Volume 7 Issue 4
Oct.  2022
Turn off MathJax
Article Contents
Junlei Xiao, Huiling Li, Hua Zhang, Shuijian He, Qian Zhang, Kunming Liu, Shaohua Jiang, Gaigai Duan, Kai Zhang. Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges[J]. Journal of Bioresources and Bioproducts, 2022, 7(4): 245-269. doi: 10.1016/j.jobab.2022.05.003
Citation: Junlei Xiao, Huiling Li, Hua Zhang, Shuijian He, Qian Zhang, Kunming Liu, Shaohua Jiang, Gaigai Duan, Kai Zhang. Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges[J]. Journal of Bioresources and Bioproducts, 2022, 7(4): 245-269. doi: 10.1016/j.jobab.2022.05.003

Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges

doi: 10.1016/j.jobab.2022.05.003
More Information
  • With the increasing demand for sustainable energy storage systems, the development of various advanced materials from a renewable source is imminent. Owing to the advantages of high specific surface area, unique nanostructure, modifiability, and excellent mechanical strength, nanocellulose integrated with other conductive materials, such as nanocarbons, conducting polymers, and metal oxides, has been emerged as promising candidate materials for green and renewable energy storage devices. Besides, nanocellulose-derived carbon materials with good electrical conductivity and tunable microstructures can be fabricated via simple carbonization, which has been widely used as supercapacitor electrode materials. Herein, we present a comprehensive review that focuses on the development of nanocellulose materials for sustainable energy storage, particularly on supercapacitors. The fabrication strategies of nanocellulose-derived hybrid materials are first presented and summarized, followed by highlighting the use of natural nanocellulose for constructing composite electrode materials including two-dimension film electrodes, and three-dimension aerogel electrodes for supercapacitors. In addition, the possible limitations and potentials of nanocellulose in supercapacitors are outlooked.

     

  • Declaration of Competing Interest  There are no conflicts to declare.
    1 These authors contributed equally to this work.
  • loading
  • Adhamash, E., Pathak, R., Chen, K., Rahman, M.T., El-Magrous, A., Gu, Z.R., Lu, S., Qiao, Q.Q., Zhou, Y., 2020. High-energy plasma activation of renewable carbon for enhanced capacitive performance of supercapacitor electrode. Electrochim. Acta 362, 137148. doi: 10.1016/j.electacta.2020.137148
    Bahloul, A., Kassab, Z., El Bouchti, M., Hannache, H., Qaiss, A.E.K., Oumam, M., El Achaby, M., 2021. Micro- and nano-structures of cellulose from eggplant plant (Solanum melongena L.) agricultural residue. Carbohydr. Polym. 253, 117311. doi: 10.1016/j.carbpol.2020.117311
    Byrne, N., de Silva, R., Ma, Y.B., Sixta, H., Hummel, M., 2018. Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production. Cellulose(Lond)25, 723–733. doi: 10.1007/s10570-017-1579-0
    Cakici, M., Kakarla, R.R., Alonso-Marroquin, F., 2017. Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem. Eng. J. 309, 151–158. doi: 10.1016/j.cej.2016.10.012
    Cao, L.H., Li, H.L., Liu, X.L., Liu, S.W., Zhang, L., Xu, W.H., Yang, H.Q., Hou, H.Q., He, S.J., Zhao, Y., Jiang, S.H., 2021. Nitrogen, sulfur co-doped hierarchical carbon encapsulated in graphene with "sphere-in-layer" interconnection for high-performance supercapacitor. J. Colloid Interface Sci. 599, 443–452. doi: 10.1016/j.jcis.2021.04.105
    Cao, L.H., Li, H.L., Xu, Z.X., Gao, R.R., Wang, S.Q., Zhang, G.Y., Jiang, S.H., Xu, W.H., Hou, H.Q., 2021. Camellia pollen-derived carbon with controllable N content for high-performance supercapacitors by ammonium chloride activation and dual N-doping. ChemNanoMat 7, 34–43. doi: 10.1002/cnma.202000531
    Cao, L.H., Li, H.L., Xu, Z.X., Zhang, H.J., Ding, L.H., Wang, S.Q., Zhang, G.Y., Hou, H.Q., Xu, W.H., Yang, F., Jiang, S.H., 2021. Comparison of the heteroatoms-doped biomass-derived carbon prepared by one-step nitrogen-containing activator for high performance supercapacitor. Diam. Relat. Mater. 114, 108316. doi: 10.1016/j.diamond.2021.108316
    Cao, W., Liu, Y., Xu, F., Xia, Q., Du, G.P., Fan, Z.Y., Chen, N., 2021. Metal-organic framework derived carbon-coated spherical bimetallic nickel-cobalt sulfide nanoparticles for hybrid supercapacitors. Electrochim. Acta 385, 138433. doi: 10.1016/j.electacta.2021.138433
    Cao, Y.H., Wang, X.M., Gu, Z.R., Fan, Q.H., Gibbons, W., Gadhamshetty, V., Ai, N., Zeng, G.N., 2018. Potassium chloride templated carbon preparation for supercapacitor. J. Power Sources 384, 360–366. doi: 10.1016/j.jpowsour.2018.02.079
    Chang, C.S., Li, M., Niu, P., Zhang, L., Wang, S.L., 2021. A facile dual-functional hydrothermal-assisted synthesis strategy of hierarchical porous carbon for enhanced supercapacitor performance. Sustain. Mater. Technol. 28, e00265.
    Chen, C.J., Hu, L.B., 2018. Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc. Chem. Res. 51, 3154–3165. doi: 10.1021/acs.accounts.8b00391
    Chen, C.J., Zhang, Y., Li, Y.J., Dai, J.Q., Song, J.W., Yao, Y.G., Gong, Y.H., Kierzewski, I., Xie, J., Hu, L.B., 2017. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538–545. doi: 10.1039/C6EE03716J
    Chen, H., Liu, D., Shen, Z.H., Bao, B.F., Zhao, S.Y., Wu, L.M., 2015. Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials. Electrochim. Acta 180, 241–251. doi: 10.1016/j.electacta.2015.08.133
    Chen, H., Zheng, Y., Zhu, X.Q., Hong, W.L., Tong, Y.F., Lu, Y.Z., Pei, G., Pang, Y.J., Shen, Z.H., Guan, C., 2021. Bamboo-derived porous carbons for Zn-ion hybrid supercapacitors. Mater. Res. Bull. 139, 111281. doi: 10.1016/j.materresbull.2021.111281
    Chen, L., Chen, L.N., Ai, Q., Li, D.P., Si, P.C., Feng, J.K., Zhang, L., Li, Y.H., Lou, J., Ci, L.J., 2018. Flexible all-solid-state supercapacitors based on freestanding, binder-free carbon nanofibers@polypyrrole@graphene film. Chem. Eng. J. 334, 184–190. doi: 10.1016/j.cej.2017.10.038
    Chen, T.T., Luo, L., Luo, L.C., Deng, J.P., Wu, X., Fan, M.Z., Du, G.B., Zhao, W.G., 2021. High energy density supercapacitors with hierarchical nitrogen-doped porous carbon as active material obtained from bio-waste. Renew. Energy 175, 760–769. doi: 10.1016/j.renene.2021.05.006
    Chen, W.S., Yu, H.P., Sang-Young, L., Wei, T., Li, J., Fan, Z.J., 2018. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev. 47, 2837–2872. doi: 10.1039/C7CS00790F
    Chen, Y.M., Zhang, L., Yang, Y., Pang, B., Xu, W.H., Duan, G.G., Jiang, S.H., Zhang, K., 2021. Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Adv. Mater. 33, e2005569. doi: 10.1002/adma.202005569
    Chen, Y.M., Zhou, L.J., Chen, L., Duan, G.G., Mei, C.T., Huang, C.B., Han, J.Q., Jiang, S.H., 2019. Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose 26, 6653–6667. doi: 10.1007/s10570-019-02557-z
    Chen, Y.P., Lyu, S.Y., Han, S.J., Chen, Z.L., Wang, W.J., Wang, S.Q., 2018. Nanocellulose/polypyrrole aerogel electrodes with higher conductivity via adding vapor grown nano-carbon fibers as conducting networks for supercapacitor application. RSC Adv. 8, 39918–39928. doi: 10.1039/c8ra07054g
    Cheng, J., Liu, Y.C., Zhang, X.X., Miao, X.F., Chen, Y.Q., Chen, S.J., Lin, J.H., Zhang, Y.N., 2021. Structure engineering in interconnected porous hollow carbon spheres with superior rate capability for supercapacitors and lithium-sulfur batteries. Chem. Eng. J. 419, 129649. doi: 10.1016/j.cej.2021.129649
    Deng, X.L., Zou, K.Y., Cai, P., Wang, B.W., Hou, H.S., Zou, G.Q., Ji, X.B., 2020. Advanced battery-type anode materials for high-performance sodium-ion capacitors. Small Methods 4, 2000401. doi: 10.1002/smtd.202000401
    Dias, G.M.V., Müller, D., Wesling, B.N., Bernardes, J.C., Hotza, D., Rambo, C.R., 2019. Enhancing specific capacitance and cyclic stability through incorporation of MnO2 into bacterial nanocellulose/PPy•CuCl2 flexible electrodes. Energy Technol. 7, 1900328. doi: 10.1002/ente.201900328
    Ding, Q.Q., Xu, X.W., Yue, Y.Y., Mei, C.T., Huang, C.B., Jiang, S.H., Wu, Q.L., Han, J.Q., 2018. Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl. Mater. Interfaces 10, 27987–28002. doi: 10.1021/acsami.8b09656
    Dong, D., Zhang, Y.S., Xiao, Y., Wang, T., Wang, J.W., Gao, W., 2022. Oxygen-enriched coal-based porous carbon under plasma-assisted MgCO3 activation as supercapacitor electrodes. Fuel 309, 122168. doi: 10.1016/j.fuel.2021.122168
    Dong, K., Peng, X., Wang, Z.L., 2020. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 32, e1902549. doi: 10.1002/adma.201902549
    Dong, L.B., Xu, C.J., Li, Y., Huang, Z.H., Kang, F.Y., Yang, Q.H., Zhao, X., 2016. Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J. Mater. Chem. A 4, 4659–4685. doi: 10.1039/C5TA10582J
    Duan, C.X., Dong, L., Li, F.E., Xie, Y.W., Huang, B.C., Wang, K., Yu, Y., Xi, H.X., 2020. Room-temperature rapid synthesis of two-dimensional metal-organic framework nanosheets with tunable hierarchical porosity for enhanced adsorption desulfurization performance. Ind. Eng. Chem. Res. 59, 18857–18864. doi: 10.1021/acs.iecr.0c02437
    Duan, G.G., Zhao, L.Y., Chen, L., Wang, F., He, S. J., Jiang, S. H., Zhang, Q., 2021. ZnCl2 regulated flax-based porous carbon fibers for supercapacitors with good cycling stability. New J. Chem. 2021, 45, 22602–22609. doi: 10.1039/d1nj04667e
    Dubal, D.P., Chodankar, N.R., Kim, D.H., Gomez-Romero, P., 2018. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129. doi: 10.1039/c7cs00505a
    Dumanlı, A.G., Windle, A.H., 2012. Carbon fibres from cellulosic precursors: a review. J. Mater. Sci. 47, 4236–4250. doi: 10.1007/s10853-011-6081-8
    Erlandsson, J., López Durán, V., Granberg, H., Sandberg, M., Larsson, P.A., Wågberg, L., 2016. Macro- and mesoporous nanocellulose beads for use in energy storage devices. Appl. Mater. Today 5, 246–254. doi: 10.1016/j.apmt.2016.09.008
    Etman, A.S., Wang, Z.H., El Ghazaly, A., Sun, J.L., Nyholm, L., Rosen, J., 2019. Flexible freestanding MoO3-x-carbon nanotubes-nanocellulose paper electrodes for charge-storage applications. ChemSusChem 12, 5157–5163. doi: 10.1002/cssc.201902394
    Fang, D., Yan, B., Agarwal, S., Xu, W.H., Zhang, Q., He, S.J., Hou, H.Q., 2021. Electrospun poly[poly(2, 5-benzophenone)] bibenzopyrrolone/polyimide nanofiber membrane for high-temperature and strong-alkali supercapacitor. J. Mater. Sci. 56, 9344–9355. doi: 10.1007/s10853-021-05860-y
    Feng, H.B., Hu, H., Dong, H.W., Xiao, Y., Cai, Y.J., Lei, B.F., Liu, Y.L., Zheng, M.T., 2016. Hierarchical structured carbon derived from bagasse wastes: a simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J. Power Sources 302, 164–173. doi: 10.1016/j.jpowsour.2015.10.063
    Gao, Q.L., Li, D.S., Liu, X.M., Wang, Y.F., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Zhou, R.C., 2020. Biomass-derived mesoporous carbons materials coated by α-Mn3O4 with ultrafast zinc-ion diffusion ability as cathode for aqueous zinc ion batteries. Electrochim. Acta 335, 135642. doi: 10.1016/j.electacta.2020.135642
    Guan, F.Y., Chen, S.Y., Sheng, N., Chen, Y., Yao, J.J., Pei, Q.B., Wang, H.P., 2019. Mechanically robust reduced graphene oxide/bacterial cellulose film obtained via biosynthesis for flexible supercapacitor. Chem. Eng. J. 360, 829–837. doi: 10.1016/j.cej.2018.11.202
    Gunasekaran, S.S., Badhulika, S., 2021. High-performance solid-state supercapacitor based on sustainable synthesis of meso-macro porous carbon derived from hemp fibres via CO2 activation. J. Energy Storage 41, 102997. doi: 10.1016/j.est.2021.102997
    Guo, W.C., Guo, X.T., Yang, L., Wang, T.Y., Zhang, M.H., Duan, G.G., Liu, X.H., Li, Y.W., 2021. Synthetic melanin facilitates MnO supercapacitors with high specific capacitance and wide operation potential window. Polymer 235, 124276. doi: 10.1016/j.polymer.2021.124276
    Guo, X.Y., Zhang, Q., Li, Q., Yu, H.P., Liu, Y.X., 2019. Composite aerogels of carbon nanocellulose fibers and mixed-valent manganese oxides as renewable supercapacitor electrodes. Polymers 11, 129. doi: 10.3390/polym11010129
    Gupta, A., Sardana, S., Dalal, J., Lather, S., Maan, A.S., Tripathi, R., Punia, R., Singh, K., Ohlan, A., 2020. Nanostructured polyaniline/graphene/Fe2O3 composites hydrogel as a high-performance flexible supercapacitor electrode material. ACS Appl. Energy Mater. 3, 6434–6446. doi: 10.1021/acsaem.0c00684
    Gupta, G.K., Shukla, P., 2020. Lignocellulosic biomass for the synthesis of nanocellulose and its eco-friendly advanced applications. Front. Chem. 8, 601256. doi: 10.3389/fchem.2020.601256
    Han, X.T., Xiao, G.C., Wang, Y.C., Chen, X.N., Duan, G.G., Wu, Y.Z., Gong, X., Wang, H.X., 2020. Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors. J. Mater. Chem. A 8, 23059–23095. doi: 10.1039/d0ta07468c
    Han, Z., Zhong, W., Wang, K., 2020. Preparation and examination of nitrogen-doped bamboo porous carbon for supercapacitor materials. J. For. Eng. 5, 76–83.
    Hao, T.T., Wang, S., Xu, H.B., Zhang, X., Xue, J.Y., Liu, S.K., Song, Y., Li, Y., Zhao, J.P., 2021. Highly robust, transparent, and conductive films based on AgNW-C nanowires for flexible smart windows. Appl. Surf. Sci. 559, 149846. doi: 10.1016/j.apsusc.2021.149846
    He, S.J., Wang, X., Xiang, G.M., Lac, K., Wang, S.N., Ding, Z.F., 2018. Electrogenerated chemiluminescence from the monomer of a tetradentate chelate Pt(Ⅱ) compound. Electrochim. Acta 271, 448–453. doi: 10.1016/j.electacta.2018.03.056
    He, X.J., Li, R.C., Han, J.F., Yu, M.X., Wu, M.B., 2013. Facile preparation of mesoporous carbons for supercapacitors by one-step microwave-assisted ZnCl2 activation. Mater. Lett. 94, 158–160. doi: 10.1016/j.matlet.2012.12.031
    Hemanth, N.R., Kandasubramanian, B., 2020. Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting Applications: a review. Chem. Eng. J. 392, 123678. doi: 10.1016/j.cej.2019.123678
    Hou, M.J., Hu, Y.M., Xu, M.J., Li, B., 2020. Nanocellulose based flexible and highly conductive film and its application in supercapacitors. Cellulose 27, 9457–9466. doi: 10.1007/s10570-020-03420-2
    Hou, M.J., Xu, M.J., Hu, Y.M., Li, B., 2019. Nanocellulose incorporated graphene/polypyrrole film with a sandwich-like architecture for preparing flexible supercapacitor electrodes. Electrochim. Acta 313, 245–254. doi: 10.1016/j.electacta.2019.05.037
    Hsu, H.H., Khosrozadeh, A., Li, B.Y., Luo, G.X., Xing, M., Zhong, W., 2019. An eco-friendly, nanocellulose/RGO/in situ formed polyaniline for flexible and free-standing supercapacitors. ACS Sustain. Chem. Eng. 7, 4766–4776. doi: 10.1021/acssuschemeng.8b04947
    Hu, R.F., Zhao, J., Zhu, G.D., Zheng, J.P., 2018. Fabrication of flexible free-standing reduced graphene oxide/polyaniline nanocomposite film for all-solid-state flexible supercapacitor. Electrochim. Acta 261, 151–159. doi: 10.1016/j.electacta.2017.12.138
    Hu, Y., Quan, H.Y., Cui, J.M., Luo, W.S., Zeng, W.L., Chen, D.Z., 2021. Carbon nanodot modified N, O-doped porous carbon for solid-state supercapacitor: a comparative study with carbon nanotube and graphene oxide. J. Alloy. Compd. 877, 160237. doi: 10.1016/j.jallcom.2021.160237
    Huang, G.X., Geng, Q.H., Xing, B.L., Liu, Y.B., Li, Y.Y., Liu, Q.R., Jia, J.B., Chen, L.J., Zhang, C.X., 2020. Manganous nitrate-assisted potassium hydroxide activation of humic acid to prepare oxygen-rich hierarchical porous carbon as high-performance supercapacitor electrodes. J. Power Sources 449, 227506. doi: 10.1016/j.jpowsour.2019.227506
    Huang, S.Q., Chen, P.S., Lin, W.Z., Lyu, S.W., Chen, G.D., Yin, X.Y., Chen, W.X., 2016. Electrodeposition of polypyrrole on carbon nanotube-coated cotton fabrics for all-solid flexible supercapacitor electrodes. RSC Adv. 6, 13359–13364. doi: 10.1039/C5RA24214B
    Hussain, S., Javed, M.S., Asim, S., Shaheen, A., Khan, A.J., Abbas, Y., Ullah, N., Iqbal, A., Wang, M.S., Qiao, G.J., Yun, S.N., 2020. Novel gravel-like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram. Int. 46, 6406–6412. doi: 10.1016/j.ceramint.2019.11.118
    Inal, I.I.G., Holmes, S.M., Banford, A., Aktas, Z., 2015. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Appl. Surf. Sci. 357, 696–703. doi: 10.1016/j.apsusc.2015.09.067
    Iradukunda, Y., Wang, G.Y., Li, X., Shi, G.F., Hu, Y.W., Luo, F.F., Yi, K.Q., Albashir, A.I.M., Niu, X.L., Wu, Z.J., 2021. High performance of activated carbons prepared from mangosteen (Garcinia mangostana) peels using the hydrothermal process. J. Energy Storage 39, 102577. doi: 10.1016/j.est.2021.102577
    Ji, X.Q., Sun, D.L., Zou, W.H., Wang, Z.H., Sun, D.B., 2021. Ni/MnO2 doping pulping lignin-based porous carbon as supercapacitors electrode materials. J. Alloy. Compd. 876, 160112. doi: 10.1016/j.jallcom.2021.160112
    Jian, S.J., Ma, X.F., Wang, Q.M., Wu, J.L., Wang, Y.F., Jiang, S.H., Xu, W.H., Yang, W.S., 2021. Hierarchical porous Co3O4 nanocages with elaborate microstructures derived from ZIF-67 toward lithium storage. Vacuum 184, 109879. doi: 10.1016/j.vacuum.2020.109879
    Jiang, C.L., Yakaboylu, G.A., Yumak, T., Zondlo, J.W., Sabolsky, E.M., Wang, J.X., 2020. Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes. Renew. Energy 155, 38–52. doi: 10.1016/j.renene.2020.03.111
    Jiang, Q.S., Kacica, C., Soundappan, T., Liu, K.K., Tadepalli, S., Biswas, P., Singamaneni, S., 2017. An in situ grown bacterial nanocellulose/graphene oxide composite for flexible supercapacitors. J. Mater. Chem. A 5, 13976–13982. doi: 10.1039/C7TA03824K
    Jiang, X.Y., Bai, Y.Y., Chen, X.F., Liu, W., 2020. A review on raw materials, commercial production and properties of lyocell fiber. J. Bioresour. Bioprod. 5, 16–25. doi: 10.1016/j.jobab.2020.03.002
    Jiao, S.Q., Zhou, A.G., Wu, M.Z., Hu, H.B., 2019. Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays. Adv. Sci. 6, 1900529(Weinh). doi: 10.1002/advs.201900529
    Jjagwe, J., Olupot, P.W., Menya, E., Kalibbala, H.M., 2021. Synthesis and application of granular activated carbon from biomass waste materials for water treatment: a review. J. Bioresour. Bioprod. 6, 292–322. doi: 10.1016/j.jobab.2021.03.003
    Kim, D.W., Jung, S.M., Jung, H.Y., 2020. A super-thermostable, flexible supercapacitor for ultralight and high performance devices. J. Mater. Chem. A 8, 532–542. doi: 10.1039/c9ta11275h
    Kim, J.H., Lee, D., Lee, Y.H., Chen, W.S., Lee, S.Y., 2019. Nanocellulose for energy storage systems: beyond the limits of synthetic materials. Adv. Mater. 31, e1804826. doi: 10.1002/adma.201804826
    Kumar, S., Saeed, G., Zhu, L., Hui, K.N., Kim, N.H., Lee, J.H., 2021. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem. Eng. J. 403, 126352. doi: 10.1016/j.cej.2020.126352
    Lai, E.P., Yue, X.X., Ning, W.E., Huang, J.W., Ling, X.L., Lin, H.T., 2019. Three-dimensional graphene-based composite hydrogel materials for flexible supercapacitor electrodes. Front. Chem. 7, 660. doi: 10.3389/fchem.2019.00660
    Lee, D., Cho, Y.G., Song, H.K., Chun, S.J., Park, S.B., Choi, D.H., Lee, S.Y., Yoo, J., Lee, S.Y., 2017. Coffee-driven green activation of cellulose and its use for all-paper flexible supercapacitors. ACS Appl. Mater. Interfaces 9, 22568–22577. doi: 10.1021/acsami.7b05712
    Lee, J.S.M., Briggs, M.E., Hu, C.C., Cooper, A.I., 2018. Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy 46, 277–289. doi: 10.1007/s41019-018-0073-5
    Li, D.S., Gao, Q.L., Zhang, H., Wang, Y.F., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Chang, J., 2020. MnO2 particles grown on the surface of N-doped hollow porous carbon nanospheres for aqueous rechargeable zinc ion batteries. Appl. Surf. Sci. 510, 145458. doi: 10.1016/j.apsusc.2020.145458
    Li, D.S., Liu, B., Wang, Y.F., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Yue, K., Meng, Q.H., 2019. Magnetic ferroferric oxide/phenolic resin/silver core-shell nanocomposite as recyclable substrates for enhancing surface-enhanced Raman scattering. J. Sol Gel Sci. Technol. 92, 124–133. doi: 10.1007/s10971-019-05093-1
    Li, D.S., Wu, S., Wang, Y.F., Sun, M., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Wang, X.Q., 2019. Manganese oxides/N-doped carbon particles with high capacity retention for aqueous rechargeable zinc battery. J. Nanopart. Res. 21, 1–10. doi: 10.1007/s11051-018-4445-6
    Li, H.L., Cao, L.H., Wang, F., Duan, G.G., Xu, W.H., Mei, C.T., Zhang, G.Y., Liu, K.M., Yang, M., Jiang, S.H., 2020. Fatsia japonica-derived hierarchical porous carbon for supercapacitors with high energy density and long cycle life. Front. Chem. 8, 89. doi: 10.1001/jama.2019.17595
    Li, H.L., Cao, L.H., Zhang, H.J., Tian, Z.W., Zhang, Q., Yang, F., Yang, H.Q., He, S.J., Jiang, S.H., 2022. Intertwined carbon networks derived from polyimide/cellulose composite as porous electrode for symmetrical supercapacitor. J. Colloid Interface Sci. 609, 179–187. doi: 10.1016/j.jcis.2021.11.188
    Li, J.S., Lu, W.B., Yan, Y.S., Chou, T.W., 2017. High performance solid-state flexible supercapacitor based on Fe3O4/carbon nanotube/polyaniline ternary films. J. Mater. Chem. A 5, 11271–11277. doi: 10.1039/C7TA02008B
    Li, M., Park, H.G., 2019. Improved high-rate performance of a supercapacitor electrode from manganese-oxide-coated vertically aligned carbon nanotubes prepared by a pulsed current electrodeposition method. Electrochim. Acta 296, 676–682. doi: 10.1016/j.electacta.2018.11.062
    Li, S.Z., Wen, J., Mo, X.M., Long, H., Wang, H.N., Wang, J.B., Fang, G.J., 2014. Three-dimensional MnO2 nanowire/ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode. J. Power Sources 256, 206–211. doi: 10.1016/j.jpowsour.2014.01.066
    Li, Y.C., Li, Z.H., Xing, B., Li, H.M., Ma, Z.Q., Zhang, W.B., Reubroycharoen, P., Wang, S.R., 2021. Green conversion of bamboo chips into high-performance phenol adsorbent and supercapacitor electrodes by simultaneous activation and nitrogen doping. J. Anal. Appl. Pyrolysis 155, 105072. doi: 10.1016/j.jaap.2021.105072
    Li, Z., Ahadi, K., Jiang, K.R., Ahvazi, B., Li, P., Anyia, A.O., Cadien, K., Thundat, T., 2017. Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitors. Nano Res. 10, 1847–1860. doi: 10.1007/s12274-017-1573-8
    Li, Z., Liu, J., Jiang, K.R., Thundat, T., 2016. Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 25, 161–169. doi: 10.1016/j.nanoen.2016.04.036
    Li, Z.L., Ren, J., Yang, C.M., He, Y.X., Liang, Y., Liu, J.L., Waterhouse, G.I.N., Li, J.H., Qian, D., 2021. Sodium 5-sulfosalicylate-assisted hydrothermal synthesis of a self-supported Co3S4−Ni3S2@nickel foam electrode for all-solid-state asymmetric supercapacitors. J. Alloy. Compd. 889, 161661. doi: 10.1016/j.jallcom.2021.161661
    Liang, J., Tian, B., Li, S.Q., Jiang, C.Z., Wu, W., 2020. All-printed MnHCF-MnOx-based high-performance flexible supercapacitors. Adv. Energy Mater. 10, 2000022. doi: 10.1002/aenm.202000022
    Liao, H.Y., Zhou, F.L., Zhang, Z.Z., Yang, J., 2019. A self-healable and mechanical toughness flexible supercapacitor based on polyacrylic acid hydrogel electrolyte. Chem. Eng. J. 357, 428–434. doi: 10.1016/j.cej.2018.09.153
    Ling, Z., Wang, Z.Y., Zhang, M.D., Yu, C., Wang, G., Dong, Y.F., Liu, S.H., Wang, Y.W., Qiu, J.S., 2016. Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv. Funct. Mater. 26, 111–119. doi: 10.1002/adfm.201504004
    Liu, D., Liu, J.L., Wang, Q., Du, P.C., Wei, W.L., Liu, P., 2019. PANI coated microporous graphene fiber capable of subjecting to external mechanical deformation for high performance flexible supercapacitors. Carbon 143, 147–153. doi: 10.1016/j.carbon.2018.10.098
    Liu, K.K., Jiang, Q.S., Kacica, C., Derami, H.G., Biswas, P., Singamaneni, S., 2018. Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose. RSC Adv. 8, 31296–31302. doi: 10.1039/C8RA05270K
    Liu, M.C., Kong, L.B., Zhang, P., Luo, Y.C., Kang, L., 2012. Porous wood carbon monolith for high-performance supercapacitors. Electrochim. Acta 60, 443–448. doi: 10.1016/j.electacta.2011.11.100
    Liu, Q., Nayfeh, O., Nayfeh, M.H., Yau, S.T., 2013. Flexible supercapacitor sheets based on hybrid nanocomposite materials. Nano Energy 2, 133–137. doi: 10.1186/1029-242X-2013-133
    Liu, S.D., Kang, L., Henzie, J., Zhang, J., Ha, J.S., Amin, M.A., Hossain, M.S.A., Jun, S.C., Yamauchi, Y., 2021. Recent advances and perspectives of battery-type anode materials for potassium ion storage. ACS Nano 15, 18931–18973. doi: 10.1021/acsnano.1c08428
    Liu, S.D., Kang, L., Hu, J.S., Jung, E., Zhang, J., Jun, S.C., Yamauchi, Y., 2021. Unlocking the potential of oxygen-deficient copper-doped Co3O4 nanocrystals confined in carbon as an advanced electrode for flexible solid-state supercapacitors. ACS Energy Lett. 6, 3011–3019. doi: 10.1021/acsenergylett.1c01373
    Liu, S.D., Kang, L., Zhang, J., Jun, S.C., Yamauchi, Y., 2021. Carbonaceous anode materials for non-aqueous sodium- and potassium-ion hybrid capacitors. ACS Energy Lett. 6, 4127–4154. doi: 10.1021/acsenergylett.1c01855
    Liu, S.D., Kang, L., Zhang, J., Jung, E., Lee, S.C., Jun, S.C., 2020. Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors. Energy Storage Mater. 32, 167–177. doi: 10.1016/j.ensm.2020.07.017
    Liu, T., Liu, J.H., Zhang, L.Y., Cheng, B., Yu, J.G., 2020. Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor. J. Mater. Sci. Technol. 47, 113–121. doi: 10.1016/j.jmst.2019.12.027
    Liu, T., Yan, R.Y., Huang, H.J., Pan, L., Cao, X.B., deMello, A., Niederberger, M., 2020. A micromolding method for transparent and flexible thin-film supercapacitors and hybrid supercapacitors. Adv. Funct. Mater. 30, 2004410. doi: 10.1002/adfm.202004410
    Liu, X.G., Ma, C.D., Li, J.X., Zielinska, B., Kalenczuk, R.J., Chen, X.C., Chu, P.K., Tang, T., Mijowska, E., 2019. Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors. J. Power Sources 412, 1–9. doi: 10.1016/j.jpowsour.2018.11.032
    Liu, Y., Xiang, C.L., Chu, H.L., Qiu, S.J., McLeod, J., She, Z., Xu, F., Sun, L.X., Zou, Y.J., 2020. Binary Co-Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors. J. Mater. Sci. Technol. 37, 135–142. doi: 10.1016/j.jmst.2019.08.015
    Liu, Y.K., Lu, Q.L., Huang, Z., Sun, S.Q., Yu, B., Evariste, U., Jiang, G.H., Yao, J.M., 2018. Electrodeposition of Ni-Co-S nanosheet arrays on N-doped porous carbon nanofibers for flexible asymmetric supercapacitors. J. Alloy. Compd. 762, 301–311. doi: 10.1016/j.jallcom.2018.05.239
    Lou, G.B., Pei, G., Wu, Y.T., Lu, Y.Z., Wu, Y.T., Zhu, X.Q., Pang, Y.J., Shen, Z.H., Wu, Q., Fu, S.Y., Chen, H., 2021. Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors. Chem. Eng. J. 413, 127502. doi: 10.1016/j.cej.2020.127502
    Luo, X.D., Wang, Y., Shen, Z.F., Cui, L.F., Wang, Y.G., Li, X., 2021. Construction of hierarchically porous biomass carbon using iodine as pore-making agent for energy storage. J. Colloid Interface Sci. 599, 351–359. doi: 10.1016/j.jcis.2021.04.108
    Lv, Y.Y., Zhou, Y., Shao, Z.Q., Liu, Y.H., Wei, J., Ye, Z.Q., 2019. Nanocellulose-derived carbon nanosphere fibers-based nanohybrid aerogel for high-performance all-solid-state flexible supercapacitors. J. Mater. Sci. Mater. Electron. 30, 8585–8594. doi: 10.1007/s10854-019-01180-9
    Lyu, S.Y., Chen, Y.P., Zhang, L.F., Han, S.J., Lu, Y., Chen, Y., Yang, N., Chen, Z.L., Wang, S.Q., 2019. Nanocellulose supported hierarchical structured polyaniline/nanocarbon nanocomposite electrode via layer-by-layer assembly for green flexible supercapacitors. RSC Adv. 9, 17824–17834. doi: 10.1039/c9ra02449b
    Ma, Q.H., Xi, H.T., Cui, F., Zhang, J.J., Chen, P., Cui, T.Y., 2022. Self-templating synthesis of hierarchical porous carbon with multi-heteroatom co-doping from tea waste for high-performance supercapacitor. J. Energy Storage 45, 103509. doi: 10.1016/j.est.2021.103509
    Ma, Y.L., Zhu, X.Q., Wang, B.Y., Liu, S.Y., Meng, T.T., Chen, H., Peng, B., Deng, Z.W., 2020. Sacrificial template synthesis of hierarchical nickel hydroxidenitrate hollow colloidal particles for electrochemical energy storage. Chem. Eng. Sci. 217, 115548. doi: 10.1016/j.ces.2020.115548
    Mohd Abdah, M.A.A., Azman, N.H.N., Kulandaivalu, S., Sulaiman, Y., 2020. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater. Des. 186, 108199. doi: 10.1016/j.matdes.2019.108199
    Mu, J.H., Li, Q., Kong, X.J., Wu, X.Z., Sunarso, J., Zhao, Y., Zhou, J., Zhuo, S.P., 2019. Characterization of hierarchical porous carbons made from bean curd via K2CO3 activation as a supercapacitor electrode. ChemElectroChem 6, 4022–4030. doi: 10.1002/celc.201900962
    Norouzi, O., Pourhosseini, S.E.M., Naderi, H.R., di Maria, F., Dutta, A., 2021. Integrated hybrid architecture of metal and biochar for high performance asymmetric supercapacitors. Sci. Rep. 11, 5387. doi: 10.1038/s41598-021-84979-z
    Phiri, J., Dou, J.Z., Vuorinen, T., Gane, P.A.C., Maloney, T.C., 2019. Highly porous willow wood-derived activated carbon for high-performance supercapacitor electrodes. ACS Omega 4, 18108–18117. doi: 10.1021/acsomega.9b01977
    Qi, W.H., Lv, R.H., Na, B., Liu, H.S., He, Y., Yu, N., 2018. Nanocellulose-assisted growth of manganese dioxide on thin graphite papers for high-performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 6, 4739–4745. doi: 10.1021/acssuschemeng.7b03858
    Qiu, W.W., Zhao, J.L., Song, X.D., Mao, Q., Ren, S.Z., Hao, C., Xiao, Y.H., 2020. One-step activation synthesized hierarchical porous carbon spheres from resorcinol-thiourea-formaldehyde for electrochemical capacitors. Ind. Eng. Chem. Res. 59, 226–235. doi: 10.1021/acs.iecr.9b05552
    Qu, Z.C., Shi, M.J., Wu, H.Z., Liu, Y.C., Jiang, J.T., Yan, C., 2019. An efficient binder-free electrode with multiple carbonized channels wrapped by NiCo2O4 nanosheets for high-performance capacitive energy storage. J. Power Sources410/411, 179–187. doi: 10.1016/j.jpowsour.2018.11.018
    Rufford, T.E., Hulicova-Jurcakova, D., Khosla, K., Zhu, Z.H., Lu, G.Q., 2010. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J. Power Sources 195, 912–918. doi: 10.1016/j.jpowsour.2009.08.048
    Saeb, M.R., Rabiee, N., Seidi, F., Farasati Far, B., Bagherzadeh, M., Lima, E.C., Rabiee, M., 2021. Green CoNi2S4/porphyrin decorated carbon-based nanocomposites for genetic materials detection. J. Bioresour. Bioprod. 6, 215–222. doi: 10.1016/j.jobab.2021.06.001
    Salunkhe, R.R., Kaneti, Y.V., Kim, J., Kim, J.H., Yamauchi, Y., 2016. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res. 49, 2796–2806. doi: 10.1021/acs.accounts.6b00460
    Sandhiya, M., Nadira, M.P., Sathish, M., 2021. Fabrication of flexible supercapacitor using N-doped porous activated carbon derived from poultry waste. Energy Fuels 35, 15094–15100. doi: 10.1021/acs.energyfuels.1c01713
    Shen, Y.F., 2020. A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass Bioenergy 134, 105479. doi: 10.1016/j.biombioe.2020.105479
    Shi, Y., Peng, L.L., Ding, Y., Zhao, Y., Yu, G.H., 2015. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44, 6684–6696. doi: 10.1039/C5CS00362H
    Shu, Y., Bai, Q.H., Fu, G.X., Xiong, Q.C., Li, C., Ding, H.F., Shen, Y.H., Uyama, H., 2020. Hierarchical porous carbons from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid for supercapacitor. Carbohydr. Polym. 227, 115346. doi: 10.1016/j.carbpol.2019.115346
    Song, M.Y., Zhou, Y.H., Ren, X., Wan, J.F., Du, Y.Y., Wu, G., Ma, F.W., 2019. Biowaste-based porous carbon for supercapacitor: the influence of preparation processes on structure and performance. J. Colloid Interface Sci. 535, 276–286. doi: 10.1016/j.jcis.2018.09.055
    Song, Z.Y., Duan, H., Zhu, D.Z., Lv, Y.K., Xiong, W., Cao, T.C., Li, L.C., Liu, M.X., Gan, L.H., 2019. Ternary-doped carbon electrodes for advanced aqueous solid-state supercapacitors based on a "water-in-salt" gel electrolyte. J. Mater. Chem. A 7, 15801–15811. doi: 10.1039/c9ta02690h
    Sun, M., Li, D.S., Wang, Y.F., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Guo, Y.Z., Liu, Y.M., 2019. Mn3O4@NC composite nanorods as a cathode for rechargeable aqueous Zn-ion batteries. ChemElectroChem 6, 2510–2516. doi: 10.1002/celc.201900376
    Sun, M., Zhang, H., Wang, Y.F., Liu, W.L., Ren, M.M., Kong, F.G., Wang, S.J., Wang, X.Q., Duan, X.L., Ge, S.Z., 2019. Co/CoO@N-C nanocomposites as high-performance anodes for lithium-ion batteries. J. Alloy. Compd. 771, 290–296. doi: 10.1016/j.jallcom.2018.08.312
    Tanguy, N.R., Wu, H.R., Nair, S.S., Lian, K., Yan, N., 2021. Lignin cellulose nanofibrils as an electrochemically functional component for high-performance and flexible supercapacitor electrodes. ChemSusChem 14, 1057–1067. doi: 10.1002/cssc.202002558
    Tao, Y.J., Liu, W.N., Li, Z.P., Zheng, Y., Zhu, X.Q., Wang, H., Wang, Y.N., Lin, Q., Wu, Q., Pang, Y.J., Shen, Z.H., Chen, H., 2021. Boosting supercapacitive performance of flexible carbon via surface engineering. J. Colloid Interface Sci. 602, 636–645. doi: 10.1016/j.jcis.2021.06.060
    Tao, Y.J., Wu, Y.T., Chen, H., Chen, W.J., Wang, J.J., Tong, Y.F., Pei, G., Shen, Z.H., Guan, C., 2020. Synthesis of amorphous hydroxyl-rich Co3O4 for flexible high-rate supercapacitor. Chem. Eng. J. 396, 125364. doi: 10.1016/j.cej.2020.125364
    Teo, E.Y.L., Muniandy, L., Ng, E.P., Adam, F., Mohamed, A.R., Jose, R., Chong, K.F., 2016. High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochim. Acta 192, 110–119. doi: 10.1016/j.electacta.2016.01.140
    Tian, O.Y., Zhang, T.Y., Wang, H.Z., Yang, F., Yan, J., Zhu, K., Ye, K., Wang, G.L., Zhou, L.M., Cheng, K., Cao, D.X., 2018. High-throughput fabrication of porous carbon by chemical foaming strategy for high performance supercapacitor. Chem. Eng. J. 352, 459–468. doi: 10.1016/j.cej.2018.06.184
    Virtanen, J., Pammo, A., Keskinen, J., Sarlin, E., Tuukkanen, S., 2017. Pyrolysed cellulose nanofibrils and dandelion Pappus in supercapacitor application. Cellulose 24, 3387–3397. doi: 10.1007/s10570-017-1332-8
    Wang, A., Sun, K., Xu, R.T., Sun, Y.J., Jiang, J.C., 2021. Cleanly synthesizing rotten potato-based activated carbon for supercapacitor by self-catalytic activation. J. Clean. Prod. 283, 125385. doi: 10.1016/j.jclepro.2020.125385
    Wang, C.S., Liu, T.Z., 2017. Nori-based N, O, S, Cl co-doped carbon materials by chemical activation of ZnCl2 for supercapacitor. J. Alloy. Compd. 696, 42–50. doi: 10.1016/j.jallcom.2016.11.206
    Wang, C.S., Yan, B., Zheng, J.J., Feng, L., Chen, Z.Z., Zhang, Q., Liao, T., Chen, J.Y., Jiang, S.H., Du, C., He, S.J., 2022. Recent progress in template-assisted synthesis of porous carbons for supercapacitors. Adv. Powder Mater. 1, 100018. doi: 10.1016/j.apmate.2021.11.005
    Wang, D.G., Liang, Z.B., Gao, S., Qu, C., Zou, R.Q., 2020. Metal-organic framework-based materials for hybrid supercapacitor application. Coord. Chem. Rev. 404, 213093. doi: 10.1016/j.ccr.2019.213093
    Wang, F., Chen, L., Li, H.L., Duan, G.G., He, S.J., Zhang, L., Zhang, G.Y., Zhou, Z.P., Jiang, S.H., 2020. N-doped honeycomb-like porous carbon towards high-performance supercapacitor. Chin. Chem. Lett. 31, 1986–1990. doi: 10.1016/j.cclet.2020.02.020
    Wang, F., Cheong, J.Y., He, Q., Duan, G.G., He, S.J., Zhang, L., Zhao, Y., Kim, I.D., Jiang, S.H., 2021. Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors. Chem. Eng. J. 414, 128767. doi: 10.1016/j.cej.2021.128767
    Wang, F., Cheong, J.Y., Lee, J., Ahn, J., Duan, G.G., Chen, H.L., Zhang, Q., Kim, I.D., Jiang, S.H., 2021. Pyrolysis of enzymolysis-treated wood: hierarchically assembled porous carbon electrode for advanced energy storage devices. Adv. Funct. Mater. 31, 2101077. doi: 10.1002/adfm.202101077
    Wang, F., Liu, X.L., Duan, G.G., Yang, H.Q., Cheong, J.Y., Lee, J., Ahn, J., Zhang, Q., He, S.J., Han, J.Q., Zhao, Y., Kim, I.D., Jiang, S.H., 2021. Wood-derived, conductivity and hierarchical pore integrated thick electrode enabling high areal/volumetric energy density for hybrid capacitors. Small 17, e2102532. doi: 10.1002/smll.202102532
    Wang, F., Zhang, L., Zhang, Q., Yang, J.J., Duan, G.G., Xu, W.H., Yang, F., Jiang, S.H., 2021. Electrode thickness design toward bulk energy storage devices with high areal/volumetric energy density. Appl. Energy 289, 116734. doi: 10.1016/j.apenergy.2021.116734
    Wang, H., Wang, W.Y., Wang, H.J., Jin, X., Niu, H.T., Wang, H.X., Zhou, H., Lin, T., 2018. High performance supercapacitor electrode materials from electrospun carbon nanofibers in situ activated by high decomposition temperature polymer. ACS Appl. Energy Mater. 1, 431–439. doi: 10.1021/acsaem.7b00083
    Wang, L., Borghei, M., Ishfaq, A., Lahtinen, P., Ago, M., Papageorgiou, A.C., Lundahl, M.J., Johansson, L.S., Kallio, T., Rojas, O.J., 2020. Mesoporous carbon microfibers for electroactive materials derived from lignocellulose nanofibrils. ACS Sustain. Chem. Eng. 8, 8549–8561. doi: 10.1021/acssuschemeng.0c00764
    Wang, L., Han, Y.Z., Feng, X., Zhou, J.W., Qi, P.F., Wang, B., 2016. Metal-organic frameworks for energy storage: batteries and supercapacitors. Coord. Chem. Rev. 307, 361–381. doi: 10.1016/j.ccr.2015.09.002
    Wang, M., Yang, J., Liu, S.Y., Li, M.Z., Hu, C., Qiu, J.S., 2020. Nitrogen-doped hierarchically porous carbon nanosheets derived from polymer/graphene oxide hydrogels for high-performance supercapacitors. J. Colloid Interface Sci. 560, 69–76. doi: 10.1001/jamaophthalmol.2019.4833
    Wang, Q.H., Xia, T., Jia, X.W., Zhao, J.Q., Li, Q.Y., Ao, C.H., Deng, X.Y., Zhang, X.M., Zhang, W., Lu, C.H., 2020. Honeycomb-structured carbon aerogels from nanocellulose and skin secretion of Andrias davidianus for highly compressible binder-free supercapacitors. Carbohydr. Polym. 245, 116554. doi: 10.1016/j.carbpol.2020.116554
    Wang, R., Xuelian, Z., Xu, T., Bian, H., Dai, H., 2021. Research progress on the preparation of lignin-derived carbon dots and graphene quantum dots. J. For. Eng. 6, 29–37.
    Wang, Y.F., Zhang, L., Hou, H.Q., Xu, W.H., Duan, G.G., He, S.J., Liu, K.M., Jiang, S.H., 2021. Recent progress in carbon-based materials for supercapacitor electrodes: a review. J. Mater. Sci. 56, 173–200. doi: 10.1007/s10853-020-05157-6
    Wang, Y.L., Qu, Q.L., Cui, J.X., Lu, T., Li, F.H., Zhang, M.J., Liu, K.M., Zhang, Q., He, S.J., Huang, C.B., 2021. Design and fabrication of cellulose derived free-standing carbon nanofiber membranes for high performance supercapacitors. Carbohydr. Polym. Technol. Appl. 2, 100117.
    Wang, Y.M., Lin, X.J., Liu, T., Chen, H., Chen, S., Jiang, Z.J., Liu, J., Huang, J.L., Liu, M.L., 2018. Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors. Adv. Funct. Mater. 28, 1806207. doi: 10.1002/adfm.201806207
    Wang, Y.Y., Li, Y.M., Zhang, W., Yin, P., Shang, L., Ma, R.N., Jia, L.P., Xue, Q.W., He, S.J., Wang, H.S., 2021. Lowly-aggregated perylene diimide as a near-infrared electrochemiluminescence luminophore for ultrasensitive immunosensors at low potentials. Analyst 146, 3679–3685. doi: 10.1039/d1an00410g
    Wang, Z.H., Carlsson, D.O., Tammela, P., Hua, K., Zhang, P., Nyholm, L., Strømme, M., 2015. Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 9, 7563–7571. doi: 10.1021/acsnano.5b02846
    Waribam, P., Ngo, S.D., Tran, T.T.V., Kongparakul, S., Reubroycharoen, P., Chanlek, N., Wei, L., Zhang, H.B., Guan, G.Q., Samart, C., 2020. Waste biomass valorization through production of xylose-based porous carbon microspheres for supercapacitor applications. Waste Manag. 105, 492–500. doi: 10.1016/j.wasman.2020.02.042
    Wei, L.S., Deng, W.J., Li, S.S., Wu, Z.G., Cai, J.H., Luo, J.W., 2022. Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors. J. Bioresour. Bioprod. 7, 63–72. doi: 10.1016/j.jobab.2021.10.001
    Wu, H., Li, W.Y., Zhao, M.C., Lu, S.C., Huang, L.L., Chen, L.H., 2020. Progress in cellulose-based self-healing gels. J. For. Eng. 5, 11–17. doi: 10.31186/jenggano.5.1.11-22
    Wu, J., Xia, M.W., Zhang, X., Chen, Y.Q., Sun, F., Wang, X.H., Yang, H.P., Chen, H.P., 2020. Hierarchical porous carbon derived from wood tar using crab as the template: performance on supercapacitor. J. Power Sources 455, 227982. doi: 10.1016/j.jpowsour.2020.227982
    Wu, Y.T., Chen, H., Lu, Y.Z., Yang, J., Zhu, X.Q., Zheng, Y., Lou, G.B., Wu, Y.T., Wu, Q., Shen, Z.H., Pan, Z.H., 2021. Rational design of cobalt-nickel double hydroxides for flexible asymmetric supercapacitor with improved electrochemical performance. J. Colloid Interface Sci. 581, 455–464. doi: 10.1016/j.jcis.2020.08.013
    Xie, L.J., Sun, G.H., Su, F.Y., Guo, X.Q., Kong, Q.Q., Li, X.M., Huang, X.H., Wan, L., Song, W., Li, K.X., Lv, C.X., Chen, C.M., 2016. Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J. Mater. Chem. A Mater. Energy Sustain. 4, 1637–1646. doi: 10.1039/C5TA09043A
    Xiong, C.Y., Li, M.R., Nie, S.X., Dang, W.H., Zhao, W., Dai, L., Ni, Y.H., 2020. Non-carbonized porous lignin-free wood as an effective scaffold to fabricate lignin-free Wood@Polyaniline supercapacitor material for renewable energy storage application. J. Power Sources 471, 228448. doi: 10.1016/j.jpowsour.2020.228448
    Xiong, S.S., Jiang, S.Y., Wang, J., Lin, H.J., Lin, M.X., Weng, S.T., Liu, S., Jiao, Y., Xu, Y.C., Chen, J.R., 2020. A high-performance hybrid supercapacitor with NiO derived NiO@Ni-MOF composite electrodes. Electrochim. Acta 340, 135956. doi: 10.1016/j.electacta.2020.135956
    Xu, B., Chen, Y.F., Wei, G., Cao, G.P., Zhang, H., Yang, Y.S., 2010. Activated carbon with high capacitance prepared by NaOH activation for supercapacitors. Mater. Chem. Phys. 124, 504–509. doi: 10.1016/j.matchemphys.2010.07.002
    Xu, C., Kong, X.Y., Zhou, S.Y., Zheng, B., Huo, F.W., Strømme, M., 2018. Interweaving metal-organic framework-templated Co-Ni layered double hydroxide nanocages with nanocellulose and carbon nanotubes to make flexible and foldable electrodes for energy storage devices. J. Mater. Chem. A 6, 24050–24057. doi: 10.1039/c8ta10133g
    Xu, J., Tan, Z.Q., Zeng, W.C., Chen, G.X., Wu, S.L., Zhao, Y., Ni, K., Tao, Z.C., Ikram, M., Ji, H.X., Zhu, Y.W., 2016. A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv. Mater. 28, 5222–5228. doi: 10.1002/adma.201600586
    Xu, T., Du, H.S., Liu, H.Y., Liu, W., Zhang, X.Y., Si, C.L., Liu, P.W., Zhang, K., 2021. Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater. 33, e2101368. doi: 10.1002/adma.202101368
    Xu, X.T., Yang, T., Zhang, Q.W., Xia, W., Ding, Z.B., Eid, K., Abdullah, A.M., Shahriar, A., Hossain, M., Zhang, S.H., Tang, J., Pan, L.K., Yamauchi, Y., 2020. Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen-doped carbon tubes. Chem. Eng. J. 390, 124493. doi: 10.1016/j.cej.2020.124493
    Xue, D.F., Zhu, D.Z., Xiong, W., Cao, T.C., Wang, Z.W., Lv, Y.K., Li, L.C., Liu, M.X., Gan, L.H., 2019. Template-free, self-doped approach to porous carbon spheres with high N/O contents for high-performance supercapacitors. ACS Sustain. Chem. Eng. 7, 7024–7034. doi: 10.1021/acssuschemeng.8b06774
    Yan, B., Zheng, J.J., Wang, F., Zhao, L.Y., Zhang, Q., Xu, W.H., He, S.J., 2021. Review on porous carbon materials engineered by ZnO templates: Design, synthesis and capacitance performance. Mater. Des. 201, 109518. doi: 10.1016/j.matdes.2021.109518
    Yan, H., Li, Y.M., Guo, X.Y., Zhou, M.X., Wang, H.Q., Dai, Y., Zheng, J.C., 2018. Synergistic supercritical water "wet" activated biomass carbon as high performances electrode materials for supercapacitor. J. Electrochem. Soc. 165, A2075–A2083. doi: 10.1149/2.0391810jes
    Yang, H.Q., Jiyoung, L., Young, C.J., Wang, Y.F., Duan, G.G., Hou, H.Q., Jiang, S.H., Doo, K.I., 2021. Molecular engineering of carbonyl organic electrodes for rechargeable metal-ion batteries: fundamentals, recent advances, and challenges. Energy Environ. Sci. 14, 4228–4267. doi: 10.1039/d1ee00419k
    Yang, L., Guo, X.T., Jin, Z.K., Guo, W.C., Duan, G.G., Liu, X.H., Li, Y.W., 2021. Emergence of melanin-inspired supercapacitors. Nano Today 37, 101075. doi: 10.1016/j.nantod.2020.101075
    Yang, W.S., Wang, Y.F., Wang, Q.M., Wu, J.L., Duan, G.G., Xu, W.H., Jian, S.J., 2021. Magnetically separable and recyclable Fe3O4@PDA covalent grafted by l-cysteine core-shell nanoparticles toward efficient removal of Pb2+. Vacuum 189, 110229. doi: 10.1016/j.vacuum.2021.110229
    Yu, S., Zhu, X.Q., Lou, G.B., Wu, Y.T., Xu, K.T., Zhang, Y., Zhang, L.M., Zhu, E.H., Chen, H., Shen, Z.H., Bao, B.F., Fu, S.Y., 2018. Sustainable hierarchical porous biomass carbons enriched with pyridinic and pyrrolic nitrogen for asymmetric supercapacitor. Mater. Des. 149, 184–193. doi: 10.1016/j.matdes.2018.04.023
    Zhang, B., He, J.K., Zheng, G.F., Huang, Y.Y., Wang, C., He, P.S., Sui, F.P., Meng, L.C., Lin, L.W., 2021. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes. J. Mater. Sci. Technol. 82, 135–143. doi: 10.1016/j.jmst.2020.12.034
    Zhang, H., Wang, Y.F., Liu, W.L., Kong, F.G., Ren, M.M., Wang, S.J., Wang, X.Q., Duan, X.L., Peng, D., 2018. Designed synthesis of CoO/CuO/rGO ternary nanocomposites as high-performance anodes for lithium-ion batteries. JOM 70, 1793–1799. doi: 10.1007/s11837-018-2801-8
    Zhang, Q., Chen, C.J., Chen, W.S., Pastel, G., Guo, X.Y., Liu, S.X., Wang, Q.W., Liu, Y.X., Li, J., Yu, H.P., Hu, L.B., 2019. Nanocellulose-enabled, all-nanofiber, high-performance supercapacitor. ACS Appl. Mater. Interfaces 11, 5919–5927. doi: 10.1021/acsami.8b17414
    Zhang, W.F., Huang, Z.H., Guo, Z., Li, C., Kang, F.Y., 2010. Porous carbons prepared from deoiled asphalt and their electrochemical properties for supercapacitors. Mater. Lett. 64, 1868–1870. doi: 10.1016/j.matlet.2010.06.007
    Zhang, Y., Liu, L., Zhang, P.X., Wang, J., Xu, M., Deng, Q., Zeng, Z.L., Deng, S.G., 2019. Ultra-high surface area and nitrogen-rich porous carbons prepared by a low-temperature activation method with superior gas selective adsorption and outstanding supercapacitance performance. Chem. Eng. J. 355, 309–319. doi: 10.1016/j.cej.2018.08.169
    Zhang, Y., Wei, L., Lu, L., Gan, L., Pan, M., 2020. Adsorption-photocatalytic properties of cellulose nanocrystal supported ZnO nanocomposites. J. For. Eng. 5, 29–35. doi: 10.18282/l-e.v9i1.893
    Zhang, Z., Li, L., Qing, Y., Lu, X.H., Wu, Y.Q., Yan, N., Yang, W., 2019. Manipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitor. J. Phys. Chem. C 123, 23374–23381. doi: 10.1021/acs.jpcc.9b06058
    Zhang, Z.J., Dong, C., Ding, X.Y., Xia, Y.K., 2015. A generalized ZnCl2 activation method to produce nitrogen-containing nanoporous carbon materials for supercapacitor applications. J. Alloy. Compd. 636, 275–281. doi: 10.1016/j.jallcom.2015.01.223
    Zhao, C.J., Ding, Y.W., Huang, Y.X., Li, N., Hu, Y.Q., Zhao, C.H., 2021. Soybean root-derived N, O co-doped hierarchical porous carbon for supercapacitors. Appl. Surf. Sci. 555, 149726. doi: 10.1016/j.apsusc.2021.149726
    Zhao, F., Song, F.X., Chen, Q.L., 2021. Nitrogen/sulfur codoped FCC-slurry-based porous carbon materials in symmetric supercapacitors. Appl. Surf. Sci. 561, 150063. doi: 10.1016/j.apsusc.2021.150063
    Zhao, J., Li, Y.J., Huang, F.G., Zhang, H.Q., Gong, J.W., Miao, C.X., Zhu, K., Cheng, K., Ye, K., Yan, J., Cao, D.X., Wang, G.L., Zhang, X.F., 2018. High-performance asymmetric supercapacitor assembled with three-dimensional, coadjacent graphene-like carbon nanosheets and its composite. J. Electroanal. Chem. 823, 474–481. doi: 10.1016/j.jelechem.2018.06.042
    Zhao, X., Mao, L., Cheng, Q.H., Li, J., Liao, F.F., Yang, G.Y., Xie, L., Zhao, C.L., Chen, L.Y., 2020. Two-dimensional spinel structured co-based materials for high performance supercapacitors: a critical review. Chem. Eng. J. 387, 124081. doi: 10.1016/j.cej.2020.124081
    Zheng, C., Zhu, S., Lu, Y., Mei, C., Xu, X., Yue, Y., Han, J., 2020. Synthesis and characterization of cellulose nanofibers/polyacrylic acid-polyacrylamide double network electroconductive hydrogel. J. For. Eng. 5, 93–100.
    Zheng, Q.F., Cai, Z.Y., Ma, Z.Q., Gong, S.Q., 2015. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl. Mater. Interfaces 7, 3263–3271. doi: 10.1021/am507999s
    Zheng, S., Zhang, J.W., Deng, H.B., Du, Y.M., Shi, X.W., 2021. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. J. Bioresour. Bioprod. 6, 142–151. doi: 10.1016/j.jobab.2021.02.002
    Zhi, M.J., Liu, S.H., Hong, Z.L., Wu, N.Q., 2014. Electrospun activated carbon nanofibers for supercapacitor electrodes. RSC Adv. 4, 43619–43623. doi: 10.1039/C4RA05512H
    Zhou, S.Y., Kong, X.Y., Zheng, B., Huo, F.W., Strømme, M., Xu, C., 2019. Cellulose nanofiber @ conductive metal-organic frameworks for high-performance flexible supercapacitors. ACS Nano 13, 9578–9586. doi: 10.1021/acsnano.9b04670
    Zhu, X.Q., Yu, S., Xu, K.T., Zhang, Y., Zhang, L.M., Lou, G.B., Wu, Y.T., Zhu, E.H., Chen, H., Shen, Z.H., Bao, B.F., Fu, S.Y., 2018. Sustainable activated carbons from dead Ginkgo leaves for supercapacitor electrode active materials. Chem. Eng. Sci. 181, 36–45. doi: 10.1016/j.ces.2018.02.004
    Zong, Q., Yang, H., Wang, Q.Q., Zhang, Q.L., Zhu, Y.L., Wang, H.Y., Shen, Q.H., 2019. Three-dimensional coral-like NiCoP@C@Ni(OH)2 core-shell nanoarrays as battery-type electrodes to enhance cycle stability and energy density for hybrid supercapacitors. Chem. Eng. J. 361, 1–11. doi: 10.1016/j.cej.2018.12.041
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Article Metrics

    Article views (572) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return