Volume 8 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
Peifu Kong, Junichi Peter Abe, Shunsuke Masuo, Toshiharu Enomae. Preparation and characterization of tea tree oil-β-cyclodextrin microcapsules with super-high encapsulation efficiency[J]. Journal of Bioresources and Bioproducts, 2023, 8(3): 224-234. doi: 10.1016/j.jobab.2023.03.004
Citation: Peifu Kong, Junichi Peter Abe, Shunsuke Masuo, Toshiharu Enomae. Preparation and characterization of tea tree oil-β-cyclodextrin microcapsules with super-high encapsulation efficiency[J]. Journal of Bioresources and Bioproducts, 2023, 8(3): 224-234. doi: 10.1016/j.jobab.2023.03.004

Preparation and characterization of tea tree oil-β-cyclodextrin microcapsules with super-high encapsulation efficiency

doi: 10.1016/j.jobab.2023.03.004
More Information
  • This study aimed to prepare tea tree oil-β-cyclodextrin microcapsules using an optimized co-precipitated method. The impact of the volume fraction of ethanol in the solvent system for microencapsulation on encapsulation efficiency was investigated and analyzed sophisticatedly. Super-high encapsulation efficiency was achieved when a 40% volume fraction of ethanol was used for the microencapsulation procedure, where the recovery yield of microcapsules and the embedding fraction of tea tree oil in microcapsules were as high as 88.3% and 94.3%, respectively. Additionally, considering the operation cost, including time and energy consumption, an economical preparation was validated so that it would be viable for large-scale production. Based on the results of morphological and X-ray diffraction analysis, the crystal structure appeared to differ before and after microencapsulation. The results of gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy confirmed the successful formation of microcapsules. Furthermore, the antibacterial activity of the fabricated microcapsules was assessed by a simple growth inhibition test using Bacillus subtilis as the study object, and the hydrophilic property was proved by a water contact angle measurement.

     

  • There are no conflicts to declare.
    Declaration of Competing Interest
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2023.03.004.
  • loading
  • Abarca, R.L., Rodríguez, F.J., Guarda, A., Galotto, M.J., Bruna, J.E., 2016. Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem. 196, 968–975. doi: 10.1016/j.foodchem.2015.10.023
    Anaya-Castro, M.A., Ayala-Zavala, J.F., Muñoz-Castellanos, L., Hernández-Ochoa, L., Peydecastaing, J., Durrieu, V., 2017. β-Cyclodextrin inclusion complexes containing clove (Eugenia caryophyllata) and Mexican oregano (Lippia berlandieri) essential oils: preparation, physicochemical and antimicrobial characterization. Food Packag. Shelf Life 14, 96–101. doi: 10.1016/j.fpsl.2017.09.002
    Astray, G., Gonzalez-Barreiro, C., Mejuto, J.C., Rial-Otero, R., Simal-Gándara, J., 2009. A review on the use of cyclodextrins in foods. Food Hydrocoll. 23, 1631–1640. doi: 10.1016/j.foodhyd.2009.01.001
    Aytac, Z., Kusku, S.I., Durgun, E., Uyar, T., 2016. Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: slow release and high solubility. Food Chem. 197, 864–871. doi: 10.1016/j.foodchem.2015.11.051
    Barbieri, N., Sanchez-Contreras, A., Canto, A., Cauich-Rodriguez, J.V., Vargas-Coronado, R., Calvo-Irabien, L.M., 2018. Effect of cyclodextrins and Mexican oregano (Lippia graveolens Kunth) chemotypes on the microencapsulation of essential oil. Ind. Crops Prod. 121, 114–123. doi: 10.1016/j.indcrop.2018.04.081
    Castro, J.C., Pante, G.C., de Souza, D.S., Pires, T.Y., Miyoshi, J.H., Garcia, F.P., Nakamura, C.V., Mulati, A.C.N., Mossini, S.A.G., Machinski, M. Jr, Matioli, G., 2022. Molecular inclusion of Cymbopogon martinii essential oil with β-cyclodextrin as a strategy to stabilize and increase its bioactivity. Food Hydrocoll. Health 2, 100066. doi: 10.1016/j.fhfh.2022.100066
    Celebioglu, A., Ipek, S., Durgun, E., Uyar, T., 2017. Selective and efficient removal of volatile organic compounds by channel-type gamma-cyclodextrin assembly through inclusion complexation. Ind. Eng. Chem. Res. 56, 7345–7354. doi: 10.1021/acs.iecr.7b01084
    Cui, H.Y., Bai, M., Lin, L., 2018. Plasma-treated poly(ethylene oxide) nanofibers containing tea tree oil/beta-cyclodextrin inclusion complex for antibacterial packaging. Carbohydr. Polym. 179, 360–369. doi: 10.1016/j.carbpol.2017.10.011
    de Almeida Magalhães, T.S.S., de Oliveira Macedo, P.C., Kawashima Pacheco, S.Y., Silva, S.S.D., Barbosa, E.G., Pereira, R.R., Costa, R.M.R., Silva Junior, J.O.C., da Silva Ferreira, M.A., de Almeida, J.C., Rolim Neto, P.J., Converti, A., de Lima, Á. A.N., 2020. Development and evaluation of antimicrobial and modulatory activity of inclusion complex of Euterpe oleracea mart oil and β-cyclodextrin or HP-β-cyclodextrin. Int. J. Mol. Sci. 21, 942. doi: 10.3390/ijms21030942
    Dias Antunes, M., da Silva Dannenberg, G., Fiorentini, Â. M., Pinto, V.Z., Lim, L.T., da Rosa Zavareze, E., Dias, A.R.G., 2017. Antimicrobial electrospun ultrafine fibers from zein containing eucalyptus essential oil/cyclodextrin inclusion complex. Int. J. Biol. Macromol. 104, 874–882. doi: 10.1016/j.ijbiomac.2017.06.095
    Gallart-Mateu, D., Largo-Arango, C.D., Larkman, T., Garrigues, S., de la Guardia, M., 2018. Fast authentication of tea tree oil through spectroscopy. Talanta 189, 404–410. doi: 10.1016/j.talanta.2018.07.023
    Gao, S., Jiang, J.Y., Li, X.M., Liu, Y.Y., Zhao, L.X., Fu, Y., Ye, F., 2020. Enhanced physicochemical properties and herbicidal activity of an environment-friendly clathrate formed by β-cyclodextrin and herbicide cyanazine. J. Mol. Liq. 305, 112858. doi: 10.1016/j.molliq.2020.112858
    Gao, S., Liu, Y.Y., Jiang, J.Y., Li, X.M., Ye, F., Fu, Y., Zhao, L.X., 2021. Thiram/hydroxypropyl-β-cyclodextrin inclusion complex electrospun nanofibers for a fast dissolving water-based drug delivery system. Colloids Surf. B201, 111625. doi: 10.1016/j.colsurfb.2021.111625
    Herrera, A., Rodríguez, F.J., Bruna, J.E., Abarca, R.L., Galotto, M.J., Guarda, A., Mascayano, C., Sandoval-Yáñez, C., Padula, M., Felipe, F.R.S., 2019. Antifungal and physicochemical properties of inclusion complexes based on β-cyclodextrin and essential oil derivatives. Food Res. Int. 121, 127–135. doi: 10.1016/j.foodres.2019.03.026
    Hogenbom, J., Jones, A., Wang, H.V., Pickett, L.J., Faraone, N., 2021. Synthesis and characterization of β-cyclodextrin-essential oil inclusion complexes for tick repellent development. Polymers 13, 1892. doi: 10.3390/polym13111892
    Hu, Y., Qiu, C., Jin, Z.Y., Qin, Y., Zhan, C., Xu, X.M., Wang, J.P., 2020. Pickering emulsions with enhanced storage stabilities by using hybrid β-cyclodextrin/short linear glucan nanoparticles as stabilizers. Carbohydr. Polym. 229, 115418. doi: 10.1016/j.carbpol.2019.115418
    Jiang, L.W., Wang, P.Z., Kou, L.H., Wei, H.Y., Ren, L.L., Zhou, J., 2021a. Preparation and physicochemical properties of catechin/β-cyclodextrin inclusion complex nanoparticles. Food Biophys. 16, 317–324. doi: 10.1007/s11483-021-09672-0
    Jiang, S., Zhao, T.T., Wei, Y.Y., Cao, Z.D., Xu, Y.Y., Wei, J.Y., Xu, F., Wang, H.F., Shao, X.F., 2021b. Preparation and characterization of tea tree oil/hydroxypropyl-β-cyclodextrin inclusion complex and its application to control brown rot in peach fruit. Food Hydrocoll. 121, 107037. doi: 10.1016/j.foodhyd.2021.107037
    Ju, J., Chen, X.Q., Xie, Y.F., Yu, H., Guo, Y.H., Cheng, Y.L., Qian, H., Yao, W.R., 2019. Application of essential oil as a sustained release preparation in food packaging. Trends Food Sci. Technol. 92, 22–32. doi: 10.1016/j.tifs.2019.08.005
    Kfoury, M., Auezova, L., Greige-Gerges, H., Larsen, K.L., Fourmentin, S., 2016. Release studies of trans-anethole from β-cyclodextrin solid inclusion complexes by Multiple Headspace Extraction. Carbohydr. Polym. 151, 1245–1250. doi: 10.1016/j.carbpol.2016.06.079
    Kong, P.F., Abe, J.P., Enomae, T., 2022a. Preparation of antimicrobial ϐ-cyclodextrin microcapsules containing a mixture of three essential oils as an eco-friendly additive for active food packaging paper. J. Tappi J. 76, 656–662. doi: 10.2524/jtappij.76.656
    Kong, P.F., Abe, J.P., Nakagawa-izumi, A., Kajiyama, M., Enomae, T., 2022b. Preparation of an eco-friendly antibacterial agent for food packaging containing Houttuynia cordata Thunb. extract. RSC Adv. 12, 16141–16152. doi: 10.1039/d2ra02178a
    Kotronia, M., Kavetsou, E., Loupassaki, S., Kikionis, S., Vouyiouka, S., Detsi, A., 2017. Encapsulation of oregano (Origanum onites L. ) essential oil in β-cyclodextrin (β-CD): synthesis and characterization of the inclusion complexes. Bioengineering4, 74. doi: 10.3390/bioengineering4030074
    Lam, N.S., Long, X.X., Su, X.Z., Lu, F.L., 2020. Melaleuca alternifolia (tea tree) oil and its monoterpene constituents in treating protozoan and helminthic infections. Biomed. Pharmacother. 130, 110624. doi: 10.1016/j.biopha.2020.110624
    Li, P.Y., Song, J., Ni, X.M., Guo, Q., Wen, H., Zhou, Q.Y., Shen, Y.N., Huang, Y.J., Qiu, P.X., Lin, S.Z., Hu, H.Y., 2016. Comparison in toxicity and solubilizing capacity of hydroxypropyl-β-cyclodextrin with different degree of substitution. Int. J. Pharm. 513, 347–356. doi: 10.1016/j.ijpharm.2016.09.036
    Li, S.Y., Xing, P.Y., Hou, Y.H., Yang, J.S., Yang, X.Z., Wang, B., Hao, A.Y., 2013. Formation of a sheet-like hydrogel from vesicles via precipitates based on an ionic liquid-based surfactant and β-cyclodextrin. J. Mol. Liq. 188, 74–80. doi: 10.1016/j.molliq.2013.08.022
    Lin, G.Q., Chen, H.Y., Zhou, H.J., Zhou, X.H., Xu, H., 2018. Preparation of tea tree oil/poly(styrene-butyl methacrylate) microspheres with sustained release and anti-bacterial properties. Materials11, 710. doi: 10.3390/ma11050710
    Lin, Y., Huang, R., Sun, X.X., Yu, X., Xiao, Y., Wang, L., Hu, W.Z., Zhong, T., 2022. The p-Anisaldehyde/β-cyclodextrin inclusion complexes as a sustained release agent: characterization, storage stability, antibacterial and antioxidant activity. Food Control 132, 108561. doi: 10.1016/j.foodcont.2021.108561
    Lis, M.J., García Carmona, Ó., García Carmona, C., Maestá Bezerra, F., 2018. Inclusion complexes of Citronella oil with β-cyclodextrin for controlled release in biofunctional textiles. Polymers 10, 1324. doi: 10.3390/polym10121324
    Liu, Z.J., Ye, L., Xi, J.N., Wang, J., Feng, Z.G., 2021. Cyclodextrin polymers: structure, synthesis, and use as drug carriers. Prog. Polym. Sci. 118, 101408. doi: 10.1016/j.progpolymsci.2021.101408
    Ma, S.S., Zhao, Z.Y., Liu, P.H., 2018. Optimization of preparation process of β-cyclodextrin inclusion compound of clove essential oil and evaluation of heat stability and antioxidant activities in vitro. J. Food Meas. Charact. 12, 2057–2067. doi: 10.1007/s11694-018-9820-6
    Menezes, P.P., Serafini, M.R., Santana, B.V., Nunes, R.S., Quintans, L.J., Silva, G.F., Medeiros, I.A., Marchioro, M., Fraga, B.P., Santos, M.R.V., Araújo, A.A.S., 2012. Solid-state β-cyclodextrin complexes containing geraniol. Thermochim. Acta 548, 45–50. doi: 10.1016/j.tca.2012.08.023
    Mishra, A.P., Devkota, H.P., Nigam, M., Adetunji, C.O., Srivastava, N., Saklani, S., Shukla, I., Azmi, L., Ali Shariati, M., Melo Coutinho, H.D., Mousavi Khaneghah, A., 2020. Combination of essential oils in dairy products: a review of their functions and potential benefits. LWT 133, 110116. doi: 10.1016/j.lwt.2020.110116
    Munhuweyi, K., Caleb, O.J., van Reenen, A.J., Opara, U.L., 2018. Physical and antifungal properties of β-cyclodextrin microcapsules and nanofibre films containing cinnamon and oregano essential oils. LWT 87, 413–422. doi: 10.1016/j.lwt.2017.09.012
    Ning, J.X., Yue, S.L., 2019. Optimization of preparation conditions of eucalyptus essential oil microcapsules by response surface methodology. J. Food Process. Preserv. 43, e14188.
    Ogata, Y., Inoue, Y., Ikeda, N., Murata, I., Kanamoto, I., 2020. Improvement of stability due to a Cyclamen aldehyde/β-cyclodextrin inclusion complex. J. Mol. Struct. 1215, 128161. doi: 10.1016/j.molstruc.2020.128161
    Poulson, B.G., Alsulami, Q.A., Sharfalddin, A., El Agammy, E.F., Mouffouk, F., Emwas, A.H., Jaremko, L., Jaremko, M., 2021. Cyclodextrins: structural, chemical, and physical properties, and applications. Polysaccharides 3, 1–31. doi: 10.3390/polysaccharides3010001
    Reineccius, G.A., Risch, S.J., 1986. Encapsulation of artificial flavours by β-cyclodextrin. Perfum. Flavor. 11, 1–6.
    Sadgrove, N., Jones, G., 2015. A contemporary introduction to essential oils: chemistry, bioactivity and prospects for Australian agriculture. Agriculture 5, 48–102. doi: 10.3390/agriculture5010048
    Sarkar, A., Mahapatra, S., 2014. Novel hydrophobic vaterite particles for oil removal and recovery. J. Mater. Chem. A 2, 3808–3818. doi: 10.1039/c3ta14450j
    Sarkic, A., Stappen, I., 2018. Essential oils and their single compounds in cosmetics—a critical review. Cosmetics 5, 11. doi: 10.3390/cosmetics5010011
    Sathiyaseelan, A., Saravanakumar, K., Mariadoss, A.V.A., Ramachandran, C., Hu, X.W., Oh, D.H., Wang, M.H., 2021. Chitosan-tea tree oil nanoemulsion and calcium chloride tailored edible coating increase the shelf life of fresh cut red bell pepper. Prog. Org. Coat. 151, 106010. doi: 10.1016/j.porgcoat.2020.106010
    Sharma, S., Barkauskaite, S., Jaiswal, A.K., Jaiswal, S., 2021. Essential oils as additives in active food packaging. Food Chem. 343, 128403. doi: 10.1016/j.foodchem.2020.128403
    Shrestha, M., Ho, T.M., Bhandari, B.R., 2017. Encapsulation of tea tree oil by amorphous beta-cyclodextrin powder. Food Chem. 221, 1474–1483. doi: 10.1016/j.foodchem.2016.11.003
    Wang, J., Cao, Y.P., Sun, B.G., Wang, C.T., 2011. Physicochemical and release characterisation of garlic oil-β-cyclodextrin inclusion complexes. Food Chem. 127, 1680–1685. doi: 10.1016/j.foodchem.2011.02.036
    Wei, Y.Q., Zhang, J., Zhou, Y., Bei, W.Y., Li, Y., Yuan, Q.P., Liang, H., 2017. Characterization of glabridin/hydroxypropyl-β-cyclodextrin inclusion complex with robust solubility and enhanced bioactivity. Carbohydr. Polym. 159, 152–160. doi: 10.1016/j.carbpol.2016.11.093
    Wen, P., Zhu, D.H., Feng, K., Liu, F.J., Lou, W.Y., Li, N., Zong, M.H., Wu, H., 2016. Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem. 196, 996–1004. doi: 10.1016/j.foodchem.2015.10.043
    Xi, Y.K., Luo, Z.G., Lu, X.X., Peng, X.C., 2018. Modulation of cyclodextrin particle amphiphilic properties to stabilize Pickering emulsion. J. Agric. Food Chem. 66, 228–237. doi: 10.1021/acs.jafc.7b03940
    Yadav, E., Kumar, S., Mahant, S., Khatkar, S., Rao, R., 2017. Tea tree oil: a promising essential oil. J. Essent. Oil Res. 29, 201–213. doi: 10.1080/10412905.2016.1232665
    Yao, Y.S., Xie, Y., Hong, C., Li, G.W., Shen, H.Y., Ji, G., 2014. Development of a myricetin/hydroxypropyl-β-cyclodextrin inclusion complex: preparation, characterization, and evaluation. Carbohydr. Polym. 110, 329–337. doi: 10.1016/j.carbpol.2014.04.006
    Yue, Q., Shao, X.F., Wei, Y.Y., Jiang, S., Xu, F., Wang, H.F., Gao, H.Y., 2020. Optimized preparation of tea tree oil complexation and their antifungal activity against Botrytis cinerea. Postharvest Biol. Technol. 162, 111114. doi: 10.1016/j.postharvbio.2019.111114
    Zhang, N., Yao, L., 2019. Anxiolytic effect of essential oils and their constituents: a review. J. Agric. Food Chem. 67, 13790–13808. doi: 10.1021/acs.jafc.9b00433
    Zhu, G.Y., Zhu, G.X., Xiao, Z.B., 2019. A review of the production of slow-release flavor by formation inclusion complex with cyclodextrins and their derivatives. J. Inclusion Phenom. Macrocycl. Chem. 95, 17–33. doi: 10.1007/s10847-019-00929-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (278) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return