Citation: | Liucheng Peng, Jing Yi, Xinyu Yang, Jing Xie, Chenwei Chen. Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts[J]. Journal of Bioresources and Bioproducts, 2023, 8(1): 78-89. doi: 10.1016/j.jobab.2022.11.005 |
Adeniyi, A.G., Onifade, D.V., Ighalo, J.O., Adeoye, A.S., 2019. A review of coir fiber reinforced polymer composites. Compos. B 176, 107305. doi: 10.1016/j.compositesb.2019.107305
|
Alokika, Anu, Kumar, A., Kumar, V., Singh, B., 2021. Cellulosic and hemicellulosic fractions of sugarcane bagasse: potential, challenges and future perspective. Int. J. Biol. Macromol. 169, 564–582. doi: 10.1016/j.ijbiomac.2020.12.175
|
Antinori, M.E., Ceseracciu, L., Mancini, G., Heredia-Guerrero, J.A., Athanassiou, A., 2020. Fine-tuning of physicochemical properties and growth dynamics of Mycelium-based materials. ACS Appl. Bio Mater. 3, 1044–1051. doi: 10.1021/acsabm.9b01031
|
Appels, F.V.W., Camere, S., Montalti, M., Karana, E., Jansen, K.M.B., Dijksterhuis, J., Krijgsheld, P., Wösten, H.A.B., 2019. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Mater. Des. 161, 64–71. doi: 10.1016/j.matdes.2018.11.027
|
Attias, N., Danai, O., Abitbol, T., Tarazi, E., Ezov, N., Pereman, I., Grobman, Y.J., 2020. Mycelium bio-composites in industrial design and architecture: comparative review and experimental analysis. J. Clean. Prod. 246, 119037. doi: 10.1016/j.jclepro.2019.119037
|
Castiglioni, A., Castellani, L., Cuder, G., Comba, S., 2017. Relevant materials parameters in cushioning for EPS foams. Colloids Surf. A 534, 71–77. doi: 10.1016/j.colsurfa.2017.03.049
|
Chen, C.W., Ding, R., Peng, L.C., Xie, J., Yang, F.X., Yang, X.Y., Yu, Q.H., 2021. Effects of exogenous nutrients on the growth of mycelial biomass materials and its characterization. Trans. Chin. Soc. Agric. Eng. 37, 295–302.
|
Elsacker, E., Søndergaard, A., van Wylick, A., Peeters, E., de Laet, L., 2021. Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Constr. Build. Mater. 283, 122732. doi: 10.1016/j.conbuildmat.2021.122732
|
Elsacker, E., Vandelook, S., Brancart, J., Peeters, E., De Laet, L., 2019. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS One 14, e0213954. doi: 10.1371/journal.pone.0213954
|
Falade, A.O., 2021. Valorization of agricultural wastes for production of biocatalysts of environmental significance: towards a sustainable environment. Environ. Sustain. 4, 317–328. doi: 10.1007/s42398-021-00183-9
|
Falade, A.O., Mabinya, L.V., Okoh, A.I., Nwodo, U.U., 2020. Agroresidues enhanced peroxidase activity expression by Bacillus sp. MABINYA-1 under submerged fermentation. Bioresour. Bioprocess. 7, 1–9. doi: 10.1186/s40643-019-0289-x
|
Haneef, M., Ceseracciu, L., Canale, C., Bayer, I.S., Heredia-Guerrero, J.A., Athanassiou, A., 2017. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci. Rep. 7, 41292. doi: 10.1038/srep41292
|
He, K., Zhang, J.B., Zeng, Y.M., 2019. Knowledge domain and emerging trends of agricultural waste management in the field of social science: a scientometric review. Sci. Total Environ. 670, 236–244. doi: 10.1016/j.scitotenv.2019.03.184
|
Hoa, H.T., Wang, C.L., 2015. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 43, 14–23. doi: 10.5941/MYCO.2015.43.1.14
|
Holt, G.A., McIntyre, G., Flagg, D., Bayer, E., Wanjura, J.D., Pelletier, M.G., 2012. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: evaluation study of select blends of cotton byproducts. J. Biobased Mater. Bioenergy 6, 431–439. doi: 10.1166/jbmb.2012.1241
|
Hou, J.X., 2020. Preparation of Fungal Mycelium/Corn Straw Porous Composite Material. Jilin Agricultural University, Changchun.
|
Jiang, L., Walczyk, D., McIntyre, G., Bucinell, R., Tudryn, G., 2017. Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms. J. Manuf. Process. 28, 50–59. doi: 10.1016/j.jmapro.2017.04.029
|
Jones, M., Bhat, T., Kandare, E., Thomas, A., Joseph, P., Dekiwadia, C., Yuen, R., John, S., Ma, J., Wang, C.H., 2018. Thermal degradation and fire properties of fungal mycelium and mycelium - biomass composite materials. Sci. Rep. 8, 17583. doi: 10.1038/s41598-018-36032-9
|
Jones, M., Gandia, A., John, S., Bismarck, A., 2020a. Leather-like material biofabrication using fungi. Nat. Sustain. 4, 9–16. doi: 10.1038/s41893-020-00606-1
|
Jones, M., Huynh, T., Dekiwadia, C., Daver, F., John, S., 2017. Mycelium composites: a review of engineering characteristics and growth kinetics. J. Bionanosci. 11, 241–257. doi: 10.1166/jbns.2017.1440
|
Jones, M., Mautner, A., Luenco, S., Bismarck, A., John, S., 2020b. Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater. Des. 187, 108397. doi: 10.1016/j.matdes.2019.108397
|
Jose, J., Uvais, K.N., Sreenadh, T.S., Deepak, A.V., Rejeesh, C.R., 2021. Investigations into the development of a mycelium biocomposite to substitute polystyrene in packaging applications. Arab. J. Sci. Eng. . 46, 2975–2984. . doi: 10.1007/s13369-020-05247-2
|
Kamel, R., El-Wakil, N.A., Dufresne, A., Elkasabgy, N.A., 2020. Nanocellulose: from an agricultural waste to a valuable pharmaceutical ingredient. Int. J. Biol. Macromol. 163, 1579–1590. doi: 10.1016/j.ijbiomac.2020.07.242
|
Kuribayashi, T., Lankinen, P., Hietala, S., Mikkonen, K.S., 2022. Dense and continuous networks of aerial hyphae improve flexibility and shape retention of mycelium composite in the wet state. Compos. A 152, 106688. doi: 10.1016/j.compositesa.2021.106688
|
Lazaro Vasquez, E.S., Vega, K.C., 2019. From plastic to biomaterials: prototyping DIY electronics with mycelium. In: Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers. London, United Kingdom, pp. 308–311.
|
Lee, T., Choi, J., 2021. Mycelium-composite panels for atmospheric particulate matter adsorption. Res. Mater. 11, 100208.
|
Li, Y.J., Huang, P., Guo, S.W., Nie, M., 2020. A promising and green strategy for recycling waste oyster shell powder as bio-filler in polypropylene via mycelium-enlightened interfacial interlocking. J. Clean. Prod. 272, 122694. doi: 10.1016/j.jclepro.2020.122694
|
Liu, R., Long, L., Sheng, Y., Xu, J.F., Qiu, H.Y., Li, X.Y., Wang, Y.X., Wu, H.G., 2019. Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties. Ind. Crops Prod. 141, 111732. doi: 10.1016/j.indcrop.2019.111732
|
Liu, Y.L., Kim, H.J., 2017. Fourier transform infrared spectroscopy (FT-IR) and simple algorithm analysis for rapid and non-destructive assessment of developmental cotton fibers. Sensors 17, 1469. doi: 10.3390/s17071469
|
Manan, S., Atta, O.M., Shahzad, A., Ul-Islam, M., Ullah, M.W., Yang, G., 2022. Applications of fungal mycelium-based functional biomaterials. Fungal Biopolymers
and Biocomposites. Springer Nature Singapore, Singapore, pp. 147–168.
|
Manan, S., Ullah, M.W., Ul-Islam, M., Atta, O.M., Yang, G., 2021. Synthesis and applications of fungal mycelium-based advanced functional materials. J. Bioresour. Bioprod. 6, 1–10. doi: 10.1016/j.jobab.2021.01.001
|
Ning, F.E., Ou, S.J., Lee, Y.L., 2021. Cognitive research on the development of agricultural waste resource treatment technology for a sustainable environment. IOP Conf. Ser. : Earth Environ. Sci. 811, 012002. doi: 10.1088/1755-1315/811/1/012002
|
Pelletier, M.G., Holt, G.A., Wanjura, J.D., Bayer, E., McIntyre, G., 2013. An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Ind. Crops Prod. 51, 480–485. doi: 10.1016/j.indcrop.2013.09.008
|
Pena, R., Lang, C., Naumann, A., Polle, A., 2014. Ectomycorrhizal identification in environmental samples of tree roots by Fourier-transform infrared (FTIR) spectroscopy. Front. Plant Sci. 5, 229.
|
Powrie W.D., Wu C.H., Molund V.P., 1986. Browning reaction systems as sources of mutagens and antimutagens. Environ. Health Perspect. 67, 47–54. doi: 10.1289/ehp.866747
|
Răut, I., Călin, M., Vuluga, Z., Oancea, F., Paceagiu, J., Radu, N., Doni, M., Alexandrescu, E., Purcar, V., Gurban, A.M., Petre, I., Jecu, L., 2021. Fungal based biopolymer composites for construction materials. Materials 14, 2906. doi: 10.3390/ma14112906
|
Román-Ramos, J.D., Luna-Molina, F.J., Bailón-Pérez, L.J., 2014. Encofrado perdido constituido por paja cohesionada con micelio como sustituto del poliestireno expandido. Inf. Constr. 66, m006. doi: 10.3989/ic.13.097
|
Schritt, H., Vidi, S., Pleissner, D., 2021. Spent mushroom substrate and sawdust to produce mycelium-based thermal insulation composites. J. Clean. Prod. 313, 127910. doi: 10.1016/j.jclepro.2021.127910
|
Sharma, S., Basu, S.M., Shetti, N.P., Kamali, M., Walvekar, P., Aminabhavi, T.M., 2020. Waste-to-energy nexus: a sustainable development. Environ. Pollut. 267, 115501. doi: 10.1016/j.envpol.2020.115501
|
Singh, G., Arya, S.K., 2021. A review on management of rice straw by use of cleaner technologies: abundant opportunities and expectations for Indian farming. J. Clean. Prod. 291, 125278. doi: 10.1016/j.jclepro.2020.125278
|
Sisti, L., Gioia, C., Totaro, G., Verstichel, S., Cartabia, M., Camere, S., Celli, A., 2021. Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials. Ind. Crops Prod. 170, 113742. doi: 10.1016/j.indcrop.2021.113742
|
Sivaprasad, S., Byju, S.K., Prajith, C., Shaju, J., Rejeesh, C.R., 2021. Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. Mater. Today Proc. 47, 5038–5044. doi: 10.1016/j.matpr.2021.04.622
|
Soboyejo, W., 2003. Mechanical properties of engineered materials. Marcel Dekker, New York.
|
Sun, W.J., Tajvidi, M., Hunt, C.G., Howell, C., 2020. All-natural smart mycelium surface with tunable wettability. ACS Appl. Bio Mater. 4, 1015–1022.
|
Teixeira, J.L., Matos, M.P., Nascimento, B.L., Griza, S., Holanda, F.S.R., Marino, R.H., 2018. Production and mechanical evaluation of biodegradable composites by white rot fungi. Ciênc. Agrotec. 42, 676–684. doi: 10.1590/1413-70542018426022318
|
The World Bank and Institute for Health Metrics and Evaluation and University of Washington, 2016. The Cost of Air Pollution: Strengthening the Economic Case for
Action. Available at: https://documents1.worldbank.org/curated/en/781521473177013155/pdf/108141-REVISED-Cost-of-PollutionWebCORRECTEDfile.pdf.
|
Toscano Miranda, N., Lopes Motta, I., Maciel Filho, R., Wolf Maciel, M.R., 2021. Sugarcane bagasse pyrolysis: a review of operating conditions and products properties. Renew. Sustain. Energy Rev. 149, 111394. doi: 10.1016/j.rser.2021.111394
|
Wang, T.P., Ai, Y.N., Peng, L., Zhang, R.H., Lu, Q., Dong, C.Q., 2018. Pyrolysis characteristics of poplar sawdust by pretreatment of anaerobic fermentation. Ind. Crops Prod. 125, 596–601. doi: 10.1016/j.indcrop.2018.09.033
|
Wessels, J.G.H., 1996. Hydrophobins: proteins that change the nature of the fungal surface. Adv. Microb. Physiol. 38, 1–45.
|
Xiong, Z.Y., 2007. Experimental Study on Mechanical Behaviors of Expanded Polystyrene(EPS). Xiangtan University, Xiangtan.
|
Yang, Z.J., Zhang, F., Still, B., White, M., Amstislavski, P., 2017. Physical and mechanical properties of fungal mycelium-based biofoam. J. Mater. Civ. Eng. 29, 04017030. doi: 10.1061/(ASCE)MT.1943-5533.0001866
|
Yuan, Y.H., Lee, T.R., 2013. Contact angle and wetting properties. Surface Science Techniques. Heidelberg: Springer Berlin Heidelberg, 3–34. doi: 10.1007/978-3-642-34243-1_1
|
Zhang, K., Xu, R., Abomohra, A.E.F., Xie, S.X., Yu, Z.S., Guo, Q., Liu, P., Peng, L., Li, X.K., 2019. A sustainable approach for efficient conversion of lignin into biodiesel accompanied by biological pretreatment of corn straw. Energy Convers. Manag. 199, 111928. doi: 10.1016/j.enconman.2019.111928
|
Zhang, X.J., Hu, J.Y., Fan, X.D., Yu, X., 2022. Naturally grown mycelium-composite as sustainable building insulation materials. J. Clean. Prod. 342, 130784. doi: 10.1016/j.jclepro.2022.130784
|