Volume 8 Issue 2
May  2023
Turn off MathJax
Article Contents
Eriola Betiku, Ebenezer O Olatoye, Lekan M. Latinwo. Bioprocessing of underutilized Artocarpus altilis fruit to bioethanol by Saccharomyces cerevisiae: A fermentation condition improvement study[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 125-135. doi: 10.1016/j.jobab.2023.03.002
Citation: Eriola Betiku, Ebenezer O Olatoye, Lekan M. Latinwo. Bioprocessing of underutilized Artocarpus altilis fruit to bioethanol by Saccharomyces cerevisiae: A fermentation condition improvement study[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 125-135. doi: 10.1016/j.jobab.2023.03.002

Bioprocessing of underutilized Artocarpus altilis fruit to bioethanol by Saccharomyces cerevisiae: A fermentation condition improvement study

doi: 10.1016/j.jobab.2023.03.002
More Information
  • Corresponding author: E-mail address: eriola.betiku@famu.edu (E. Betiku)
  • Available Online: 2023-03-11
  • Publish Date: 2023-05-01
  • Raw materials availability needed for commercial bioethanol production is one of the challenges against its global adoption. Identifying rich, cheap, underused, and readily available starch sources for bioethanol production could help address the problem. Thus, this current study investigated the bioconversion of underutilized Artocarpus altilis (breadfruit) starch to bioethanol using Saccharomyces cerevisiae. The effects of the essential fermentation conditions (fermentation time, breadfruit starch hydrolysate (BSH) concentration, pH, and inoculum size) and their interactions on bioethanol production were investigated. The central composite design was used to generate twenty-one experiments conducted under batch fermentation conditions in the laboratory. The breadfruit starch hydrolysis led to a BSH concentration of 108.9 g/L under a starch concentration of 122 g/L, microwave output of 720 W, and an incubation time of 6 min. For the fermentation of BSH, maximum bioethanol production of 4.99% (V) was reached under the cultivation conditions of BSH concentration of 80 g/L, medium pH of 4.7, inoculum size of 2% (V), and fermentation time of 20.41 h. Except for pH, the impact of each parameter on the bioethanol production was in this order: BSH concentration, inoculum size, and fermentation time. While for the interactions amongst the parameters, the impact is in this order: BSH concentration and inoculum size; BSH concentration and fermentation time; and fermentation time and inoculum size. The results of this study indicated breadfruit starch could be hydrolyzed using acid hydrolysis and microwave irradiation in a relatively short time. The BSH obtained could potentially add to other substrates for bioethanol production.

     

  • Declaration of Competing Interest  There are no conflicts to declare.
  • loading
  • Amini Sarteshnizi, R., Hosseini, H., Bondarianzadeh, D., Colmenero, F.J., Khaksar, R., 2015. Optimization of prebiotic sausage formulation: effect of using β-glucan and resistant starch by D-optimal mixture design approach. LWT Food Sci. Technol. 62, 704–710. doi: 10.1016/j.lwt.2014.05.014
    Betiku, E., Ajala, O., 2010. Enzymatic hydrolysis of breadfruit starch: case study with utilization for gluconic acid production. Ife Journal of Technology 19, 10–14.
    Betiku, E., Alade, O.S., 2014. Media evaluation of bioethanol production from cassava starch hydrolysate using Saccharomyces cerevisiae. Energy Sources A Recovery Util. Environ. Eff. 36, 1990–1998. doi: 10.1080/15567036.2011.557690
    Betiku, E., Odude, V.O., Ishola, N.B., Bamimore, A., Osunleke, A.S., Okeleye, A.A., 2016. Predictive capability evaluation of RSM, ANFIS and ANN: a case of reduction of high free fatty acid of palm kernel oil via esterification process. Energy Convers. Manag. 124, 219–230. doi: 10.1016/j.enconman.2016.07.030
    Betiku, E., Taiwo, A.E., 2015. Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-à-vis response surface methodology and artificial neural network. Renew. Energy 74, 87–94. doi: 10.1016/j.renene.2014.07.054
    Bhuyar, P., Trejo, M., Mishra, P., Unpaprom, Y., Velu, G., Ramaraj, R., 2022. Advancements of fermentable sugar yield by pretreatment and steam explosion during enzymatic saccharification of Amorphophallus sp. starchy tuber for bioethanol production. Fuel 323, 124406. doi: 10.1016/j.fuel.2022.124406
    Castro, E., Nieves, I.U., Rondón, V., Sagues, W.J., Fernández-Sandoval, M.T., Yomano, L.P., York, S.W., Erickson, J., Vermerris, W., 2017. Potential for ethanol production from different sorghum cultivars. Ind. Crops Prod. 109, 367–373. doi: 10.1016/j.indcrop.2017.08.050
    Chaudhary, A., Hussain, Z., Aihetasham, A., El-Sharnouby, M., Abdul Rehman, R., Azmat Ullah Khan, M., Zahra, S., Saleem, A., Azhar, S., Alhazmi, A., El Askary, A., Sayed, S., Ali El Enshasy, H., Zulaiha Hanapi, S., Qamer, S., 2021. Pomegranate peels waste hydrolyzate optimization by Response Surface Methodology for Bioethanol production. Saudi J. Biol. Sci. 28, 4867–4875. doi: 10.1016/j.sjbs.2021.06.081
    Chouaibi, M., Ben Daoued, K., Riguane, K., Rouissi, T., Ferrari, G., 2020. Production of bioethanol from pumpkin peel wastes: comparison between response surface methodology (RSM) and artificial neural networks (ANN). Ind. Crops Prod. 155, 112822. doi: 10.1016/j.indcrop.2020.112822
    Dave, N., Varadavenkatesan, T., Selvaraj, R., Vinayagam, R., 2021. Modelling of fermentative bioethanol production from indigenous Ulva prolifera biomass by Saccharomyces cerevisiae NFCCI1248 using an integrated ANN-GA approach. Sci. Total Environ. 791, 148429. doi: 10.1016/j.scitotenv.2021.148429
    Demiray, E., Karatay, S.E., Dönmez, G., 2018. Evaluation of pomegranate peel in ethanol production by Saccharomyces cerevisiae and Pichia stipitis. Energy 159, 988–994. doi: 10.1016/j.energy.2018.06.200
    Falowo, O.A., Oloko-Oba, M.I., Betiku, E., 2019. Biodiesel production intensification via microwave irradiation-assisted transesterification of oil blend using nanoparticles from elephant-ear tree pod husk as a base heterogeneous catalyst. Chem. Eng. Process. Process. Intensif. 140, 157–170. doi: 10.1016/j.cep.2019.04.010
    Farias, D., Maugeri-Filho, F., 2021. Sequential fed batch extractive fermentation for enhanced bioethanol production using recycled Spathaspora passalidarum and mixed sugar composition. Fuel 288, 119673. doi: 10.1016/j.fuel.2020.119673
    González-Mendoza, M.E., Martínez-Bustos, F., Castaño-Tostado, E., Amaya-Llano, S.L., 2022. Effect of microwave irradiation on acid hydrolysis of faba bean starch: physicochemical changes of the starch granules. Molecules 27, 3528. doi: 10.3390/molecules27113528
    Guan, X., Yao, H.Y., 2008. Optimization of Viscozyme L-assisted extraction of oat bran protein using response surface methodology. Food Chem 106, 345–351. doi: 10.1016/j.foodchem.2007.05.041
    Gunst, R.F., Myers, R.H., Montgomery, D.C., 1996. Response surface methodology: process and product optimization using designed experiments. Technometrics 38, 285. doi: 10.2307/1270613
    Hashem, M., Alamri, S.A., Asseri, T.A.Y., Mostafa, Y.S., Lyberatos, G., Ntaikou, I., 2021. On the optimization of fermentation conditions for enhanced bioethanol yields from starchy biowaste via yeast co-cultures. Sustainability 13, 1890. doi: 10.3390/su13041890
    Hermiati, E., Azuma, J.I., Tsubaki, S., Mangunwidjaja, D., Sunarti, T.C., Suparno, O., Prasetya, B., 2012. Improvement of microwave-assisted hydrolysis of cassava pulp and tapioca flour by addition of activated carbon. Carbohydr. Polym. 87, 939–942. doi: 10.1016/j.carbpol.2011.08.033
    Hernández-Mendoza, A.G., Saldaña-Trinidad, S., Martínez-Hernández, S., Pérez-Sariñana, B.Y., Láinez, M., 2021. Optimization of alkaline pretreatment and enzymatic hydrolysis of cocoa pod husk (Theobroma cacao L.) for ethanol production. Biomass Bioenergy 154, 106268. doi: 10.1016/j.biombioe.2021.106268
    Ibrahim, A.P., Omilakin, R.O., Betiku, E., 2019. Optimization of microwave-assisted solvent extraction of non-edible sandbox (Hura crepitans) seed oil: a potential biodiesel feedstock. Renew. Energy 141, 349–358. doi: 10.1016/j.renene.2019.04.010
    Izmirlioglu, G., Demirci, A., 2012. Ethanol production from waste potato mash by using Saccharomyces cerevisiae. Appl. Sci. 2, 738–753. doi: 10.3390/app2040738
    Izmirlioglu, G., Demirci, A., 2017. Simultaneous saccharification and fermentation of ethanol from potato waste by co-cultures of Aspergillus niger and Saccharomyces cerevisiae in biofilm reactors. Fuel 202, 260–270. doi: 10.1016/j.fuel.2017.04.047
    Kamalini, A., Muthusamy, S., Ramapriya, R., Muthusamy, B., Pugazhendhi, A., 2018. Optimization of sugar recovery efficiency using microwave assisted alkaline pretreatment of cassava stem using response surface methodology and its structural characterization. J. Mol. Liq. 254, 55–63. doi: 10.1016/j.molliq.2018.01.091
    Klein, M., Griess, O., Pulidindi, I.N., Perkas, N., Gedanken, A., 2016. Bioethanol production from Ficus religiosa leaves using microwave irradiation. J. Environ. Manag. 177, 20–25. doi: 10.1016/j.jenvman.2016.03.050
    Kunlan, L., Lixin, X., Jun, L., Jun, P., Guoying, C., Zuwei, X., 2001. Salt-assisted acid hydrolysis of starch to D-glucose under microwave irradiation. Carbohydr. Res. 331, 9–12. doi: 10.1016/S0008-6215(00)00311-6
    Manmai, N., Unpaprom, Y., Ponnusamy, V.K., Ramaraj, R., 2020. Bioethanol production from the comparison between optimization of sorghum stalk and sugarcane leaf for sugar production by chemical pretreatment and enzymatic degradation. Fuel 278, 118262. doi: 10.1016/j.fuel.2020.118262
    Moodley, P., Gueguim Kana, E.B., 2019. Bioethanol production from sugarcane leaf waste: effect of various optimized pretreatments and fermentation conditions on process kinetics. Biotechnol. Rep. 22, e00329. doi: 10.1016/j.btre.2019.e00329
    Patel, A., Patel, H., Divecha, J., Shah, A.R., 2021. Enhanced production of ethanol from enzymatic hydrolysate of microwave-treated wheat straw by statistical optimization and mass balance analysis of bioconversion process. Biofuels 12, 1251–1258. doi: 10.1080/17597269.2019.1608037
    Ramaraj, R., Unpaprom, Y., 2019. Optimization of pretreatment condition for ethanol production from Cyperus difformis by response surface methodology. 3 Biotech 9, 218.
    Saleem, A., Hussain, A., Chaudhary, A., Ahmad, Q.U.A., Iqtedar, M., Javid, A., Akram, A.M., 2022. Acid hydrolysis optimization of pomegranate peels waste using response surface methodology for ethanol production. Biomass Convers. Biorefinery 12, 1513–1524. doi: 10.1007/s13399-020-01117-x
    Saqib, A.A.N., Whitney, P.J., 2011. Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono- and di-saccharide sugars. Biomass Bioenergy 35, 4748–4750. doi: 10.1016/j.biombioe.2011.09.013
    Sebayang, A.H., Masjuki, H.H., Ong, H.C., Dharma, S., Silitonga, A.S., Kusumo, F., Milano, J., 2017. Optimization of bioethanol production from sorghum grains using artificial neural networks integrated with ant colony. Ind. Crops Prod. 97, 146–155. doi: 10.1016/j.indcrop.2016.11.064
    Sindhu, R., Binod, P., Pandey, A., Ankaram, S., Duan, Y.M., Awasthi, M.K., 2019. Biofuel production from biomass. Current Developments in Biotechnology and Bioengineering. Elsevier, Amsterdam, pp. 79–92.
    Singh, A., Bishnoi, N.R., 2013. Ethanol production from pretreated wheat straw hydrolyzate by Saccharomyces cerevisiae via sequential statistical optimization. Ind. Crops Prod. 41, 221–226. doi: 10.1016/j.indcrop.2012.04.036
    Sudhakar, M.P., Ravel, M., Perumal, K., 2021. Pretreatment and process optimization of bioethanol production from spent biomass of Ganoderma lucidum using Saccharomyces cerevisiae. Fuel 306, 121680. doi: 10.1016/j.fuel.2021.121680
    Sumbhate, S., Nayak, S., Goupale, D., Tiwari, A., Jadon, R.S., 2012. Colorimetric method for the estimation of ethanol in alcoholic-drinks. Journal of Analytical Techniques 1, 1–6.
    Taiwo, A., Madzimbamuto, T., Ojumu, T., 2018. Optimization of corn steep liquor dosage and other fermentation parameters for ethanol production by Saccharomyces cerevisiae type 1 and anchor instant yeast. Energies 11, 1740. doi: 10.3390/en11071740
    Taiwo, A., Nazamid, S., Abdul-Rasaq, A., 2009. Functional and pasting properties of a tropical breadfruit (Artocarpus altilis) starch from Ile-Ife, Osun State, Nigeria. International Food Research Journal 16, 151–157.
    Tasić, M.B., Konstantinović, B.V., Lazić, M.L., Veljković, V.B., 2009. The acid hydrolysis of potato tuber mash in bioethanol production. Biochem. Eng. J. 43, 208–211. doi: 10.1016/j.bej.2008.09.019
    Tenkolu, G.A., Kuffi, K.D., Gindaba, G.T., 2022. Optimization of fermentation condition in bioethanol production from waste potato and product characterization. Biomass Convers. Biorefinery 1–19.
    Tinôco, D., Genier, H.L.A., da Silveira, W.B., 2021. Technology valuation of cellulosic ethanol production by Kluyveromyces marxianus CCT 7735 from sweet sorghum bagasse at elevated temperatures. Renew. Energy 173, 188–196. doi: 10.1016/j.renene.2021.03.132
    Todhanakasem, T., Wu, B., Simeon, S., 2020. Perspectives and new directions for bioprocess optimization using Zymomonas mobilis in the ethanol production. World J. Microbiol. Biotechnol. 36, 112. doi: 10.1007/s11274-020-02885-4
    Turhan, I., Bialka, K.L., Demirci, A., Karhan, M., 2010. Ethanol production from carob extract by using Saccharomyces cerevisiae. Bioresour. Technol. 101, 5290–5296. doi: 10.1016/j.biortech.2010.01.146
    Wang, L., Zhao, X.Q., Xue, C., Bai, F.W., 2013. Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation. Biotechnol. Biofuels 6, 133. doi: 10.1186/1754-6834-6-133
    Wang, Y.P., Dai, L.L., Fan, L.L., Shan, S.Q., Liu, Y.H., Roger, R., 2016. Review of microwave-assisted lignin conversion for renewable fuels and chemicals. J. Anal. Appl. Pyrolysis 119, 104–113. doi: 10.5539/apr.v8n3p104
    Zouhair, F.Z., Kabbour, M.R., Moussaid, S., Ebich, F., Bouksaim, M., Lgaz, H., Cho, Y., Essamri, A., 2023. Fermentation process optimization by response surface methodology for bioethanol production from argane pulp hydrolysate using commercial and laboratory scale isolated Saccharomyces cerevisiae yeast. Biomass Convers. Biorefinery 1–8. doi: 10.26685/urncst.399
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(5)

    Article Metrics

    Article views (244) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return