Citation: | Feiyu Tian, Xinwu Xu. Dynamical mechanical behaviors of rubber-filled wood fiber composites with urea formaldehyde resin[J]. Journal of Bioresources and Bioproducts, 2022, 7(4): 320-327. doi: 10.1016/j.jobab.2022.05.004 |
Ayrilmis, N., Buyuksari, U., Avci, E., 2009a. Utilization of waste tire rubber in manufacture of oriented strandboard. Waste Manag. 29, 2553–2557. doi: 10.1016/j.wasman.2009.05.017
|
Ayrilmis, N., Buyuksari, U., Avci, E., 2009b. Utilization of waste tire rubber in the manufacturing of particleboard. Mater. Manuf. Process. 24, 688–692. doi: 10.1080/10426910902769376
|
Bai, W., 2009. New Application of Crystalline Cellulose in Rubber Composites. Oregon: Oregon State University.
|
Chang, B.P., Gupta, A., Muthuraj, R., Mekonnen, T.H., 2021. Bioresourced fillers for rubber composite sustainability: current development and future opportunities. Green Chem. 23, 5337–5378. doi: 10.1039/d1gc01115d
|
Han, S.G., Na, B., Luo, W.J., Wu, Y.F., Lu, X.N., 2011. DMA spectra analysis of fast-growing poplar with different moisture contents. J. Northeast. For. Univ. 39, 69–70, 96.
|
Jacob, M., Francis, B., Thomas, S., Varughese, K.T., 2006. Dynamical mechanical analysis of sisal/oil palm hybrid fiber-reinforced natural rubber composites. Polym. Compos. 27, 671–680. doi: 10.1002/pc.20250
|
Jain, N., Verma, A., Singh, V.K., 2019. Dynamic mechanical analysis and creep-recovery behaviour of polyvinyl alcohol based cross-linked biocomposite reinforced with basalt fiber. Mater. Res. Express 6, 105373. doi: 10.1088/2053-1591/ab4332
|
Kazemi, H., Mighri, F., Park, K.W., Frikha, S., Rodrigue, D., 2022. Effect of cellulose fiber surface treatment to replace carbon black in natural rubber hybrid composites. Rubber Chem. Technol. 95, 128–146. doi: 10.5254/rct.21.78988
|
Kim, D.Y., Nishiyama, Y., Wada, M., Kuga, S., Okano, T., 2001. Thermal decomposition of cellulose crystallites in wood. Holzforschung 55, 521–524. doi: 10.1515/hf.2001.084
|
Onic, L., Bucur, V., Ansell, M.P., Pizzi, A., Deglise, X., Merlin, A., 1998. Dynamic thermomechanical analysis as a control technique for thermoset bonding of wood joints. Int. J. Adhesion Adhesives 18, 89–94. doi: 10.1016/S0143-7496(97)00049-3
|
Roy, K., Chandra Debnath, S., Das, A., Heinrich, G., Potiyaraj, P., 2018. Exploring the synergistic effect of short jute fiber and nanoclay on the mechanical, dynamic mechanical and thermal properties of natural rubber composites. Polym. Test. 67, 487–493. doi: 10.1016/j.polymertesting.2018.03.032
|
Saji, J., Khare, A., Choudhary, R.N.P., Mahapatra, S.P., 2014. Visco-elastic and dielectric relaxation behavior of multiwalled carbon-nanotube reinforced silicon elastomer nanocomposites. J. Polym. Res. 21, 1–13.
|
Samantarai, S., Nag, A., Singh, N., Dash, D., Nando, G.B., Das, N.C., 2019. Physico-mechanical and dynamic mechanical properties of meta-pentadecenyl phenol functionalized acrylonitrile–butadiene rubber nanoclay composites. Rubber Chem. Technol. 92, 496–512. doi: 10.5254/rct.19.81486
|
Singh, K., Jain, N., Verma, A., Singh, V.K., Chauhan, S., 2020. Functionalized graphite–reinforced cross-linked poly(vinyl alcohol) nanocomposites for vibration isolator application: morphology, mechanical, and thermal assessment. Matls. Perf. Charact. 9, 20190254. doi: 10.1520/MPC20190254
|
Song, X.M., 1995. Wood Fiber and Recycled Tire Rubber Hybrid Composites. Michigan: Michigan Technological University.
|
Srivastava, S.K., Mishra, Y.K., 2018. Nanocarbon reinforced rubber nanocomposites: detailed insights about mechanical, dynamical mechanical properties, payne, and mullin effects. Nanomaterials (Basel)8, 945. doi: 10.3390/nano8110945
|
Sun, W., 2009. Study on Wood-Rubber Composites and Application in Soundproof Flooring. Beijing: Beijing Forestry University.
|
Tunnicliffe, L.B., Nelson, K., Pan, S.B., Curtis, J., Herd, C.R., 2020. Reinforcement of rubber by carbon black and lignin-coated nanocellulose fibrils. Rubber Chem. Technol. 93, 633–651. doi: 10.5254/rct.20.79961
|
Verma, A., Singh, C., Singh, V.K., Jain, N., 2019. Fabrication and characterization of chitosan-coated sisal fiber: phytagel modified soy protein-based green composite. J. Compos. Mater. 53, 2481–2504. doi: 10.1177/0021998319831748
|
Wang, J.W., Laborie, M.P.G., Wolcott, M.P., 2009. Kinetic analysis of phenol-formaldehyde bonded wood joints with dynamical mechanical analysis. Thermochim. Acta 491, 58–62. doi: 10.1016/j.tca.2009.03.001
|
Weilert, I., Giese, U., 2021. Lightweight elastomer compounds reinforced with cellulose nanofibrils and a carbon black hybrid filler system. Rubber Chem. Technol. 94, 145–159. doi: 10.5254/rct.20.80404
|
Xu, X.W., Chen, L., Han, J.Q., Zhan, X.X., 2019. Influence of silane/MaPE dual coupling agents on the rheological and mechanical properties of sawdust/rubber/HDPE composites. Holzforschung 73, 605–611. doi: 10.1515/hf-2018-0181
|
Xu, X.W., Tian, F.Y., Li, X.K., 2020. Regenerated waste tire powders as fillers for wood fiber composites. BioResources 15, 3029–3040. doi: 10.15376/biores.15.2.3029-3040
|
Zhao, J., Wang, X.M., Chang, J.M., Zheng, K., 2008. Optimization of processing variables in wood-rubber composite panel manufacturing technology. Bioresour. Technol. 99, 2384–2391. doi: 10.1016/j.biortech.2007.05.031
|