Citation: | Wenchao Jia, Miaofang Zhou, Chenfeng Yang, He Zhang, Meihong Niu, Haiqiang Shi. Evaluating process of auto-hydrolysis prior to kraft pulping on production of chemical pulp for end used paper-grade products[J]. Journal of Bioresources and Bioproducts, 2022, 7(3): 180-189. doi: 10.1016/j.jobab.2022.05.002 |
The objective of this work is to systematically evaluate the performance of the hydrolysis-based kraft pulping process and associated pulp and black liquor characteristics. Acacia wood chips were auto-hydrolyzed under various severities, then the hydrolyzed wood chips were kraft pulping. The results indicated that the yield of pulp significantly dropped with intensifying the auto-hydrolysis severity. Meanwhile, the removal rate of pentosan reached 98.6% in the screened pulp at the P-factor of 1 000. The fiber length, fines and fiber crimp of the screened pulp were not affected by the auto-hydrolysis treatment. Auto-hydrolyzed pulps deteriorated fibrillation and beating response of the pulp in a refining process. However, fiber length and fines changed obviously after beating treatment. After auto-hydrolysis, the tensile index of the paper matrices decreased, some particle substances were found on the surface of the pulp fiber, and the solid and organic content of the black liquor were improved.
Beukes, N., Pletschke, B.I., 2011. Effect of alkaline pre-treatment on enzyme synergy for efficient hemicellulose hydrolysis in sugarcane bagasse. Bioresour. Technol. 102, 5207–5213. doi: 10.1016/j.biortech.2011.01.090
|
Bian, J., Peng, F., Peng, P., Xu, F., Sun, R.C., 2010. Isolation and fractionation of hemicelluloses by graded ethanol precipitation from Caragana korshinskii. Carbohydr. Res. 345, 802–809. doi: 10.1016/j.carres.2010.01.014
|
Boucher, J., Chirat, C., Lachenal, D., 2014. Extraction of hemicelluloses from wood in a pulp biorefinery, and subsequent fermentation into ethanol. Energy Convers. Manag. 88, 1120–1126. doi: 10.1016/j.enconman.2014.05.104
|
Canilha, L., Carvalho, W., Felipe, M.D.G.A., de Almeida E Silva, J.B., 2008. Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation. Braz. J. Microbiol. 39, 333–336. doi: 10.1590/S1517-83822008000200025
|
Chen, X.W., Lawoko, M., Heiningen, A.V., 2010. Kinetics and mechanism of autohydrolysis of hardwoods. Bioresour. Technol. 101, 7812–7819. doi: 10.1016/j.biortech.2010.05.006
|
de Oliveira Santos, V.T., Siqueira, G., Milagres, A.M.F., Ferraz, A., 2018. Role of hemicellulose removal during dilute acid pretreatment on the cellulose accessibility and enzymatic hydrolysis of compositionally diverse sugarcane hybrids. Ind. Crops Prod. 111, 722–730. doi: 10.1016/j.indcrop.2017.11.053
|
Duarte, G.V., Ramarao, B.V., Amidon, T.E., Ferreira, P.T., 2011. Effect of hot water extraction on hardwood kraft pulp fibers (Acer saccharum, sugar maple). Ind. Eng. Chem. Res. 50, 9949–9959. doi: 10.1021/ie200639u
|
Gehmayr, V., Schild, G., Sixta, H., 2011. A precise study on the feasibility of enzyme treatments of a kraft pulp for viscose application. Cellulose 18, 479–491. doi: 10.1007/s10570-010-9483-x
|
Gütsch, J.S., Nousiainen, T., Sixta, H., 2012. Comparative evaluation of autohydrolysis and acid-catalyzed hydrolysis of Eucalyptus globulus wood. Bioresour. Technol. 109, 77–85. doi: 10.1016/j.biortech.2012.01.018
|
Hamaguchi, M., Kautto, J., Vakkilainen, E., 2013. Effects of hemicellulose extraction on the kraft pulp mill operation and energy use: review and case study with lignin removal. Chem. Eng. Res. Des. 91, 1284–1291. doi: 10.1016/j.cherd.2013.02.006
|
Heiningen, A.V., 2007. Converting a kraft pulp mill into an integrated forest biorefinery. Pulp Pap. Can. 107, 38–43.
|
Helmerius, J., von Walter, J.V., Rova, U., Berglund, K.A., Hodge, D.B., 2010. Impact of hemicellulose pre-extraction for bioconversion on birch Kraft pulp properties. Bioresour. Technol. 101, 5996–6005. doi: 10.1016/j.biortech.2010.03.029
|
Hou, Q.X., Wang, Y., Liu, W., Liu, L.H., Xu, N.P., Li, Y., 2014. An application study of autohydrolysis pretreatment prior to poplar chemi-thermomechanical pulping. Bioresour. Technol. 169, 155–161. doi: 10.1016/j.biortech.2014.06.091
|
Huang, H.J., Ramaswamy, S., Al-Dajani, W.W., Tschirner, U., 2010. Process modeling and analysis of pulp mill-based integrated biorefinery with hemicellulose pre-extraction for ethanol production: a comparative study. Bioresour. Technol. 101, 624–631. doi: 10.1016/j.biortech.2009.07.092
|
Jeffries, T.W., Jin, Y.S., 2004. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63, 495–509. doi: 10.1007/s00253-003-1450-0
|
Jia, W.C., Jin, H.Q., Sun, Y.N., Sheng, X.R., Guo, Y.Z., Li, H.M., Shi, H.Q., 2022. Separation of surface sediments generated during the pre-hydrolysis via an efficient solvent dissolution and its physicochemical characterization. Ind. Crops Prod. 177, 114462. doi: 10.1016/j.indcrop.2021.114462
|
Jiang, X.Y., Hou, Q.X., Liu, W., Zhang, H.L., Qin, Q., 2016. Hemicelluloses removal in autohydrolysis pretreatment enhances the subsequent alkali impregnation effectiveness of poplar sapwood. Bioresour. Technol. 222, 361–366. doi: 10.1016/j.biortech.2016.10.017
|
Ko, J.K., Kim, Y., Ximenes, E., Ladisch, M.R., 2015. Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 112, 252–262. doi: 10.1002/bit.25349
|
Leschinsky, M., Zuckerstätter, G., Weber, H.K., Patt, R., Sixta, H., 2008. Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 2: influence of autohydrolysis intensity. Holzforschung 62, 653–658.
|
Li, J.B., Henriksson, G., Gellerstedt, G., 2007. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour. Technol. 98, 3061–3068. doi: 10.1016/j.biortech.2006.10.018
|
Li, Y., Liu, W., Hou, Q.X., Han, S., Wang, Y., Zhou, D.D., 2014. Release of acetic acid and its effect on the dissolution of carbohydrates in the autohydrolysis pretreatment of poplar prior to chemi-thermomechanical pulping. Ind. Eng. Chem. Res. 53, 8366–8371. doi: 10.1021/ie500637a
|
Liu, J., Li, M., Luo, X.L., Chen, L.H., Huang, L.L., 2015a. Effect of hot-water extraction (HWE) severity on bleached pulp based biorefinery performance of Eucalyptus during the HWE-Kraft-ECF bleaching process. Bioresour. Technol. 181, 183–190. doi: 10.1016/j.biortech.2015.01.055
|
Liu, L.H., Liu, W., Hou, Q.X., Chen, J.W., Xu, N.P., 2015b. Understanding of pH value and its effect on autohydrolysis pretreatment prior to poplar chemi-thermomechanical pulping. Bioresour. Technol. 196, 662–667. doi: 10.1016/j.biortech.2015.08.034
|
Lu, H.F., Hu, R.F., Ward, A., Amidon, T.E., Liang, B., Liu, S.J., 2012. Hot-water extraction and its effect on soda pulping of aspen woodchips. Biomass Bioenergy 39, 5–13. doi: 10.1016/j.biombioe.2011.01.054
|
Martin-Sampedro, R., Eugenio, M.E., Moreno, J.A., Revilla, E., Villar, J.C., 2014. Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment. Bioresour. Technol. 153, 236–244. doi: 10.1016/j.biortech.2013.11.088
|
Mendes, C.V.T., Carvalho, M.G.V.S., Baptista, C.M.S.G., Rocha, J.M.S., Soares, B.I.G., Sousa, G.D.A., 2009. Valorisation of hardwood hemicelluloses in the kraft pulping process by using an integrated biorefinery concept. Food Bioprod. Process. 87, 197–207. doi: 10.1016/j.fbp.2009.06.004
|
Palm, M., Zacchi, G., 2003. Extraction of hemicellulosic oligosaccharides from spruce using microwave oven or steam treatment. Biomacromolecules 4, 617–623. doi: 10.1021/bm020112d
|
Parajó, J.C., Domínguez, H., Domínguez, J.M., 1997. Xylitol production from Eucalyptus wood hydrolysates extracted with organic solvents. Process. Biochem. 32, 599–604. doi: 10.1016/S0032-9592(97)00016-2
|
Qureshi, N., Dien, B.S., Nichols, N.N., Saha, B.C., Cotta, M.A., 2006. Genetically engineered Escherichia coli for ethanol production from xylose: substrate and product inhibition and kinetic parameters. Food Bioprod. Process. 84, 114–122. doi: 10.1205/fbp.05038
|
Shen, B.Z., Hou, S.W., Jia, Y., Yang, C.D., Su, Y., Ling, Z., Huang, C.X., Lai, C.H., Yong, Q., 2021. Synergistic effects of hydrothermal and deep eutectic solvent pretreatment on co-production of xylo-oligosaccharides and enzymatic hydrolysis of poplar. Bioresour. Technol. 341, 125787. doi: 10.1016/j.biortech.2021.125787
|
Shi, H.Q., Zhou, M.F., Jia, W.C., Li, N., Niu, M.H., 2019a. Balancing the effect of pretreatment severity on hemicellulose extraction and pulping performance during auto-hydrolysis prior to kraft pulping of Acacia wood. Biotechnol. Prog. 35, e2784. doi: 10.1002/btpr.2784
|
Shi, H.Q., Zhou, M.F., Li, C., Sheng, X.R., Yang, Q., Li, N., Niu, M.H., 2019b. Surface sediments formation during auto-hydrolysis and its effects on the benzene-alcohol extractive, absorbability and chemical pulping properties of hydrolyzed Acacia wood chips. Bioresour. Technol. 289, 121604. doi: 10.1016/j.biortech.2019.121604
|
Thomas, M., Keenan, S.W.T., Arthur, J., Stipanovic, J.P., 2004. Production and characterization of Poly-β-hydroxyalkanoate copolymers from burkholderia cepacia utilizing xylose and levulinic acid. Biotechnol. Prog. 20, 1697–1704. doi: 10.1021/bp049873d
|
Vázquez, M.J., Garrote, G., Alonso, J.L., Domínguez, H., Parajó, J.C., 2005. Refining of autohydrolysis liquors for manufacturing xylooligosaccharides: evaluation of operational strategies. Bioresour. Technol. 96, 889–896. doi: 10.1016/j.biortech.2004.08.013
|
Villaverde, J.J., Li, J.B., Ek, M., Ligero, P., de Vega, A., 2009. Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation. J. Agric. Food Chem. 57, 6262–6270. doi: 10.1021/jf900483t
|
Walton, S.L., Hutto, D., Genco, J.M., van Walsum, G.P., van Heiningen, A.R.P., 2010. Pre-extraction of hemicelluloses from hardwood chips using an alkaline wood pulping solution followed by kraft pulping of the extracted wood chips. Ind. Eng. Chem. Res. 49, 12638–12645.
|
Wang, X.D., Hou, Q.X., Zhang, X., Zhang, Y.C., Liu, W., Xu, C.L., Zhang, F.D., 2020. Color evolution of poplar wood chips and its response to lignin and extractives changes in autohydrolysis pretreatment. Int. J. Biol. Macromol. 157, 673–679. doi: 10.1016/j.ijbiomac.2019.11.224
|
Xu, F., Sun, J.X., Geng, Z.C., Liu, C.F., Ren, J.L., Sun, R.C., Fowler, P., Baird, M.S., 2007. Comparative study of water-soluble and alkali-soluble hemicelluloses from perennial ryegrass leaves (Lolium peree). Carbohydr. Polym. 67, 56–65. doi: 10.1016/j.carbpol.2006.04.014
|
Yoon, S.H., Heiningen, A.V., 2008. Kraft pulping and papermaking properties of hot-water pre-extracted loblolly pine in an integrated forest products biorefinery. World Pulp Paper 7, 22–27.
|
Zheng, P.T., Xiang, L., Chang, J., Lin, Q.J., Xie, L., Lan, T., Liu, J., Gong, Z.G., Tang, T., Shuai, L., Luo, X.L., Chen, N.R., Zeng, H.B., 2021. Nanomechanics of lignin-cellulase interactions in aqueous solutions. Biomacromolecules 22, 2033–2042. doi: 10.1021/acs.biomac.1c00140
|