Volume 8 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
Yilin Wang, Jin Wu, Ruihan Shen, Yubao Li, Guofeng Ma, Shuang Qi, Wenjuan Wu, Yongcan Jin, Bo Jiang. A mild iodocyclohexane demethylation for highly enhancing antioxidant activity of lignin[J]. Journal of Bioresources and Bioproducts, 2023, 8(3): 306-317. doi: 10.1016/j.jobab.2023.05.001
Citation: Yilin Wang, Jin Wu, Ruihan Shen, Yubao Li, Guofeng Ma, Shuang Qi, Wenjuan Wu, Yongcan Jin, Bo Jiang. A mild iodocyclohexane demethylation for highly enhancing antioxidant activity of lignin[J]. Journal of Bioresources and Bioproducts, 2023, 8(3): 306-317. doi: 10.1016/j.jobab.2023.05.001

A mild iodocyclohexane demethylation for highly enhancing antioxidant activity of lignin

doi: 10.1016/j.jobab.2023.05.001
More Information
  • Corresponding author: E-mail address: bjiang@njfu.edu.cn (B. Jiang)
  • Received Date: 2022-12-26
  • Accepted Date: 2023-04-04
  • Rev Recd Date: 2023-03-24
  • Publish Date: 2023-07-30
  • Lignin, as a natural antioxidant, shows great potential in food engineering and medicine. However, the inherent macromolecular structure, high polydispersity, and few phenolic hydroxy seriously limit its antioxidant activity. In this work, a mild iodocyclohexane demethylation for highly improving the antioxidant activity of lignin was proposed. The results showed –OCH3 content exhibited an almost linear decrease as a function of treating time, and the demethylation and cleavage of β–aryl ether bonds prompt an obvious increase in phenolic hydroxyl content (4.01 mmol/g) and a significant decline in aliphatic hydroxyl (~0.03 mmol/g). Meanwhile, attributing to the fragmentation of β–O–4, ββ, and β–5 substructures, the polydispersity of lignin molecular weight decreases from 2.7 to 2.2. As a result, the formed catechol-typed lignin showed an outstanding antioxidant activity, with the radical (DPPH·) scavenging index (inverse of concentration for 50% of maximal effect (EC50) value) over 2 000 mL/mg, much superior to the commercial antioxidants (< 500 mL/mg). Further structure-activity relationship analysis implied that the Ph–OH/–OCH3 ratio might act as a key factor influencing the antioxidant activity of lignin. This mild demethylation demonstrates a facile and effective method for highly enhancing the antioxidant activity of lignin and makes the catechol-typed lignin a green and promising product for practical use in food, medicine, and pharmacy.

     

  • The authors have no conflicts to declare.
    Declaration of Competing Interest
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2023.05.001
    Supplementary materials
  • loading
  • Abd Halim, A.N., Abd Gani, S.S., Zaidan, U.H., Halmi, M.I.E., Wahab, N.A., Yusof, A.H.M., 2020. Potentiality of incorporating cocoa liquor in skin care cosmetics. PalArch's J. Archaeol. Egypt/Egyptol. 17, 1039–1046.
    Abreu, H.D.S., Freire, M.F.I., 1995. Methoxyl content determination of lignins by 1H NMR. An. Acad. Bras. Ci. 67, 379–382.
    Abu-Omar, M.M., Barta, K., Beckham, G.T., Luterbacher, J.S., Ralph, J., Rinaldi, R., Román-Leshkov, Y., Samec, J.S.M., Sels, B.F., Wang, F., 2021. Guidelines for performing lignin-first biorefining. Energy Environ. Sci. 14, 262–292. doi: 10.1039/d0ee02870c
    Alamed, J., Chaiyasit, W., McClements, D.J., Decker, E.A., 2009. Relationships between free radical scavenging and antioxidant activity in foods. J. Agric. Food Chem. 57, 2969–2976. doi: 10.1021/jf803436c
    An, L.L., Wang, G.H., Jia, H.Y., Liu, C.Y., Sui, W.J., Si, C.L., 2017. Fractionation of enzymatic hydrolysis lignin by sequential extraction for enhancing antioxidant performance. Int. J. Biol. Macromol. 99, 674–681. doi: 10.1016/j.ijbiomac.2017.03.015
    Argyropoulos, D.S., 1994. Quantitative phosphorus-31 NMR analysis of lignins, a new tool for the lignin chemist. J. Wood Chem. Technol. 14, 45–63. doi: 10.1080/02773819408003085
    Boerjan, W., Ralph, J., Baucher, M., 2003. Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546. doi: 10.1146/annurev.arplant.54.031902.134938
    Can, Z., Yildiz, O., Sahin, H., Akyuz Turumtay, E., Silici, S., Kolayli, S., 2015. An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem. 180, 133–141. doi: 10.1016/j.foodchem.2015.02.024
    Chang, H.B., Li, Q.S., Cui, X.M., Wang, H.X., Bu, Z.W., Qiao, C.Z., Lin, T., 2018. Conversion of carbon dioxide into cyclic carbonates using wool powder-KI as catalyst. J. CO2 Util. 24, 174–179. doi: 10.1016/j.jcou.2017.12.017
    Chung, H.Y., Washburn, N.R., 2012. Improved lignin polyurethane properties with Lewis acid treatment. ACS appl. Mater. Interfaces 4, 2840–2846. doi: 10.1021/am300425x
    Colburn, A., Vogler, R.J., Patel, A., Bezold, M., Craven, J., Liu, C.Q., Bhattacharyya, D., 2019. Composite membranes derived from cellulose and lignin sulfonate for selective separations and antifouling aspects. Nanomaterials (Basel) 9, 867. doi: 10.3390/nano9060867
    del Río, J.C., Rencoret, J., Prinsen, P., Martínez, Á. T., Ralph, J., Gutiérrez, A., 2012. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J. Agric. Food Chem. 60, 5922–5935. doi: 10.1021/jf301002n
    Demirtas, I., Erenler, R., Elmastas, M., Goktasoglu, A., 2013. Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction. Food Chem. 136, 34–40. doi: 10.1016/j.foodchem.2012.07.086
    Demmig-Adams, B., Adams Ⅲ, W.W., 2002. Antioxidants in photosynthesis and human nutrition. Science, 298, 2149–2153. doi: 10.1126/science.1078002
    Divya, K., Smitha, V., Jisha, M.S., 2018. Antifungal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as an edible coating on vegetables. Int. J. Biol. Macromol. 114, 572–577. doi: 10.1016/j.ijbiomac.2018.03.130
    Elmastas, M., Ozturk, L., Gokce, I., Erenler, R., Aboul-Enein, H.Y., 2004. Determination of antioxidant activity of marshmallow flower (Althaea officinalis L.). Anal. Lett. 37, 1859–1869. doi: 10.1081/AL-120039431
    Elmastaş, M., Telci, İ., Akşit, H., Erenler, R., 2015. Comparison of total phenolic contents and antioxidant capacities in mint genotypes used as spices/Baharat olarak kullanılan nane genotiplerinin toplam fenolik içerikleri ve antioksidan kapasitelerinin karşılaştırılması. Turk. J. Biochem. 40, 456–462.
    Erenler, R., Telci, I., Ulutas, M., Demirtas, I., Gul, F., Elmastas, M., Kayir, O., 2015. Chemical constituents, quantitative analysis and antioxidant activities of Echinacea purpurea (L.) moench and Echinacea pallida (Nutt.) Nutt. J. Food Biochem. 39, 622–630. doi: 10.1111/jfbc.12168
    Ferhan, M., Yan, N., Sain, N., 2013. A new method for demethylation of lignin from woody biomass using biophysical methods. J. Chem. Eng. Process. Technol. 4, 1–6.
    Figueiredo, P., Lintinen, K., Hirvonen, J.T., Kostiainen, M.A., Santos, H.A., 2018. Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 93, 233–269. doi: 10.1504/IJPM.2018.10010239
    Forman, H.J., Zhang, H.Q., 2021. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 689–709. doi: 10.1038/s41573-021-00233-1
    González, M.P., Vilas, A., Beiras, R., 2022. Ecotoxicological evaluation of sunscreens on marine plankton. Cosmetics 9, 20. doi: 10.3390/cosmetics9010020
    Hochegger, M., Cottyn-Boitte, B., Cézard, L., Schober, S., Mittelbach, M., 2019. Influence of ethanol organosolv pulping conditions on physicochemical lignin properties of European larch. Int. J. Chem. Eng. 2019, 1–10. doi: 10.1155/2019/1734507
    Huang, D.L., Li, R.J., Xu, P., Li, T., Deng, R., Chen, S., Zhang, Q., 2020. The cornerstone of realizing lignin value-addition: exploiting the native structure and properties of lignin by extraction methods. Chem. Eng. J. 402, 126237. doi: 10.1016/j.cej.2020.126237
    Jiang B., Zhang Y., Guo T., Zhao H., Jin Y., 2018a. Structural characterization of lignin and lignin-carbohydrate complex (LCC) from Ginkgo shells (Ginkgo biloba L.) by comprehensive NMR spectroscopy. Polymers 10, E736. doi: 10.3390/polym10070736
    Jiang, B., Cao, T.Y., Gu, F., Wu, W.J., Jin, Y.C., 2017. Comparison of the structural characteristics of cellulolytic enzyme lignin preparations isolated from wheat straw stem and leaf. ACS Sustain. Chem. Eng. 5, 342–349. doi: 10.1021/acssuschemeng.6b01710
    Jiang, B., Zhang, Y., Gu, L.H., Wu, W.J., Zhao, H.F., Jin, Y.C., 2018b. Structural elucidation and antioxidant activity of lignin isolated from rice straw and alkali‑oxygen black liquor. Int. J. Biol. Macromol. 116, 513–519. doi: 10.1016/j.ijbiomac.2018.05.063
    Jiang, B., Zhang, Y., Zhao, H.F., Guo, T.Y., Wu, W.J., Jin, Y.C., 2019. Structure-antioxidant activity relationship of active oxygen catalytic lignin and lignin-carbohydrate complex. Int. J. Biol. Macromol. 139, 21–29. doi: 10.1016/j.ijbiomac.2019.07.134
    Jiang, X., Liu, J., Du, X.Y., Hu, Z.J., Chang, H.M., Jameel, H., 2018c. Phenolation to improve lignin reactivity toward thermosets application. ACS Sustain. Chem. Eng. 6, 5504–5512. doi: 10.1021/acssuschemeng.8b00369
    Kai, D., Tan, M.J., Chee, P.L., Chua, Y.K., Yap, Y.L., Loh, X.J., 2016. Towards lignin-based functional materials in a sustainable world. Green Chem. 18, 1175–1200. doi: 10.1039/C5GC02616D
    Kanimozhi, P., Prasad, N.R., 2009. Antioxidant potential of sesamol and its role on radiation-induced DNA damage in whole-body irradiated Swiss albino mice. Environ. Toxicol. Pharmacol. 28, 192–197. doi: 10.1016/j.etap.2009.04.003
    Kim, K.H., Jeong, K., Zhuang, J.S., Jeong, H.J., Kim, C.S., Koo, B., Yoo, C.G., 2021. Tandem conversion of lignin to catechols via demethylation and catalytic hydrogenolysis. Ind. Crops Prod. 159, 113095. doi: 10.1016/j.indcrop.2020.113095
    Kozarski, M., Klaus, A., Niksic, M., Jakovljevic, D., Helsper, J.P.F.G., Van Griensven, L.J.L.D., 2011. Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chem. 129, 1667–1675. doi: 10.1016/j.foodchem.2011.06.029
    Lauberts, M., Sevastyanova, O., Ponomarenko, J., Dizhbite, T., Dobele, G., Volperts, A., Lauberte, L., Telysheva, G., 2017. Fractionation of technical lignin with ionic liquids as a method for improving purity and antioxidant activity. Ind. Crops Prod. 95, 512–520. doi: 10.1016/j.indcrop.2016.11.004
    Li, Z.L., Zhang, J.B., Qin, L., Ge, Y.Y., 2018. Enhancing antioxidant performance of lignin by enzymatic treatment with laccase. ACS Sustain. Chem. Eng. 6, 2591–2595. doi: 10.1021/acssuschemeng.7b04070
    Lu, X.Y., Gu, X.L., Shi, Y.J., 2022. A review on lignin antioxidants: their sources, isolations, antioxidant activities and various applications. Int. J. Biol. Macromol. 210, 716–741. doi: 10.1016/j.ijbiomac.2022.04.228
    Luo, H., Abu-Omar, M.M., 2017. Chemicals from Lignin. Encyclopedia of Sustainable Technologies. Elsevier, Amsterdam, pp. 573–585.
    Maluf, D.F., Gonçalves, M., D'Angelo, R., Girassol, A., Tulio, A., Pupo, Y., Farago, P., 2018. Cytoprotection of antioxidant biocompounds from grape pomace: further exfoliant phytoactive ingredients for cosmetic products. Cosmetics 5, 46. doi: 10.3390/cosmetics5030046
    Mousavioun, P., Doherty, W.O.S., 2010. Chemical and thermal properties of fractionated bagasse soda lignin. Ind. Crops Prod. 31, 52–58. doi: 10.1016/j.indcrop.2009.09.001
    Neha, K., Haider, M.R., Pathak, A., Yar, M.S., 2019. Medicinal prospects of antioxidants: a review. Eur. J. Med. Chem. 178, 687–704. doi: 10.1016/j.ejmech.2019.06.010
    Nie, J.H., Wu, Z.Y., Pang, B., Guo, Y.R., Li, S.J., Pan, Q.J., 2022. Fabrication of ZnO@plant polyphenols/cellulose as active food packaging and its enhanced antibacterial activity. Int. J. Mol. Sci. 23, 5218. doi: 10.3390/ijms23095218
    Niu, H., Song, D., Mu, H.B., Zhang, W.X., Sun, F.F., Duan, J.Y., 2016. Investigation of three lignin complexes with antioxidant and immunological capacities from Inonotus obliquus. Int. J. Biol. Macromol. 86, 587–593. doi: 10.1016/j.ijbiomac.2016.01.111
    Pan, X.J., Kadla, J.F., Ehara, K., Gilkes, N., Saddler, J.N., 2006. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J. Agric. Food Chem. 54, 5806–5813. doi: 10.1021/jf0605392
    Ride, J.P., 1975. Lignification in wounded wheat leaves in response to fungi and its possible role in resistance. Physiol. Plant Pathol. 5, 125–134. doi: 10.1016/0048-4059(75)90016-8
    Roadhouse, F.E., MacDougall, D., 1956. A study of the nature of plant lignin by means of alkaline nitrobenzene oxidation. Biochem. J. 63, 33–39. doi: 10.1042/bj0630033
    Sannigrahi, P., Ragauskas, A.J., Miller, S.J., 2010. Lignin structural modifications resulting from ethanol organosolv treatment of loblolly pine. Energy Fuels 24, 683–689. doi: 10.1021/ef900845t
    Sawamura, K., Tobimatsu, Y., Kamitakahara, H., Takano, T., 2017. Lignin functionalization through chemical demethylation: preparation and tannin-like properties of demethylated guaiacyl-type synthetic lignins. ACS Sustain. Chem. Eng. 5, 5424–5431. doi: 10.1021/acssuschemeng.7b00748
    Sheng, Y.Y., Ma, Z.H., Wang, X., Han, Y., 2022. Ethanol organosolv lignin from different agricultural residues: toward basic structural units and antioxidant activity. Food Chem. 376, 131895. doi: 10.1016/j.foodchem.2021.131895
    Shu, F., Jiang, B., Yuan, Y.F., Li, M.H., Wu, W.J., Jin, Y.C., Xiao, H.N., 2021. Biological activities and emerging roles of lignin and lignin-based products: a review. Biomacromolecules 22, 4905–4918. doi: 10.1021/acs.biomac.1c00805
    Steinhubl, S.R., 2008. Why have antioxidants failed in clinical trials? Am. J. Cardiol. 101, S14–S19.
    Sugiarto, S., Leow, Y., Tan, C.L., Wang, G., Kai, D., 2022. How far is lignin from being a biomedical material? Bioact. Mater. 8, 71–94. doi: 10.1016/j.bioactmat.2021.06.023
    Sun, R.C., 2010. Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels: Chemistry, Extractives, Lignins, Hemicelluloses and Cellulose. Elsevier, Amsterdam.
    Wang, H.F., Wang, Y.K., Yih, K.H., 2008. DPPH free-radical scavenging ability, total phenolic content, and chemical composition analysis of forty-five kinds of essential oils. J. Cosmet. Sci. 59, 509–522.
    Wang, L.Y., Lagerquist, L., Zhang, Y.C., Koppolu, R., Tirri, T., Sulaeva, I., von Schoultz, S., Vähäsalo, L., Pranovich, A., Rosenau, T., Eklund, P.C., Willför, S., Xu, C.L., Wang, X.J., 2020. Tailored thermosetting wood adhesive based on well-defined hardwood lignin fractions. ACS Sustain. Chem. Eng. 8, 13517–13526. doi: 10.1021/acssuschemeng.0c05408
    Wu, Y., Qian, Y., Lou, H.M., Yang, D.J., Qiu, X.Q., 2019. Enhancing the broad-spectrum adsorption of lignin through methoxyl activation, grafting modification, and reverse self-assembly. ACS Sustain. Chem. Eng. 7, 15966–15973. doi: 10.1021/acssuschemeng.9b02317
    Xiao, L.F., Liu, W.F., Huang, J.H., Lou, H.M., Qiu, X.Q., 2021. Study on the antioxidant activity of lignin and its application performance in SBS elastomer. Ind. Eng. Chem. Res. 60, 790–797. doi: 10.1021/acs.iecr.0c04699
    Xie, D., Gan, T., Su, C., Han, Y., Liu, Z.L., Cao, Y.F., 2020. Structural characterization and antioxidant activity of water-soluble lignin-carbohydrate complexes (LCCs) isolated from wheat straw. Int. J. Biol. Macromol. 161, 315–324. doi: 10.1016/j.ijbiomac.2020.06.049
    Ye, K., Liu, Y., Wu, S.B., Zhuang, J.P., 2021. A review for lignin valorization: challenges and perspectives in catalytic hydrogenolysis. Ind. Crops Prod. 172, 114008. doi: 10.1016/j.indcrop.2021.114008
    Yu, X.N., Chen, S.S., Wang, W.C., Deng, T.S., Wang, H.L., 2022. Empowering alkali lignin with high performance in pickering emulsion by selective phenolation for the protection and controlled-release of agrochemical. J. Clean. Prod. 339, 130769. doi: 10.1016/j.jclepro.2022.130769
    Zhang, A.P., Liu, C.F., Sun, R.C., Xie, J., 2013. Extraction, purification, and characterization of lignin fractions from sugarcane bagasse. BioResources 8, 1604–1614.
    Zhao, L.S., Ouyang, X.P., Ma, G.F., Qian, Y., Qiu, X.Q., Ruan, T., 2018. Improving antioxidant activity of lignin by hydrogenolysis. Ind. Crops Prod. 125, 228–235. doi: 10.1016/j.indcrop.2018.09.002
    Zheng, L.M., Lu, G., Pei, W.H., Yan, W.J., Li, Y.X., Zhang, L., Huang, C.X., Jiang, Q., 2021. Understanding the relationship between the structural properties of lignin and their biological activities. Int. J. Biol. Macromol. 190, 291–300. doi: 10.1016/j.ijbiomac.2021.08.168
    Zhong, Y.J., Seidi, F., Wang, Y.L., Zheng, L., Jin, Y.C., Xiao, H.N., 2022. Injectable chitosan hydrogels tailored with antibacterial and antioxidant dual functions for regenerative wound healing. Carbohydr. Polym. 298, 120103. doi: 10.1016/j.carbpol.2022.120103
    Zhou, Q.W., Chen, J.C., Wang, C., Yang, G.H., Ji, X.X., Peng, J.M., Xu, F., 2020. Quantitative structures and thermal properties of Miscanthus × giganteus lignin after alcoholamine-based ionic liquid pretreatment. Ind. Crops Prod. 147, 112232. doi: 10.1016/j.indcrop.2020.112232
    Zhu, B., Wang, K.H., Liang, Z.L., Zhu, Z.J., Yang, J., 2022. Transcriptome analysis of glutathione response: RNA-seq provides insights into balance between antioxidant response and glucosinolate metabolism. Antioxidants (Basel) 11, 1322. doi: 10.3390/antiox11071322
    Zou, C.Y., Li, J.Q., Wu, W.J., 2022. Study on differences in the enzyme hydrolysis induced from lignins from diverse types of lignocellulosic biomass. Energy Sources A Recov. Util. Environ. Eff. 44, 9293–9309. doi: 10.1080/15567036.2022.2130475
    Zuo, L., Yao, S.Y., Wang, W., Duan, W.H., 2008. An efficient method for demethylation of aryl methyl ethers. Tetrahedron Lett. 49, 4054–4056. doi: 10.1016/j.tetlet.2008.04.070
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (205) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return