Citation: | Penghui Li, Chi Yang, Zhengwei Jiang, Yongcan Jin, Wenjuan Wu. Lignocellulose pretreatment by deep eutectic solvents and related technologies: A review[J]. Journal of Bioresources and Bioproducts, 2023, 8(1): 33-44. doi: 10.1016/j.jobab.2022.11.004 |
Alvarez-Vasco, C., Ma, R.S., Quintero, M., Guo, M., Geleynse, S., Ramasamy, K.K., Wolcott, M., Zhang, X., 2016. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem. 18, 5133–5141. doi: 10.1039/C6GC01007E
|
Avila-Gaxiola, J., Velarde-Escobar, O.J., Millan-Almaraz, J.R., Ramos-Brito, F., Atondo-Rubio, G., Yee-Rendon, C., Avila-Gaxiola, E., 2018. Treatments to improve obtention of reducing sugars from agave leaves powder. Ind. Crops Prod. 112, 577–583. doi: 10.1016/j.indcrop.2017.12.039
|
Awais, M., Mustafa, M.S., Rasheed, M.A., Jamil, F., Naqvi, S.M.Z.A., 2020. Metal oxides and ultraviolet light-based photocatalytic pretreatment of biomass for biogas production and lignin oxidation. BioResources 15, 1747–1762. doi: 10.15376/biores.15.1.1747-1762
|
Basak, B., Patil, S., Kumar, R., Ha, G.S., Park, Y.K., Khan, M.A., Kumar Yadav, K., Fallatah, A.M., Jeon, B.H., 2022. Integrated hydrothermal and deep eutectic solvent-mediated fractionation of lignocellulosic biocomponents for enhanced accessibility and efficient conversion in anaerobic digestion. Bioresour. Technol. 351, 127034. doi: 10.1016/j.biortech.2022.127034
|
Bukhtoyarov, V.A., Bychkov, A.L., Lomovskii, O.I., 2015. Effect of lignocellulose substrate on enzyme denaturation during joint mechanical treatment. Russ. Chem. Bull. 64, 948–951. doi: 10.1007/s11172-015-0960-0
|
Chen, L., Gu, W., Xu, H.Y., Yang, G.L., Shan, X.F., Chen, G., Kang, Y.H., Wang, C.F., Qian, A.D., 2018a. Comparative genome analysis of Bacillus velezensis reveals a potential for degrading lignocellulosic biomass. 3 Biotech 8, 253. doi: 10.2514/1.i010588
|
Chen, L., Yu, Q., Wang, Q., Wang, W., Qi, W., Zhuang, X.S., Wang, Z.M., Yuan, Z.H., 2019. A novel deep eutectic solvent from lignin-derived acids for improving the enzymatic digestibility of herbal residues from cellulose. Cellulose 26, 1947–1959. doi: 10.1007/s10570-018-2190-8
|
Chen, T.Y., Li, Z.W., Zhang, X.M., Min, D.Y., Wu, Y.Y., Wen, J.L., Yuan, T.Q., 2018b. Effects of hydrothermal pretreatment on the structural characteristics of organosolv lignin from Triarrhena lutarioriparia. Polymers 10, 1157. doi: 10.3390/polym10101157
|
Chen, Z., Reznicek, W.D., Wan, C.X., 2018c. Deep eutectic solvent pretreatment enabling full utilization of switchgrass. Bioresour. Technol. 263, 40–48. doi: 10.3390/electronics7030040
|
Chen, Z., Wan, C.X., 2018. Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment. Bioresour. Technol. 250, 532–537. doi: 10.1016/j.biortech.2017.11.066
|
Colombo Dugoni, G., Mezzetta, A., Guazzelli, L., Chiappe, C., Ferro, M., Mele, A., 2020. Purification of Kraft cellulose under mild conditions using choline acetate based deep eutectic solvents. Green Chem. 22, 8680–8691. doi: 10.1039/d0gc03375h
|
Cronin, D.J., Chen, X.W., Moghaddam, L., Zhang, X., 2020. Deep eutectic solvent extraction of high-purity lignin from a corn stover hydrolysate. ChemSusChem 13, 4678–4690. doi: 10.1002/cssc.202001243
|
Díaz, M.J., Moya, M., Castro, E., 2022. Bioethanol production from steam-exploded barley straw by Co-fermentation with Escherichia coli SL100. Agronomy 12, 874. doi: 10.3390/agronomy12040874
|
Dong, L.L., Cao, G.L., Zhao, L., Liu, B.F., Ren, N.Q., 2018. Alkali/urea pretreatment of rice straw at low temperature for enhanced biological hydrogen production. Bioresour. Technol. 267, 71–76. doi: 10.1016/j.biortech.2018.05.055
|
Dong, M.L., Wu, C., Chen, L.D., Zhou, X.L., Yang, W.S., Xiao, H.N., Ji, X.X., Dai, H.Q., Hu, C.Q., Bian, H.Y., 2021. Benzenesulfonic acid-based hydrotropic system for achieving lignocellulose separation and utilization under mild conditions. Bioresour. Technol. 337, 125379. doi: 10.1016/j.biortech.2021.125379
|
Duan, D.L., Ruan, R., Wang, Y.P., Liu, Y.H., Dai, L.L., Zhao, Y.F., Zhou, Y., Wu, Q.H., 2018. Microwave-assisted acid pretreatment of alkali lignin: effect on characteristics and pyrolysis behavior. Bioresour. Technol. 251, 57–62. doi: 10.1016/j.biortech.2017.12.022
|
Fakayode, O.A., Aboagarib, E.A.A., Yan, D., Li, M., Wahia, H., Mustapha, A.T., Zhou, C.S., Ma, H.L., 2020. Novel two-pot approach ultrasonication and deep eutectic solvent pretreatments for watermelon rind delignification: parametric screening and optimization via response surface methodology. Energy 203, 117872. doi: 10.1016/j.energy.2020.117872
|
Fougere, D., Clarke, K., Zhao, Y., Li, K.C., 2015. Chemical-mechanical pretreatment of wood: reducing downsizing energy and increasing enzymatic digestibility. Biomass Bioenergy 80, 17–29. doi: 10.1016/j.biombioe.2015.04.011
|
Gong, L., Wu, X.Y., Wang, Y.D., Zhu, J., Wang, S., Xiu, Y.S., Dong, J.J., Xu, G.C., Ni, Y., 2022. A novel deep eutectic solvent-mediated Fenton-like system for pretreatment of water hyacinth and biobutanol production. Biomass Convers. Bioref., 1–11.
|
Haldar, D., Purkait, M.K., 2021. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: mechanistic insight and advancements. Chemosphere 264, 128523. doi: 10.1016/j.chemosphere.2020.128523
|
Hu, P., Li, H.N., Xiao, W.J., Xie, X.H., Yang, Y.X., Duan, L., Zhou, S.N., Hu, Y.M., Qiao, Q.M., Ran, Q.P., Jiang, Z.B., 2021. Effect of Rhodococcus sp. pretreatment on cellulose hydrolysis of corn stalk. Prep. Biochem. Biotechnol. 51, 137–143. doi: 10.1080/10826068.2020.1799391
|
Ishfaq Bhat, M., Shahi, N.C., Lohani, U.C., Singh, S., Sidique, Q., Sirohi, R., 2022. Microwave irradiation assisted intensive and quick delignification of lignocellulosic biomass, and confirmation by spectral, morphological and crystallinity characterization. Bioresour. Technol. 351, 127029. doi: 10.1016/j.biortech.2022.127029
|
Isroi, Millati, R., Syamsiah, S., Niklasson, C., Cahyanto, M.N., Lundquist, K., Taherzadeh, M. J, 2011. Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. BioResources 6, 5224–5259. doi: 10.15376/biores.6.4.isroi
|
Jagannathan, P., Muthukumaran, C., Tamilarasan, K., 2017. A sequential pretreatment of lignocelluloses in bamboo biomass to fermentable sugars by acid/enzymatic hydrolysis. 3 Biotech 7, 260.
|
Ji, Q.H., Yu, X.J., Yagoub, A.E.A., Chen, L., Mustapha, A.T., Zhou, C.S., 2021. Enhancement of lignin removal and enzymolysis of sugarcane bagasse by ultrasound-assisted ethanol synergized deep eutectic solvent pretreatment. Renew. Energy 172, 304–316. doi: 10.1016/j.renene.2021.03.050
|
Jiang, J.G., Carrillo-Enríquez, N.C., Oguzlu, H., Han, X.S., Bi, R., Song, M.Y., Saddler, J.N., Sun, R.C., Jiang, F., 2020. High production yield and more thermally stable lignin-containing cellulose nanocrystals isolated using a ternary acidic deep eutectic solvent. ACS Sustain. Chem. Eng. 8, 7182–7191. doi: 10.1021/acssuschemeng.0c01724
|
Kandanelli, R., Thulluri, C., Mangala, R., Rao, P.V.C., Gandham, S., Velankar, H.R., 2018. A novel ternary combination of deep eutectic solvent-alcohol (DES-OL) system for synergistic and efficient delignification of biomass. Bioresour. Technol. 265, 573–576. doi: 10.1016/j.biortech.2018.06.002
|
Kellock, M., Maaheimo, H., Marjamaa, K., Rahikainen, J., Zhang, H., Holopainen-Mantila, U., Ralph, J., Tamminen, T., Felby, C., Kruus, K., 2019. Effect of hydrothermal pretreatment severity on lignin inhibition in enzymatic hydrolysis. Bioresour. Technol. 280, 303–312. doi: 10.1016/j.biortech.2019.02.051
|
Kim, K.H., Dutta, T., Sun, J., Simmons, B., Singh, S., 2018. Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chem. 20, 809–815. doi: 10.1039/C7GC03029K
|
Kumar, N., Gautam, R., Stallings, J.D., Lynam, J.G., 2021. Secondary agriculture residues pretreatment using deep eutectic solvents. Waste Biomass Valor. 12, 2259–2269. doi: 10.1007/s12649-020-01176-1
|
Lekshmi, M. S., Vishnudas, S., Anil, K.R., 2021. Lignocellulosic materials as reinforcement and replacement for binders in masonry mortar. Constr. Build. Mater. 282, 122607. doi: 10.1016/j.conbuildmat.2021.122607
|
Li, C.C., Huang, C.X., Zhao, Y., Zheng, C.J., Su, H.X., Zhang, L.Y., Luo, W.R., Zhao, H., Wang, S.F., Huang, L.J., 2021. Effect of choline-based deep eutectic solvent pretreatment on the structure of cellulose and lignin in bagasse. Processes 9, 384. doi: 10.3390/pr9020384
|
Li, L. F., Wu, Z. G., Liang, J. K., Yu, L. P., 2020. Application of deep eutectic solvents in lignocellulosic biomass processing. J. Forestry Eng. 5, 20–28.
|
Li, P.H., Ren, J.P., Wu, W.J., 2022. Research progress of lignin degradation in deep eutectic solvents. China Pulp Pap. 7, 78–85.
|
Li, W.Q., Amos, K., Li, M., Pu, Y.Q., Debolt, S., Ragauskas, A.J., Shi, J., 2018. Fractionation and characterization of lignin streams from unique high-lignin content endocarp feedstocks. Biotechnol. Biofuels 11, 304. doi: 10.1186/s13068-018-1305-7
|
Lin, W.Q., Xing, S., Jin, Y.C., Lu, X.M., Huang, C.X., Yong, Q., 2020. Insight into understanding the performance of deep eutectic solvent pretreatment on improving enzymatic digestibility of bamboo residues. Bioresour. Technol. 306, 123163. doi: 10.1016/j.biortech.2020.123163
|
Liu, Y., Guo, L.J., Wang, L.Y., Zhan, W., Zhou, H., 2017. Irradiation pretreatment facilitates the achievement of high total sugars concentration from lignocellulose biomass. Bioresour. Technol. 232, 270–277. doi: 10.1016/j.biortech.2017.01.061
|
Liu, Y., Zheng, J.Y., Xiao, J.X., He, X.D., Zhang, K.X., Yuan, S.X., Peng, Z.T., Chen, Z., Lin, X.Q., 2019. Enhanced enzymatic hydrolysis and lignin extraction of wheat straw by triethylbenzyl ammonium chloride/lactic acid-based deep eutectic solvent pretreatment. ACS Omega 4, 19829–19839. doi: 10.1021/acsomega.9b02709
|
Lyu, G.J., Li, T.F., Ji, X.X., Yang, G.H., Liu, Y., Lucia, L.A., Chen, J.C., 2018. Characterization of lignin extracted from willow by deep eutectic solvent treatments. Polymers 10, 869. doi: 10.3390/polym10080869
|
Madadi, M., Zahoor, Song, G.J., Karimi, K., Zhu, D.C., Elsayed, M., Sun, F.B., Abomohra, A., 2022. One-step lignocellulose fractionation using acid/pentanol pretreatment for enhanced fermentable sugar and reactive lignin production with efficient pentanol retrievability. Bioresour. Technol. 359, 127503. doi: 10.1016/j.biortech.2022.127503
|
Mehrez, I., Chandrasekhar, K., Kim, W., Kim, S.H., Kumar, G., 2022. Comparison of alkali and ionic liquid pretreatment methods on the biochemical methane potential of date palm waste biomass. Bioresour. Technol. 360, 127505. doi: 10.1016/j.biortech.2022.127505
|
Miyamoto, T., Mihashi, A., Yamamura, M., Tobimatsu, Y., Suzuki, S., Takada, R., Kobayashi, Y., Umezawa, T., 2018. Comparative analysis of lignin chemical structures of sugarcane bagasse pretreated by alkaline, hydrothermal, and dilute sulfuric acid methods. Ind. Crops Prod. 121, 124–131. doi: 10.1016/j.indcrop.2018.04.077
|
Morán-Aguilar, M.G., Costa-Trigo, I., Ramírez-Pérez, A.M., de Blas, E., Calderón-Santoyo, M., Aguilar-Uscanga, M.G., Domínguez, J.M., 2022. Development of sustainable biorefinery processes applying deep eutectic solvents to agrofood wastes. Energies 15, 4101. doi: 10.3390/en15114101
|
Morone, A., Sharma, G., Sharma, A., Chakrabarti, T., Pandey, R.A., 2018. Evaluation, applicability and optimization of advanced oxidation process for pretreatment of rice straw and its effect on cellulose digestibility. Renew. Energy 120, 88–97. doi: 10.1016/j.renene.2017.12.074
|
Oh, Y., Park, S., Jung, D., Oh, K.K., Lee, S.H., 2020. Effect of hydrogen bond donor on the choline chloride-based deep eutectic solvent-mediated extraction of lignin from pine wood. Int. J. Biol. Macromol. 165, 187–197. doi: 10.1016/j.ijbiomac.2020.09.145
|
Okur, M., Eslek Koyuncu, D.D., 2020. Investigation of pretreatment parameters in the delignification of paddy husks with deep eutectic solvents. Biomass Bioenergy 142, 105811. doi: 10.1016/j.biombioe.2020.105811
|
Ong, V.Z., Wu, T.Y., Chu, K.K.L., Sun, W.Y., Shak, K.P.Y., 2021. A combined pretreatment with ultrasound-assisted alkaline solution and aqueous deep eutectic solvent for enhancing delignification and enzymatic hydrolysis from oil palm fronds. Ind. Crops Prod. 160, 112974. doi: 10.1016/j.indcrop.2020.112974
|
Procentese, A., Raganati, F., Olivieri, G., Russo, M.E., Rehmann, L., Marzocchella, A., 2018. Deep eutectic solvents pretreatment of agro-industrial food waste. Biotechnol. Biofuels 11, 37. doi: 10.1186/s13068-018-1034-y
|
Sai, Y.W., Lee, K.M., 2019. Enhanced cellulase accessibility using acid-based deep eutectic solvent in pretreatment of empty fruit bunches. Cellulose 26, 9517–9528. doi: 10.1007/s10570-019-02770-w
|
Sánchez-Badillo, J.A., Gallo, M., Rutiaga-Quiñones, J.G., Garza, J., López-Albarrán, P., 2022. Insights on the cellulose pretreatment at room temperature by choline-chloride-based deep eutectic solvents: an atomistic study. Cellulose 29, 6517–6548. doi: 10.1007/s10570-022-04671-x
|
Satlewal, A., Agrawal, R., Bhagia, S., Sangoro, J., Ragauskas, A.J., 2018. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities. Biotechnol. Adv. 36, 2032–2050. doi: 10.1016/j.biotechadv.2018.08.009
|
Sharma, M., Mukesh, C., Mondal, D., Prasad, K., 2013. Dissolution of α-chitin in deep eutectic solvents. RSC Adv. 3, 18149–18155. doi: 10.1039/c3ra43404d
|
Shen, X.J., Chen, T.Y., Wang, H.M., Mei, Q.Q., Yue, F.X., Sun, S.N., Wen, J.L., Yuan, T.Q., Sun, R.C., 2019a. Structural and morphological transformations of lignin macromolecules during bio-based deep eutectic solvent (DES) pretreatment. ACS Sustain. Chem. Eng. 8, 2130–2137.
|
Shen, X.J., Wen, J.L., Mei, Q.Q., Chen, X., Sun, D., Yuan, T.Q., Sun, R.C., 2019b. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chem. 21, 275–283. doi: 10.1039/c8gc03064b
|
Shi, W., Jia, J.F., Gao, Y.H., Zhao, Y.P., 2013. Influence of ultrasonic pretreatment on the yield of bio-oil prepared by thermo-chemical conversion of rice husk in hot-compressed water. Bioresour. Technol. 146, 355–362. doi: 10.1016/j.biortech.2013.07.094
|
Shrivastava, A., Sharma, R.K., 2022. Lignocellulosic biomass based microbial fuel cells: performance and applications. J. Clean. Prod. 361, 132269. doi: 10.1016/j.jclepro.2022.132269
|
Singh, T.A., Sharma, M., Sharma, M., Dutt Sharma, G., Kumar Passari, A., Bhasin, S., 2022. Valorization of agro-industrial residues for production of commercial biorefinery products. Fuel 322, 124284. doi: 10.1016/j.fuel.2022.124284
|
Tan, Y.T., Chua, A.S.M., Ngoh, G.C., 2020. Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products - a review. Bioresour. Technol. 297, 122522. doi: 10.1016/j.biortech.2019.122522
|
Tan, Y.T., Ngoh, G.C., Chua, A.S.M., 2018. Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch. Ind. Crops Prod. 123, 271–277. doi: 10.1016/j.indcrop.2018.06.091
|
Thulluri, C., Balasubramaniam, R., Velankar, H.R., 2021. Generation of highly amenable cellulose-Iβ via selective delignification of rice straw using a reusable cyclic ether-assisted deep eutectic solvent system. Sci. Rep. 11, 1591. doi: 10.1038/s41598-020-80719-x
|
Vasudev, V., Ku, X.K., Lin, J.Z., 2019. Kinetic study and pyrolysis characteristics of algal and lignocellulosic biomasses. Bioresour. Technol. 288, 121496. doi: 10.1016/j.biortech.2019.121496
|
Volpi, M., Santos, V., Ribeiro, A., Santana, M., Bastos, R., 2019. The role of lignocellulosic composition and residual lipids in empty fruit bunches on the production of humic acids in submerged fermentations. Appl. Biochem. Biotechnol. 187, 957–964. doi: 10.1007/s12010-018-2850-z
|
Wang, L.Q., Shen, H.F., Cai, C., Wang, G.H., 2022. Improving enzymatic hydrolysis of hybrid Pennisetum (Pennisetum americanum × P. purpureum) by dehydration combined with dry explosion pretreatment. Biomass Conv. Bioref. 1–13.
|
Wang, Z.K., Li, H.Y., Lin, X.C., Tang, L., Chen, J.J., Mo, J.W., Yu, R.S., Shen, X.J., 2020. Novel recyclable deep eutectic solvent boost biomass pretreatment for enzymatic hydrolysis. Bioresour. Technol. 307, 123237. doi: 10.1016/j.biortech.2020.123237
|
Xu, H.F., Kong, Y., Peng, J.J., Song, X.M., Liu, Y.Z., Su, Z.N., Li, B., Gao, C.H., Tian, W.D., 2021a. Comprehensive analysis of important parameters of choline chloride-based deep eutectic solvent pretreatment of lignocellulosic biomass. Bioresour. Technol. 319, 124209. doi: 10.1016/j.biortech.2020.124209
|
Xu, H.F., Kong, Y., Peng, J.J., Wang, W.X., Li, B., 2021b. Mechanism of deep eutectic solvent delignification: insights from molecular dynamics simulations. ACS Sustain. Chem. Eng. 9, 7101–7111. doi: 10.1021/acssuschemeng.1c01260
|
Xu, J.K., Zhou, P.F., Liu, X.Y., Yuan, L., Zhang, C.T., Dai, L., 2021c. Tandem character of liquid hot water and deep eutectic solvent to enhance lignocellulose deconstruction. ChemSusChem 14, 2740–2748. doi: 10.1002/cssc.202100765
|
Xu, J.X., Xu, J.M., Zhang, S., Xia, J., Liu, X.Y., Chu, X.Z., Duan, J.N., Li, X.Q., 2018. Synergistic effects of metal salt and ionic liquid on the pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. Bioresour. Technol. 249, 1058–1061. doi: 10.1016/j.biortech.2017.10.018
|
Yan, G.L., Zhou, Y.Z., Zhao, L.Q., Wang, W., Yang, Y.C., Zhao, X.Y., Chen, Y., Yao, X.Y., 2022. Recycling of deep eutectic solvent for sustainable and efficient pretreatment of corncob. Ind. Crops Prod. 183, 115005. doi: 10.1016/j.indcrop.2022.115005
|
Yang, X., Song, Y.L., Ma, S., Zhang, X., Tan, T.W., 2020. Using γ-valerolactone and toluenesulfonic acid to extract lignin efficiently with a combined hydrolysis factor and structure characteristics analysis of lignin. Cellulose 27, 3581–3590. doi: 10.1007/s10570-020-03023-x
|
Yook, S.D., Kim, J., Gong, G., Ko, J.K., Um, Y., Han, S.O., Lee, S.M., 2020. High-yield lipid production from lignocellulosic biomass using engineered xylose-utilizing Yarrowia lipolytica. GCB Bioenergy 12, 670–679. doi: 10.1111/gcbb.12699
|
Yu, H.T., Xiao, W.H., Han, L.J., Huang, G.Q., 2019. Characterization of mechanical pulverization/phosphoric acid pretreatment of corn stover for enzymatic hydrolysis. Bioresour. Technol. 282, 69–74. doi: 10.1016/j.biortech.2019.02.104
|
Zanuso, E., Gomes, D.G., Ruiz, H.A., Teixeira, J.A., Domingues, L., 2021. Enzyme immobilization as a strategy towards efficient and sustainable lignocellulosic biomass conversion into chemicals and biofuels: current status and perspectives. Sustain. Energy Fuels 5, 4233–4247. doi: 10.1039/d1se00747e
|
Zhang, F., He, Z., Tu, R., Jia, Z.W., Wu, Y.J., Sun, Y., Jiang, E.C., Xu, X.W., 2020. Influence of ultrasonic/torrefaction assisted deep eutectic solvents on the upgrading of bio-oil from corn stalk. ACS Sustain. Chem. Eng. 8, 8562–8576. doi: 10.1021/acssuschemeng.0c00837
|
Zhang, Y.J., Eberhardt, T.L., Cai, B., Wu, M.Q., Xu, X.X., Feng, J.F., Pan, H., 2022. Organosolv fractionation of a lignocellulosic biomass feedstock using a pilot scale microwave-heating reactor. Ind. Crops Prod. 180, 114700. doi: 10.1016/j.indcrop.2022.114700
|
Zhou, X.L., Huang, T.J., Liu, J., Gao, H.L., Bian, H.Y., Wang, R.B., Huang, C., Sha, J.L., Dai, H.Q., 2021. Recyclable deep eutectic solvent coupling sodium hydroxide post-treatment for boosting woody/herbaceous biomass conversion at mild condition. Bioresour. Technol. 320, 124327. doi: 10.1016/j.biortech.2020.124327
|