 doi: 10.1002/app.49203
    Li, Y.Y., Fu, Q.L., Yang, X., Berglund, L., 2018. Transparent wood for functional and structural applications. Philos. Trans. A Math. Phys. Eng. Sci. 376, 20170182 doi: 10.1098/rsta.2017.0182
    Li, Y.Y., Fu, Q.L., Yu, S., Yan, M., Berglund, L., 2016. Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromolecules17, 1358–1364 doi: 10.1021/acs.biomac.6b00145
    Lin, W.S., Huang, Y.D., Li, J., Liu, Z.Q., Yang, W.B., Li, R., Chen, H.X., Zhang, X.X., 2018. Preparation of highly hydrophobic and anti-fouling wood using poly(methylhydrogen)siloxane. Cellulose25, 7341–7353 doi: 10.1007/s10570-018-2074-y
    Liu, M.H., Lyu, S.Y., Peng, L.M., Lyu, J.X., Huang, Z.H., 2021. Radiata pine fretboard material of string instruments treated with furfuryl alcohol followed by tung oil. Holzforschung75, 480–493 doi: 10.1515/hf-2020-0048
    Lu, M.T., He, W., Li, Z., Qiang, H., Cao, J.Z., Guo, F.Y., Wang, R., Guo, Z.H., 2020. Effect of lignin content on properties of flexible transparent poplar veneer fabricated by impregnation with epoxy resin. Polymers12, 2602 doi: 10.3390/polym12112602
    Manimaran, P., Senthamaraikannan, P., Sanjay, M.R., Marichelvam, M.K., Jawaid, M., 2018. Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydr. Polym. 181, 650–658 doi: 10.1016/j.carbpol.2017.11.099
    Matsunaga, M., Hewage, D., Kataoka, Y., Ishikawa, A., Kobayashi, M., Kiguchi, M., 2016. Acetylation of wood using supercritical carbon dioxide. J. Trop. For. Sci. 28, 132–138
    Mi, R.Y., Chen, C.J., Keplinger, T., Pei, Y., He, S.M., Liu, D.P., Li, J.G., Dai, J.Q., Hitz, E., Yang, B., Burgert, I., Hu, L.B., 2020. Scalable aesthetic transparent wood for energy efficient buildings. Nat. Commun. 11, 3836 doi: 10.1038/s41467-020-17513-w
    Nejat, P., Jomehzadeh, F., Taheri, M.M., Gohari, M., Abd Majid, M.Z., 2015. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 43, 843–862 doi: 10.1016/j.rser.2014.11.066
    Nguila Inari, G., Petrissans, M., Gerardin, P., 2006. Chemical reactivity of heat-treated wood. Wood Sci. Technol. 41, 157–168
    Qiang, F., Hu, L.L., Gong, L.X., Zhao, L., Li, S.N., Tang, L.C., 2018. Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states. Chem. Eng. J. 334, 2154–2166 doi: 10.1016/j.cej.2017.11.054
    Sudin, R., Swamy, N., 2006. Bamboo and wood fibre cement composites for sustainable infrastructure regeneration. J. Mater. Sci. 41, 6917–6924 doi: 10.1007/s10853-006-0224-3
    Tu, K.K., Wang, X.Q., Kong, L.Z., Chang, H.J., Liu, J.L., 2016. Fabrication of robust, damage-tolerant superhydrophobic coatings on naturally micro-grooved wood surfaces. RSC Adv. 6, 701–707 doi: 10.1039/C5RA24407B
    Wang, K.L., Dong, Y.M., Yan, Y.T., Zhang, W., Qi, C.S., Han, C.R., Li, J.Z., Zhang, S.F., 2017. Highly hydrophobic and self-cleaning bulk wood prepared by grafting long-chain alkyl onto wood cell walls. Wood Sci. Technol. 51, 395–411 doi: 10.1007/s00226-016-0862-9
    Wu, J.M., Wu, Y., Yang, F., Tang, C.Y., Huang, Q.T., Zhang, J.L., 2019. Impact of delignification on morphological, optical and mechanical properties of transparent wood. Compos. A Appl. Sci. Manuf. 117, 324–331 doi: 10.1016/j.compositesa.2018.12.004
    Wu, Q., Gong, L.X., Li, Y., Cao, C.F., Tang, L.C., Wu, L.B., Zhao, L., Zhang, G.D., Li, S.N., Gao, J.F., Li, Y.J., Mai, Y.W., 2018. Efficient flame detection and early warning sensors on combustible materials using hierarchical graphene oxide/silicone coatings. ACS Nano12, 416–424 doi: 10.1021/acsnano.7b06590
    Wu, Y., Wang, Y.J., Yang, F., 2021. Comparison of multilayer transparent wood and single layer transparent wood with the same thickness. Front. Mater. 8, 633345 doi: 10.3389/fmats.2021.633345
    Wu, Y., Wang, Y.J., Yang, F., Wang, J., Wang, X.H., 2020. Study on the properties of transparent bamboo prepared by epoxy resin impregnation. Polymers12, 863 doi: 10.3390/polym12040863
    Yang, H.P., Yan, R., Chen, H.P., Lee, D.H., Zheng, C.G., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel86, 1781–1788 doi: 10.1016/j.fuel.2006.12.013
    Yu, Z.Y., Yao, Y.J., Yao, J.N., Zhang, L.M., Chen, Z., Gao, Y.F., Luo, H.J., 2017. Transparent wood containing CsxWO3 nanoparticles for heat-shielding window applications. J. Mater. Chem. A5, 6019–6024 doi: 10.1039/C7TA00261K
    Zhang, G.D., Wu, Z.H., Xia, Q.Q., Qu, Y.X., Pan, H.T., Hu, W.J., Zhao, L., Cao, K., Chen, E.Y., Yuan, Z., Gao, J.F., Mai, Y.W., Tang, L.C., 2021. Ultrafast flame-induced pyrolysis of poly(dimethylsiloxane) foam materials toward exceptional superhydrophobic surfaces and reliable mechanical robustness. ACS Appl. Mater. Interfaces13, 23161–23172 doi: 10.1021/acsami.1c03272
    Zhang, L.M., Wang, A., Zhu, T.L., Chen, Z., Wu, Y.P., Gao, Y.F., 2020a. Transparent wood composites fabricated by impregnation of epoxy resin and W-doped VO2 nanoparticles for application in energy-saving windows. ACS Appl. Mater. Interfaces12, 34777–34783 doi: 10.1021/acsami.0c06494
    Zhang, Z.H., Zhang, J.W., Cao, C.F., Guo, K.Y., Zhao, L., Zhang, G.D., Gao, J.F., Tang, L.C., 2020b. Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response. Chem. Eng. J. 386, 123894 doi: 10.1016/j.cej.2019.123894
    Zhou, H., Wang, H.X., Niu, H.T., Zhao, Y., Xu, Z.G., Lin, T., 2017. A waterborne coating system for preparing robust, self-healing, superamphiphobic surfaces. Adv. Funct. Mater. 27, 1604261 doi: 10.1002/adfm.201604261
    Zhu, M.W., Song, J.W., Li, T., Gong, A., Wang, Y.B., Dai, J.Q., Yao, Y.G., Luo, W., Henderson, D., Hu, L.B., 2016. Highly anisotropic, highly transparent wood composites. Adv. Mater. 28, 7563 doi: 10.1002/adma.201604084
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (372) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return