Volume 7 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
Aristide Laurel Mokale Kognou, Sarita Shrestha, Zihua Jiang, Chunbao (Charles) Xu, Fubao Sun, Wensheng Qin. High-fructose corn syrup production and its new applications for 5-hydroxymethylfurfural and value-added furan derivatives: Promises and challenges[J]. Journal of Bioresources and Bioproducts, 2022, 7(3): 148-160. doi: 10.1016/j.jobab.2022.03.004
Citation: Aristide Laurel Mokale Kognou, Sarita Shrestha, Zihua Jiang, Chunbao (Charles) Xu, Fubao Sun, Wensheng Qin. High-fructose corn syrup production and its new applications for 5-hydroxymethylfurfural and value-added furan derivatives: Promises and challenges[J]. Journal of Bioresources and Bioproducts, 2022, 7(3): 148-160. doi: 10.1016/j.jobab.2022.03.004

High-fructose corn syrup production and its new applications for 5-hydroxymethylfurfural and value-added furan derivatives: Promises and challenges

doi: 10.1016/j.jobab.2022.03.004
More Information
  • Corresponding author: E-mail address: wqin@lakeheadu.ca (W. Qin)
  • Received Date: 2022-02-23
  • Accepted Date: 2022-03-16
  • Rev Recd Date: 2022-03-14
  • Available Online: 2022-03-26
  • Publish Date: 2022-07-31
  • High fructose corn syrup has been industrially produced by converting glucose to fructose by glucose isomerases, tetrameric metalloenzymes widely used in industrial biocatalysis. Advances in enzyme engineering and commercial production of glucose isomerase have paved the way to explore more efficient variants of these enzymes. The 5-hydroxymethylfurfural can be produced from high fructose corn syrup catalytic dehydration, and it can be further converted into various furanic compounds chemically or biologically for various industrial applications as a promising platform chemical. Although the chemical conversion of 5-hydroxymethylfurfural into furanic compounds has been extensively investigated in recent years, bioconversion has shown promise for its mild conditions due to the harsh chemical reaction conditions. This review discusses protein engineering potential for improving glucose isomerase production and recent advancements in bioconversion of 5-hydroxymethylfurfural into value-added furanic derivatives. It suggests biological strategies for the industrial transformation of 5-hydroxymethylfurfural.

     

  • loading
  • Adeleye, A.T., Louis, H., Akakuru, O.U., Joseph, I., Enudi, O.C., Michael, D.P., 2019. A review on the conversion of levulinic acid and its esters to various useful chemicals. AIMS Energy 7, 165–185. doi: 10.3934/energy.2019.2.165
    Baraldi, S., Fantin, G., di Carmine, G., Ragno, D., Brandolese, A., Massi, A., Bortolini, O., Marchetti, N., Giovannini, P.P., 2019. Enzymatic synthesis of biobased aliphatic–aromatic oligoesters using 5, 5'-bis(hydroxymethyl)furoin as a building block. RSC Adv. 9, 29044–29050. doi: 10.1039/C9RA06621G
    Basso, A., Serban, S., 2019. Industrial applications of immobilized enzymes—A review. Mol. Catal. 479, 110607. doi: 10.1016/j.mcat.2019.110607
    Ben Hlima, H., Bejar, S., Riguet, J., Haser, R., Aghajari, N, 2013. Identification of critical residues for the activity and thermostability of Streptomyces sp. SK glucose isomerase. Appl. Microbiol. Biotechnol. 97, 9715–9726. doi: 10.1007/s00253-013-4784-2
    Bocarsly, M.E., Powell, E.S., Avena, N.M., Hoebel, B.G., 2010. High-fructose corn syrup causes characteristics of obesity in rats: increased body weight, body fat and triglyceride levels. Pharmacol. Biochem. Behav. 97, 101–106. doi: 10.1016/j.pbb.2010.02.012
    Brandi, F., Bäumel, M., Shekova, I., Molinari, V., Al-Naji, M., 2020. 5-hydroxymethylfurfural hydrodeoxygenation to 2, 5-dimethylfuran in continuous-flow system over Ni on nitrogen-doped carbon. Sustain. Chem. 1, 106–115. doi: 10.3390/suschem1020009
    Cajnko, M.M., Novak, U., Grilc, M., Likozar, B., 2020. Enzymatic conversion reactions of 5-hydroxymethylfurfural (HMF) to bio-based 2, 5- diformylfuran (DFF) and 2, 5-furandicarboxylic acid (FDCA) with air: mechanisms, pathways and synthesis selectivity. Biotechnol. Biofuel. 13, 66. doi: 10.1186/s13068-020-01705-z
    Cang, R., Shen, L.Q., Yang, G., Zhang, Z.D., Huang, H., Zhang, Z.G., 2019. Highly selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid by a robust whole-cell biocatalyst. Catalysts 9, 526. doi: 10.3390/catal9060526
    Chang, S.Y., He, X.J., Li, B.F., Pan, X., 2021. Improved bio-synthesis of 2, 5-bis(hydroxymethyl)furan by Burkholderia contaminans NJPI-15 with co-substrate. Front. Chem. 9, 635191. doi: 10.3389/fchem.2021.635191
    Dai, C.X., Miao, T.T., Hai, J.P., Xiao, Y.Y., Li, Y., Zhao, J.R., Qiu, H.L., Xu, B., 2020. A novel glucose isomerase from Caldicellulosiruptor bescii with great potentials in the production of high-fructose corn syrup. Biomed Res. Int. 2020, 1871934.
    Dai, J.H., 2021. Synthesis of 2, 5-diformylfuran from renewable carbohydrates and its applications: a review. Green Energy Environ. 6, 22–32. doi: 10.1016/j.gee.2020.06.013
    Dell'Acqua, A., Stadler, B.M., Kirchhecker, S., Tin, S., de Vries, J.G., 2020. Scalable synthesis and polymerisation of a β-Angelica lactone derived monomer. Green Chem. 22, 5267–5273. doi: 10.1039/D0GC00338G
    Dutta, S., Yu, I.K.M., Tsang, D.C.W., Su, Z.S., Hu, C.W., Wu, K.C.W., Yip, A.C.K., Ok, Y.S., Poon, C.S., 2020. Influence of green solvent on levulinic acid production from lignocellulosic paper waste. Bioresour. Technol. 298, 122544. doi: 10.1016/j.biortech.2019.122544
    Esen, M., Akmaz, S., Koç, S.N., Gürkaynak, M.A., 2019. The hydrogenation of 5-hydroxymethylfurfural (HMF) to 2, 5-dimethylfuran (DMF) with Sol-gel Ru-Co/SiO2 catalyst. J. Sol. Gel. Sci. Technol. 91, 664–672. doi: 10.1007/s10971-019-05047-7
    Fernandes, P., 2018. Enzymatic processing in the food industry. Reference Module in Food Science. Elsevier, Amsterdam.
    Gomez-Bolivar, J., Mikheenko, I.P., Orozco, R.L., Sharma, S., Banerjee, D., Walker, M., Hand, R.A., Merroun, M.L., MacAskie, L.E., 2019. Synthesis of Pd/Ru bimetallic nanoparticles by Escherichia coli and potential as a catalyst for upgrading 5-hydroxymethyl furfural into liquid fuel precursors. Front. Microbiol. 10, 1276. doi: 10.3389/fmicb.2019.01276
    Gregorc, A., Jurišić, S., Sampson, B., 2019. Hydroxymethylfurfural affects caged honey bees (Apis mellifera carnica). Diversity 12, 18. doi: 10.3390/d12010018
    Hajer, B.H., Dorra, Z.A., Monia, M., Samir, B., Nushin, A., 2014. Probing the role of helix α1 in the acid-tolerance and thermal stability of the Streptomyces sp. SK glucose isomerase by site-directed mutagenesis. J. Biotechnol. 173, 1–6. doi: 10.1016/j.jbiotec.2014.01.005
    Han, M.M., Liu, X., Zhang, X.S., Pang, Y.Y., Xu, P., Guo, J.W., Liu, Y.D., Zhang, S.Y., Ji, S.X., 2017. 5-hydroxymethyl-2-vinylfuran: a biomass-based solvent-free adhesive. Green Chem 19, 722–728. doi: 10.1039/C6GC02723G
    He, Y.C., Tao, Z.C., Zhang, X., Yang, Z.X., Xu, J.H., 2014. Highly efficient synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate and its derivatives by a robust NADH-dependent reductase from E. coli CCZU-K14. Bioresour. Technol. 161, 461–464. doi: 10.1016/j.biortech.2014.03.133
    Hou, J., Qiu, C., Shen, Y., Li, H., Bao, X., 2017. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. FEMS Yeast Res. 1, 17.
    Hou, Y.N., Wang, Y.R., Zheng, C.H., Feng, K., 2020. Biotransformation of 5-hydroxymethylfurfural into 2, 5-dihydroxymethylfuran by Ganoderma sessile and toxicological assessment of both compounds. AMB Expr. 10, 88. doi: 10.1186/s13568-020-01023-5
    Hu, L., He, A.Y., Liu, X.Y., Xia, J., Xu, J.X., Zhou, S.Y., Xu, J.M., 2018. Biocatalytic transformation of 5-hydroxymethylfurfural into high-value derivatives: recent advances and future aspects. ACS Sustain. Chem. Eng. 6, 15915–15935. doi: 10.1021/acssuschemeng.8b04356
    Ibrahim, M., Bonfiglio, S., Schlögl, M., Vinales, K.L., Piaggi, P., Venti, C., Walter, M., Krakoff, J., Thearle, M.S., 2018. Energy expenditure and hormone responses in humans after overeating high-fructose corn syrup versus whole-wheat foods. Obesity (Silver Spring) 26, 141–149. doi: 10.1002/oby.22068
    Jeong, D., Oh, E.J., Ko, J.K., Nam, J.O., Park, H.S., Jin, Y.S., Lee, E.J., Kim, S.R., 2020. Metabolic engineering considerations for the heterologous expression of xylose-catabolic pathways in Saccharomyces cerevisiae. PLoS One 15, e0236294. doi: 10.1371/journal.pone.0236294
    Jin, L.Q., Xu, Q., Liu, Z.Q., Jia, D.X., Liao, C.J., Chen, D.S., Zheng, Y.G., 2017. Immobilization of recombinant glucose isomerase for efficient production of high fructose corn syrup. Appl. Biochem. Biotechnol. 183, 293–306. doi: 10.1007/s12010-017-2445-0
    Kema Ajekwene, K., 2020. Properties and applications of acrylates. Acrylate Polymers for Advanced Applications. IntechOpen, London, pp. 35–46.
    Lee, M.S., Rozeboom, H.J., de Waal, P.P., de Jong, R.M., Dudek, H.M., Janssen, D.B., 2017. Metal dependence of the xylose isomerase from Piromyces sp. E2 explored by activity profiling and protein crystallography. Biochemistry 56, 5991–6005. doi: 10.1021/acs.biochem.7b00777
    Lee, M.S., Rozeboom, H.J., Keuning, E., de Waal, P., Janssen, D.B., 2020. Structure-based directed evolution improves S. cerevisiae growth on xylose by influencing in vivo enzyme performance. Biotechnol. Biofuel. 13, 5. doi: 10.1186/s13068-019-1643-0
    Li, X.K., Zhang, Y.G., 2016. The conversion of 5-hydroxymethyl furfural (HMF) to maleic anhydride with vanadium-based heterogeneous catalysts. Green Chem. 18, 643–647. doi: 10.1039/C5GC01794G
    Liu, T.T., Huang, S.C., Geng, A.L., 2018. Recombinant diploid Saccharomyces cerevisiae strain development for rapid glucose and xylose co-fermentation. Fermentation 4, 59. doi: 10.3390/fermentation4030059
    Liu, Z.Q., Zheng, W., Huang, J.F., Jin, L.Q., Jia, D.X., Zhou, H.Y., Xu, J.M., Liao, C.J., Cheng, X.P., Mao, B.X., Zheng, Y.G., 2015. Improvement and characterization of a hyperthermophilic glucose isomerase from Thermoanaerobacter ethanolicus and its application in production of high fructose corn syrup. J. Ind. Microbiol. Biotechnol. 42, 1091–1103. doi: 10.1007/s10295-015-1639-0
    Lou, Y.Z., Marinkovic, S., Estrine, B., Qiang, W., Enderlin, G., 2020. Oxidation of furfural and furan derivatives to maleic acid in the presence of a simple catalyst system based on acetic acid and TS-1 and hydrogen peroxide. ACS Omega 5, 2561–2568. doi: 10.1021/acsomega.9b02141
    Market Study Report, 2019. Global 5-hydroxymethylfurfural (5-HMF) (CAS 67-47-0) Market 2019 by Manufacturers, Regions, Type and Application, Forecast to 2024. https://www.marketstudyreport.com/reports/global-5-hydroxymethylfurfural-5-hmf-cas-67-47-0-market-2019-by-manufacturers-regions-type-and-application-forecast-to-2024.
    Megías-Sayago, C., Bonincontro, D., Lolli, A., Ivanova, S., Albonetti, S., Cavani, F., Odriozola, J.A., 2020. 5-hydroxymethyl-2-furfural oxidation over Au/CexZr1-xO2 catalysts. Front. Chem. 8, 461. doi: 10.3389/fchem.2020.00461
    Mika, L.T., Cséfalvay, E., Németh, Á., 2018. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem. Rev. 118, 505–613. doi: 10.1021/acs.chemrev.7b00395
    Mock, K., Lateef, S., Benedito, V.A., Tou, J.C., 2017. High-fructose corn syrup-55 consumption alters hepatic lipid metabolism and promotes triglyceride accumulation. J. Nutr. Biochem. 39, 32–39. doi: 10.1016/j.jnutbio.2016.09.010
    Mthembu, L.D., Gupta, R., Deenadayalu, N., 2021. Conversion of Cellulose into Value-Added Products. Cellulose Science and Derivatives. IntechOpen, London.
    Muñoz, T., Rache, L.Y., Rojas, H.A., Romanelli, G.P., Martinez, J.J., Luque, R., 2020. Production of 5-hydroxymethyl-2-furan carboxylic acid by Serratia marcescens from crude 5-hydroxymethylfurfural. Biochem. Eng. J. 154, 107421. doi: 10.1016/j.bej.2019.107421
    Nam, K.H., 2022. Glucose isomerase: functions, structures, and applications. Appl. Sci. 12, 428. doi: 10.3390/app12010428
    Neifar, S., Cervantes, F.V., Bouanane-Darenfed, A., BenHlima, H., Ballesteros, A.O., Plou, F.J., Bejar, S., 2020. Immobilization of the glucose isomerase from Caldicoprobacter algeriensis on Sepabeads EC-HA and its efficient application in continuous high fructose syrup production using packed bed reactor. Food Chem. 309, 125710. doi: 10.1016/j.foodchem.2019.125710
    Neifar, S., Hlima, H.B., Mhiri, S., Mezghani, M., Bouacem, K., Ibrahim, A.H., Jaouadi, B., Bouanane-Darenfed, A., Bejar, S., 2019. A novel thermostable and efficient Class Ⅱ glucose isomerase from the thermophilic Caldicoprobacter algeriensis: biochemical characterization, molecular investigation, and application in High Fructose Syrup production. Int. J. Biol. Macromol. 129, 31–40. doi: 10.1016/j.ijbiomac.2019.01.150
    Olsen, N.J., Heitmann, B.L., 2009. Intake of calorically sweetened beverages and obesity. Obes. Rev. 10, 68–75. doi: 10.1111/j.1467-789X.2008.00523.x
    Omajali, J.B., Gomez-Bolivar, J., Mikheenko, I.P., Sharma, S., Kayode, B., Al-Duri, B., Banerjee, D., Walker, M., Merroun, M.L., MacAskie, L.E., 2019. Novel catalytically active Pd/Ru bimetallic nanoparticles synthesized by Bacillus benzeovorans. Sci. Rep. 9, 4715. doi: 10.1038/s41598-019-40312-3
    Ozkan, H., Yakan, A., 2019. Dietary high calories from sunflower oil, sucrose and fructose sources alters lipogenic genes expression levels in liver and skeletal muscle in rats. Ann. Hepatol. 18, 715–724. doi: 10.1016/j.aohep.2019.03.013
    Pal, P., Kumar, S., Devi, M.M., Saravanamurugan, S., 2020. Oxidation of 5-hydroxymethylfurfural to 5-formyl furan-2-carboxylic acid by non-precious transition metal oxide-based catalyst. J. Supercrit. Fluid. 160, 104812. doi: 10.1016/j.supflu.2020.104812
    Park, Y.J., Jung, B.K., Hong, S.J., Park, G.S., Ibal, J.C., Pham, H., Shin, J.H., 2018. Expression and characterization of calcium- and zinc-tolerant xylose isomerase from Anoxybacillus kamchatkensis G10. J. Microbiol. Biotechnol. 28, 606–612. doi: 10.4014/jmb.1712.12021
    Pedersen, S., 1993. Industrial aspects of immobilized glucose isomerase. Bioprocess. Technol. 16, 185–208.
    Petri, A., Masia, G., Piccolo, O., 2018. Biocatalytic conversion of 5-hydroxymethylfurfural: synthesis of 2, 5-bis(hydroxymethyl)furan and 5-(hydroxymethyl)furfurylamine. Catal. Commun. 114, 15–18. doi: 10.1016/j.catcom.2018.05.011
    Przydacz, M., Jędrzejczyk, M., Rogowski, J., Szynkowska-Jóźwik, M., Ruppert, A.M., 2020. Highly efficient production of DMF from biomass-derived HMF on recyclable Ni-Fe/TiO2 catalysts. Energies 13, 4660. doi: 10.3390/en13184660
    Qi, X., Zha, J., Liu, G.G., Zhang, W.W., Li, B.Z., Yuan, Y.J., 2015. Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae. Front. Microbiol. 6, 1165.
    Rajesh, R.O., Godan, T.K., Sindhu, R., Pandey, A., Binod, P., 2020. Bioengineering advancements, innovations and challenges on green synthesis of 2, 5-furan dicarboxylic acid. Bioengineered 11, 19–38. doi: 10.1080/21655979.2019.1700093
    Rigoldi, F., Donini, S., Redaelli, A., Parisini, E., Gautieri, A., 2018. Review: engineering of thermostable enzymes for industrial applications. APL Bioeng. 2, 011501. doi: 10.1063/1.4997367
    Sadowska, J., Rygielska, M., 2019. The effect of high fructose corn syrup on the plasma insulin and leptin concentration, body weight gain and fat accumulation in rat. Adv. Clin. Exp. Med. 28, 879–884. doi: 10.17219/acem/94069
    Saikia, K., Rathankumar, A.K., Kumar, P.S., Varjani, S., Nizar, M., Lenin, R., George, J., Vaidyanathan, V.K., 2022. Recent advances in biotransformation of 5-Hydroxymethylfurfural: challenges and future aspects. J. Chem. Technol. Biotechnol. 97, 409–419. doi: 10.1002/jctb.6670
    Sajid, M., Zhao, X.B., Liu, D.H., 2018. Production of 2, 5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chem. 20, 5427–5453. doi: 10.1039/C8GC02680G
    Seike, T., Kobayashi, Y., Sahara, T., Ohgiya, S., Kamagata, Y., Fujimori, K.E., 2019. Molecular evolutionary engineering of xylose isomerase to improve its catalytic activity and performance of micro-aerobic glucose/xylose co-fermentation in Saccharomyces cerevisiae. Biotechnol. Biofuel. 12, 139. doi: 10.1186/s13068-019-1474-z
    Shapla, U.M., Solayman, M., Alam, N., Khalil, M.I., Gan, S.H., 2018. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chem. Cent. J. 12, 35. doi: 10.1186/s13065-018-0408-3
    Sheng, Y.Q., Tan, X., Zhou, X., Xu, Y., 2020. Bioconversion of 5-hydroxymethylfurfural (HMF) to 2, 5-furandicarboxylic acid (FDCA) by a native obligate aerobic bacterium, Acinetobacter calcoaceticus NL14. Appl. Biochem. Biotechnol. 192, 455–465. doi: 10.1007/s12010-020-03325-7
    Shokri, Z., Seidi, F., Karami, S., Li, C.C., Saeb, M.R., Xiao, H.N., 2021. Laccase immobilization onto natural polysaccharides for biosensing and biodegradation. Carbohydr. Polym. 262, 117963. doi: 10.1016/j.carbpol.2021.117963
    Silva, P.C., Ceja-Navarro, J.A., Azevedo, F., Karaoz, U., Brodie, E.L., Johansson, B., 2021. A novel D-xylose isomerase from the gut of the wood feeding beetle Odontotaenius disjunctus efficiently expressed in Saccharomyces cerevisiae. Sci. Rep. 11, 4766. doi: 10.1038/s41598-021-83937-z
    Simakova, I., Demidova, Y., Simonov, M., Prikhod'ko, S., Niphadkar, P., Bokade, V., Dhepe, P., Murzin, D.Y., 2020. Heterogeneously catalyzed γ-valerolactone hydrogenation into 1, 4-pentanediol in milder reaction conditions. Reactions 1, 54–71. doi: 10.3390/reactions1020006
    Souzanchi, S., Nazari, L., Rao, K.T.V., Yuan, Z.S., Tan, Z.C., Xu, C.B., 2019. Catalytic isomerization of glucose to fructose using heterogeneous solid base catalysts in a continuous-flow tubular reactor: catalyst screening study. Catal. Today 319, 76–83. doi: 10.1016/j.cattod.2018.03.056
    Tongtummachat, T., Akkarawatkhoosith, N., Kaewchada, A., Jaree, A., 2020. Conversion of glucose to 5-hydroxymethylfurfural in a microreactor. Front. Chem. 7, 951. doi: 10.3389/fchem.2019.00951
    Wang, X.J., Deng, Z.X., Liu, T.G., 2019. Marker-free system using ribosomal promoters enhanced xylose/glucose isomerase production in Streptomyces rubiginosus. Biotechnol. J. 14, e1900114. doi: 10.1002/biot.201900114
    Weerathunga, H., Sarina, S., Zhu, H.Y., Waclawik, E.R., 2021. Oxidative esterification of 5-hydroxymethylfurfural into dimethyl 2, 5-furandicarboxylate using gamma alumina-supported gold nanoparticles. ACS Omega 6, 4740–4748. doi: 10.1021/acsomega.0c05541
    Wiltschi, B., Cernava, T., Dennig, A., Casas, M.G., Geier, M., Gruber, S., Haberbauer, M., Heidinger, P., Acero, E.H., Kratzer, R., Luley-Goedl, C., Müller, C.A., Pitzer, J., Ribitsch, D., Sauer, M., Schmölzer, K., Schnitzhofer, W., Sensen, C.W., Soh, J., Steiner, K., Winkler, C.K., Winkler, M., Wriessnegger, T., 2020. Enzymes revolutionize the bioproduction of value-added compounds: from enzyme discovery to special applications. Biotechnol. Adv. 40, 107520.
    Xu, Q.Q., Zheng, Z.J., Zou, L.H., Zhang, C., Yang, F., Zhou, K.J., Ouyang, J., 2020. A versatile Pseudomonas putida KT2440 with new ability: selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid. Bioprocess. Biosyst. Eng. 43, 67–73. doi: 10.1007/s00449-019-02205-7
    Xu, Z.H., Cheng, A.D., Xing, X.P., Zong, M.H., Bai, Y.P., Li, N., 2018. Improved synthesis of 2, 5-bis(hydroxymethyl)furan from 5-hydroxymethylfurfural using acclimatized whole cells entrapped in calcium alginate. Bioresour. Technol. 262, 177–183. doi: 10.1016/j.biortech.2018.04.077
    Yadav, G.D., Sharma, R.V., 2014. Biomass derived chemicals: environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst. Appl. Catal. B Environ. 147, 293–301. doi: 10.1016/j.apcatb.2013.09.004
    Yang, Z.R., Zhang, J., Qian, G., Duan, X.Z., Zhou, X.G., 2021. Production of biomass-derived monomers through catalytic conversion of furfural and hydroxymethylfurfural. Green Chem. Eng. 2, 158–173. doi: 10.1016/j.gce.2020.11.001
    Zeng, F.R., Xu, J., Sun, L.H., Ma, J.M., Jiang, H., Li, Z.L., 2020. Copolymers of ε-caprolactone and ε-caprolactam via polyesterification: towards sequence-controlled poly(ester amide)s. Polym. Chem. 11, 1211–1219.
    Zunita, M., Wahyuningrum, D., Buchari, Bundjali, B., Wenten, I.G., Boopathy, R., 2021. Conversion of glucose to 5-hydroxymethylfurfural, levulinic acid, and formic acid in 1, 3-dibutyl-2-(2-butoxyphenyl)-4, 5-diphenylimidazolium iodide-based ionic liquid. Appl. Sci. 11, 989.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (478) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return