Volume 8 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
Haosong Zhao, Weijue Gao, Pedram Fatehi. In-situ polymerization of lignocelluloses of autohydrolysis process with acrylamide[J]. Journal of Bioresources and Bioproducts, 2023, 8(3): 235-245. doi: 10.1016/j.jobab.2023.01.004
Citation: Haosong Zhao, Weijue Gao, Pedram Fatehi. In-situ polymerization of lignocelluloses of autohydrolysis process with acrylamide[J]. Journal of Bioresources and Bioproducts, 2023, 8(3): 235-245. doi: 10.1016/j.jobab.2023.01.004

In-situ polymerization of lignocelluloses of autohydrolysis process with acrylamide

doi: 10.1016/j.jobab.2023.01.004
More Information
  • In the present study, the hydrolysates generated via autohydrolysis of spruce wood chips were directly used as feedstock for producing coagulants. The in-situ polymerization of acrylamide (AM) and lignocellulose (LC) of hydrolysates was successfully conducted. The reaction was optimized to generate lignocellulose-acrylamide (LC-AM) with the highest molecular weight (41, 060 g/mol) and charge density (–0.25 meq/g) under the optimum conditions, which were 3 h, 60 ℃, 4% (w) initiator based on the dried mass of hydrolysate, and an AM/LC molar ratio of 5.63. A nuclear magnetic resonance (NMR) spectroscopy confirmed the grafting of acrylamide on LC. Other properties of LC-AM were characterized by the elemental analyzer, zeta potential analyzer, gel permeation chromatography (GPC), and particle charge detector (PCD). The LC-AM was applied as a coagulant for removing ethyl violet dye from a simulated dye solution. The results indicated that 47.2% dye was removed from the solution at a low dosage of 0.2 g/g. The dual flocculation of LC-AM with other polymers for dye removal is suggested to further improve its effectiveness.

     

  • Declaration of Competing Interest
    There are no conflicts to declare.
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2023.01.004.
    Supplementary materials
  • loading
  • Ariffin, A., Razali, M.A.A., Ahmad, Z., 2012. PolyDADMAC and polyacrylamide as a hybrid flocculation system in the treatment of pulp and paper mills waste water. Chem. Eng. J. 179, 107–111. doi: 10.1016/j.cej.2011.10.067
    Ben, H.X., Chen, X.L., Han, G.T., Shao, Y.J., Jiang, W., Pu, Y.Q., Ragauskas, A.J., 2018. Characterization of whole biomasses in pyridine based ionic liquid at low temperature by 31P NMR: an approach to quantitatively measure hydroxyl groups in biomass as their original structures. Front. Energy Res. 6, 13. doi: 10.3389/fenrg.2018.00013
    Chen, T., Gao, B.Y., Yue, Q.Y., 2010. Effect of dosing method and pH on color removal performance and floc aggregation of polyferric chloride-polyamine dual-coagulant in synthetic dyeing wastewater treatment. Colloids Surf. A Physicochem. Eng. Asp. 355, 121–129. doi: 10.1016/j.colsurfa.2009.12.008
    Chen, X.Q., Si, C.L., Fatehi, P., 2018. Cationic xylan-(2-methacryloyloxyethyl trimethyl ammonium chloride) polymer as a flocculant for pulping wastewater. Carbohydr. Polym. 186, 358–366. doi: 10.1016/j.carbpol.2018.01.068
    Chiarini, L., Cescutti, P., Drigo, L., Impallomeni, G., Herasimenka, Y., Bevivino, A., Dalmastri, C., Tabacchioni, S., Manno, G., Zanetti, F., Rizzo, R., 2004. Exopolysaccharides produced by Burkholderia cenocepacia recA lineages IIIA and IIIB. J. Cyst. Fibros. 3, 165–172.
    Dalli, S.S., Da Silva, S.S., Uprety, B.K., Rakshit, S.K., 2017. Enhanced production of xylitol from poplar wood hydrolysates through a sustainable process using immobilized new strain Candida tropicalis UFMG BX 12-a. Appl. Biochem. Biotechnol. 182, 1053–1064. doi: 10.1007/s12010-016-2381-4
    Dong, L.Y., Hu, H.R., Yang, S., Cheng, F., 2014. Grafted copolymerization modification of hemicellulose directly in the alkaline peroxide mechanical pulping (APMP) effluent and its surface sizing effects on corrugated paper. Ind. Eng. Chem. Res. 53, 6221–6229. doi: 10.1021/ie4044423
    Dotto, J., Fagundes-Klen, M.R., Veit, M.T., Palácio, S.M., Bergamasco, R., 2019. Performance of different coagulants in the coagulation/flocculation process of textile wastewater. J. Clean. Prod. 208, 656–665. doi: 10.1016/j.jclepro.2018.10.112
    Fang, R., Cheng, X.S., Fu, J., Zheng, Z.B., 2009. Research on the graft copolymerization of EH-lignin with acrylamide. Nat. Sci. 1, 17–22. doi: 10.4236/ns.2009.11004
    Guo, K.Y., Gao, B.Y., Wang, W.Y., Yue, Q.Y., Xu, X., 2019. Evaluation of molecular weight, chain architectures and charge densities of various lignin-based flocculants for dye wastewater treatment. Chemosphere 215, 214–226. doi: 10.1016/j.chemosphere.2018.10.048
    Guo, Y.Z., Gao, W.J., Fatehi, P., 2018. Hydroxypropyl sulfonated kraft lignin as a coagulant for cationic dye. Ind. Crops Prod. 124, 273–283. doi: 10.1016/j.indcrop.2018.07.078
    Ibrahim, M.N.M., Lim, S.L., Ahmed-Haras, M.R., Fayyadh, F.S., 2014. Preparation and characterization of lignin graft copolymer as a filtrate loss control agent for the hydrocarbon drilling industry. BioResources 9, 1472–1487.
    Ibrahim, N.A., Abu-Ilaiwi, F., Rahman, M.Z.A., Ahmad, M.B., Dahlan, K.Z.M., Yunus, W.M.Z.W., 2005. Graft copolymerization of acrylamide onto oil palm empty fruit bunch (OPEFB) fiber. J. Polym. Res. 12, 173–179. doi: 10.1007/s10965-004-1865-z
    Ihaddaden, S., Aberkane, D., Boukerroui, A., Robert, D., 2022. Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). J. Water Process. Eng. 49, 102952. doi: 10.1016/j.jwpe.2022.102952
    Katheresan, V., Kansedo, J., Lau, S.Y., 2018. Efficiency of various recent wastewater dye removal methods: a review. J. Environ. Chem. Eng. 6, 4676–4697. doi: 10.1016/j.jece.2018.06.060
    Kong, F.G., Wang, S.J., Price, J.T., Konduri, M.K.R., Fatehi, P., 2015. Water soluble kraft lignin-acrylic acid copolymer: synthesis and characterization. Green Chem. 17, 4355–4366. doi: 10.1039/C5GC00228A
    Kumar, D., Pandey, J., Raj, V., Kumar, P., 2017. A review on the modification of polysaccharide through graft copolymerization for various potential applications. Open Med. Chem. J. 11, 109–126. doi: 10.2174/1874104501711010109
    Lapointe, M., Barbeau, B., 2017. Dual starch-polyacrylamide polymer system for improved flocculation. Water Res. 124, 202–209. doi: 10.1016/j.watres.2017.07.044
    Li, R.H., Gao, B.Y., Sun, J. Z, Yue, Q.Y., Wang, Y., Xu, X., 2016. Synthesis, characterization of a novel lignin-based polymer and its behavior as a coagulant aid in coagulation/ultrafiltration hybrid process. Int. Biodeterior. Biodegrad. 113, 334–341. doi: 10.1016/j.ibiod.2016.02.002
    Li, W.B., Zhou, X.S., 2017. Modification of the water-insoluble hemicelluloses via free radical copolymerization in diluted alkali aqueous medium. J. Wood Chem. Technol. 37, 191–200. doi: 10.1080/02773813.2016.1271434
    Liu, Z.M., Xu, D.D., Xia, N.N., Zhao, X., Kong, F.G., Wang, S.J., Fatehi, P., 2018. Preparation and application of phosphorylated xylan as a flocculant for cationic ethyl violet dye. Polymers 10, 317. doi: 10.3390/polym10030317
    Maia, A.M.S., Silva, H.V.M., Curti, P.S., Balaban, R.C., 2012. Study of the reaction of grafting acrylamide onto xanthan gum. Carbohydr. Polym. 90, 778–783. doi: 10.1016/j.carbpol.2012.05.059
    Mcyotto, F., Wei, Q.S., Macharia, D.K., Huang, M.H., Shen, C.S., Chow, C.W.K., 2021. Effect of dye structure on color removal efficiency by coagulation. Chem. Eng. J. 405, 126674. doi: 10.1016/j.cej.2020.126674
    Razali, M.A.A., Sanusi, N., Ismail, H., Othman, N., Ariffin, A., 2012. Application of response surface methodology (RSM) for optimization of cassava starch grafted polyDADMAC synthesis for cationic properties. Starch Stärke 64, 935–943. doi: 10.1002/star.201200007
    Ren, H., Omori, S., 2014. Comparison of hemicelluloses isolated from soda cooking black liquor with commercial and bacterial xylan. Cellul. Chem. Technol. 48, 675–681.
    Rigual, V., Santos, T.M., Domínguez, J.C., Alonso, M.V., Oliet, M., Rodriguez, F., 2018. Evaluation of hardwood and softwood fractionation using autohydrolysis and ionic liquid microwave pretreatment. Biomass Bioenergy 117, 190–197. doi: 10.1016/j.biombioe.2018.07.014
    Shak, K.P.Y., Wu, T.Y., 2014. Coagulation-flocculation treatment of high-strength agro-industrial wastewater using natural Cassia obtusifolia seed gum: treatment efficiencies and flocs characterization. Chem. Eng. J. 256, 293–305. doi: 10.1016/j.cej.2014.06.093
    Torres-Mayanga, P.C., Lachos-Perez, D., Mudhoo, A., Kumar, S., Brown, A.B., Tyufekchiev, M., Dragone, G., Mussatto, S.I., Rostagno, M.A., Timko, M., Forster-Carneiro, T., 2019. Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass: a review. Biomass Bioenergy 130, 105397. doi: 10.1016/j.biombioe.2019.105397
    Turunen, J., Karppinen, A., Ihme, R., 2019. Effectiveness of biopolymer coagulants in agricultural wastewater treatment at two contrasting levels of pollution. SN Appl. Sci. 1, 210. doi: 10.1007/s42452-019-0225-x
    Wang, J., Wang, Q.H., Xu, Z., Zhang, W.Y., Xiang, J., 2015. Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate. J. Microbiol. Biotechnol. 25, 26–32. doi: 10.4014/jmb.1405.05025
    Wang, J.P., Chen, Y.Z., Yuan, S.J., Sheng, G.P., Yu, H.Q., 2009. Synthesis and characterization of a novel cationic chitosan-based flocculant with a high water-solubility for pulp mill wastewater treatment. Water Res. 43, 5267–5275. doi: 10.1016/j.watres.2009.08.040
    Wang, S.J., Sun, Y.Y., Kong, F.G., Yang, G.H., Fatehi, P., 2016. Preparation and characterization of lignin-acrylamide copolymer as a paper strength additive. BioResources 11, 1765–1783.
    Wei, J.C., Gao, B.Y., Yue, Q. Y, Wang, Y., 2009. Effect of dosing method on color removal performance and flocculation dynamics of polyferric-organic polymer dual-coagulant in synthetic dyeing solution. Chem. Eng. J. 151, 176–182. doi: 10.1016/j.cej.2009.02.012
    Wu, C.J., 2016. The potential of pre-hydrolysis liquor from the dissolving pulp process as recovery source of xylooligosaccharide: a mini-review. BioResources 11, 7917–7927.
    Xie, D.N., Si, C.L., Huo, D., 2017. Enzymatic hydrolysis lignin (EHL) and its applications for value-added products, a quick review. J. Bioresour. Bioprod. 2, 163–169.
    Zafar, M.S., Tausif, M., Mohsin, M., Ahmad, S.W., Zia-ul-Haq, M., 2015. Potato starch as a coagulant for dye removal from textile wastewater. Water Air Soil Pollut. 226, 244. doi: 10.1007/s11270-015-2499-y
    Zhang, S., Guan, Y., Fu, G.Q., Chen, B.Y., Peng, F., Yao, C.L., Sun, R.C., 2014. Organic/inorganic superabsorbent hydrogels based on xylan and montmorillonite. J. Nanomater. 2014, 675035.
    Zheng, X., Ma, X.J., Chen, L.H., Cao, S.L., Nasrallah, J., 2016. Lignin extraction and recovery in hydrothermal pretreatment of bamboo. J. Bioresour. Bioprod. 1, 145–151.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (240) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return