Citation: | Yilin Wang, Jin Wu, Ruihan Shen, Yubao Li, Guofeng Ma, Shuang Qi, Wenjuan Wu, Yongcan Jin, Bo Jiang. A mild iodocyclohexane demethylation for highly enhancing antioxidant activity of lignin[J]. Journal of Bioresources and Bioproducts, 2023, 8(3): 306-317. doi: 10.1016/j.jobab.2023.05.001 |
Abd Halim, A.N., Abd Gani, S.S., Zaidan, U.H., Halmi, M.I.E., Wahab, N.A., Yusof, A.H.M., 2020. Potentiality of incorporating cocoa liquor in skin care cosmetics. PalArch's J. Archaeol. Egypt/Egyptol. 17, 1039–1046.
|
Abreu, H.D.S., Freire, M.F.I., 1995. Methoxyl content determination of lignins by 1H NMR. An. Acad. Bras. Ci. 67, 379–382.
|
Abu-Omar, M.M., Barta, K., Beckham, G.T., Luterbacher, J.S., Ralph, J., Rinaldi, R., Román-Leshkov, Y., Samec, J.S.M., Sels, B.F., Wang, F., 2021. Guidelines for performing lignin-first biorefining. Energy Environ. Sci. 14, 262–292. doi: 10.1039/d0ee02870c
|
Alamed, J., Chaiyasit, W., McClements, D.J., Decker, E.A., 2009. Relationships between free radical scavenging and antioxidant activity in foods. J. Agric. Food Chem. 57, 2969–2976. doi: 10.1021/jf803436c
|
An, L.L., Wang, G.H., Jia, H.Y., Liu, C.Y., Sui, W.J., Si, C.L., 2017. Fractionation of enzymatic hydrolysis lignin by sequential extraction for enhancing antioxidant performance. Int. J. Biol. Macromol. 99, 674–681. doi: 10.1016/j.ijbiomac.2017.03.015
|
Argyropoulos, D.S., 1994. Quantitative phosphorus-31 NMR analysis of lignins, a new tool for the lignin chemist. J. Wood Chem. Technol. 14, 45–63. doi: 10.1080/02773819408003085
|
Boerjan, W., Ralph, J., Baucher, M., 2003. Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546. doi: 10.1146/annurev.arplant.54.031902.134938
|
Can, Z., Yildiz, O., Sahin, H., Akyuz Turumtay, E., Silici, S., Kolayli, S., 2015. An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem. 180, 133–141. doi: 10.1016/j.foodchem.2015.02.024
|
Chang, H.B., Li, Q.S., Cui, X.M., Wang, H.X., Bu, Z.W., Qiao, C.Z., Lin, T., 2018. Conversion of carbon dioxide into cyclic carbonates using wool powder-KI as catalyst. J. CO2 Util. 24, 174–179. doi: 10.1016/j.jcou.2017.12.017
|
Chung, H.Y., Washburn, N.R., 2012. Improved lignin polyurethane properties with Lewis acid treatment. ACS appl. Mater. Interfaces 4, 2840–2846. doi: 10.1021/am300425x
|
Colburn, A., Vogler, R.J., Patel, A., Bezold, M., Craven, J., Liu, C.Q., Bhattacharyya, D., 2019. Composite membranes derived from cellulose and lignin sulfonate for selective separations and antifouling aspects. Nanomaterials (Basel) 9, 867. doi: 10.3390/nano9060867
|
del Río, J.C., Rencoret, J., Prinsen, P., Martínez, Á. T., Ralph, J., Gutiérrez, A., 2012. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J. Agric. Food Chem. 60, 5922–5935. doi: 10.1021/jf301002n
|
Demirtas, I., Erenler, R., Elmastas, M., Goktasoglu, A., 2013. Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction. Food Chem. 136, 34–40. doi: 10.1016/j.foodchem.2012.07.086
|
Demmig-Adams, B., Adams Ⅲ, W.W., 2002. Antioxidants in photosynthesis and human nutrition. Science, 298, 2149–2153. doi: 10.1126/science.1078002
|
Divya, K., Smitha, V., Jisha, M.S., 2018. Antifungal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as an edible coating on vegetables. Int. J. Biol. Macromol. 114, 572–577. doi: 10.1016/j.ijbiomac.2018.03.130
|
Elmastas, M., Ozturk, L., Gokce, I., Erenler, R., Aboul-Enein, H.Y., 2004. Determination of antioxidant activity of marshmallow flower (Althaea officinalis L.). Anal. Lett. 37, 1859–1869. doi: 10.1081/AL-120039431
|
Elmastaş, M., Telci, İ., Akşit, H., Erenler, R., 2015. Comparison of total phenolic contents and antioxidant capacities in mint genotypes used as spices/Baharat olarak kullanılan nane genotiplerinin toplam fenolik içerikleri ve antioksidan kapasitelerinin karşılaştırılması. Turk. J. Biochem. 40, 456–462.
|
Erenler, R., Telci, I., Ulutas, M., Demirtas, I., Gul, F., Elmastas, M., Kayir, O., 2015. Chemical constituents, quantitative analysis and antioxidant activities of Echinacea purpurea (L.) moench and Echinacea pallida (Nutt.) Nutt. J. Food Biochem. 39, 622–630. doi: 10.1111/jfbc.12168
|
Ferhan, M., Yan, N., Sain, N., 2013. A new method for demethylation of lignin from woody biomass using biophysical methods. J. Chem. Eng. Process. Technol. 4, 1–6.
|
Figueiredo, P., Lintinen, K., Hirvonen, J.T., Kostiainen, M.A., Santos, H.A., 2018. Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 93, 233–269. doi: 10.1504/IJPM.2018.10010239
|
Forman, H.J., Zhang, H.Q., 2021. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 689–709. doi: 10.1038/s41573-021-00233-1
|
González, M.P., Vilas, A., Beiras, R., 2022. Ecotoxicological evaluation of sunscreens on marine plankton. Cosmetics 9, 20. doi: 10.3390/cosmetics9010020
|
Hochegger, M., Cottyn-Boitte, B., Cézard, L., Schober, S., Mittelbach, M., 2019. Influence of ethanol organosolv pulping conditions on physicochemical lignin properties of European larch. Int. J. Chem. Eng. 2019, 1–10. doi: 10.1155/2019/1734507
|
Huang, D.L., Li, R.J., Xu, P., Li, T., Deng, R., Chen, S., Zhang, Q., 2020. The cornerstone of realizing lignin value-addition: exploiting the native structure and properties of lignin by extraction methods. Chem. Eng. J. 402, 126237. doi: 10.1016/j.cej.2020.126237
|
Jiang B., Zhang Y., Guo T., Zhao H., Jin Y., 2018a. Structural characterization of lignin and lignin-carbohydrate complex (LCC) from Ginkgo shells (Ginkgo biloba L.) by comprehensive NMR spectroscopy. Polymers 10, E736. doi: 10.3390/polym10070736
|
Jiang, B., Cao, T.Y., Gu, F., Wu, W.J., Jin, Y.C., 2017. Comparison of the structural characteristics of cellulolytic enzyme lignin preparations isolated from wheat straw stem and leaf. ACS Sustain. Chem. Eng. 5, 342–349. doi: 10.1021/acssuschemeng.6b01710
|
Jiang, B., Zhang, Y., Gu, L.H., Wu, W.J., Zhao, H.F., Jin, Y.C., 2018b. Structural elucidation and antioxidant activity of lignin isolated from rice straw and alkali‑oxygen black liquor. Int. J. Biol. Macromol. 116, 513–519. doi: 10.1016/j.ijbiomac.2018.05.063
|
Jiang, B., Zhang, Y., Zhao, H.F., Guo, T.Y., Wu, W.J., Jin, Y.C., 2019. Structure-antioxidant activity relationship of active oxygen catalytic lignin and lignin-carbohydrate complex. Int. J. Biol. Macromol. 139, 21–29. doi: 10.1016/j.ijbiomac.2019.07.134
|
Jiang, X., Liu, J., Du, X.Y., Hu, Z.J., Chang, H.M., Jameel, H., 2018c. Phenolation to improve lignin reactivity toward thermosets application. ACS Sustain. Chem. Eng. 6, 5504–5512. doi: 10.1021/acssuschemeng.8b00369
|
Kai, D., Tan, M.J., Chee, P.L., Chua, Y.K., Yap, Y.L., Loh, X.J., 2016. Towards lignin-based functional materials in a sustainable world. Green Chem. 18, 1175–1200. doi: 10.1039/C5GC02616D
|
Kanimozhi, P., Prasad, N.R., 2009. Antioxidant potential of sesamol and its role on radiation-induced DNA damage in whole-body irradiated Swiss albino mice. Environ. Toxicol. Pharmacol. 28, 192–197. doi: 10.1016/j.etap.2009.04.003
|
Kim, K.H., Jeong, K., Zhuang, J.S., Jeong, H.J., Kim, C.S., Koo, B., Yoo, C.G., 2021. Tandem conversion of lignin to catechols via demethylation and catalytic hydrogenolysis. Ind. Crops Prod. 159, 113095. doi: 10.1016/j.indcrop.2020.113095
|
Kozarski, M., Klaus, A., Niksic, M., Jakovljevic, D., Helsper, J.P.F.G., Van Griensven, L.J.L.D., 2011. Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chem. 129, 1667–1675. doi: 10.1016/j.foodchem.2011.06.029
|
Lauberts, M., Sevastyanova, O., Ponomarenko, J., Dizhbite, T., Dobele, G., Volperts, A., Lauberte, L., Telysheva, G., 2017. Fractionation of technical lignin with ionic liquids as a method for improving purity and antioxidant activity. Ind. Crops Prod. 95, 512–520. doi: 10.1016/j.indcrop.2016.11.004
|
Li, Z.L., Zhang, J.B., Qin, L., Ge, Y.Y., 2018. Enhancing antioxidant performance of lignin by enzymatic treatment with laccase. ACS Sustain. Chem. Eng. 6, 2591–2595. doi: 10.1021/acssuschemeng.7b04070
|
Lu, X.Y., Gu, X.L., Shi, Y.J., 2022. A review on lignin antioxidants: their sources, isolations, antioxidant activities and various applications. Int. J. Biol. Macromol. 210, 716–741. doi: 10.1016/j.ijbiomac.2022.04.228
|
Luo, H., Abu-Omar, M.M., 2017. Chemicals from Lignin. Encyclopedia of Sustainable Technologies. Elsevier, Amsterdam, pp. 573–585.
|
Maluf, D.F., Gonçalves, M., D'Angelo, R., Girassol, A., Tulio, A., Pupo, Y., Farago, P., 2018. Cytoprotection of antioxidant biocompounds from grape pomace: further exfoliant phytoactive ingredients for cosmetic products. Cosmetics 5, 46. doi: 10.3390/cosmetics5030046
|
Mousavioun, P., Doherty, W.O.S., 2010. Chemical and thermal properties of fractionated bagasse soda lignin. Ind. Crops Prod. 31, 52–58. doi: 10.1016/j.indcrop.2009.09.001
|
Neha, K., Haider, M.R., Pathak, A., Yar, M.S., 2019. Medicinal prospects of antioxidants: a review. Eur. J. Med. Chem. 178, 687–704. doi: 10.1016/j.ejmech.2019.06.010
|
Nie, J.H., Wu, Z.Y., Pang, B., Guo, Y.R., Li, S.J., Pan, Q.J., 2022. Fabrication of ZnO@plant polyphenols/cellulose as active food packaging and its enhanced antibacterial activity. Int. J. Mol. Sci. 23, 5218. doi: 10.3390/ijms23095218
|
Niu, H., Song, D., Mu, H.B., Zhang, W.X., Sun, F.F., Duan, J.Y., 2016. Investigation of three lignin complexes with antioxidant and immunological capacities from Inonotus obliquus. Int. J. Biol. Macromol. 86, 587–593. doi: 10.1016/j.ijbiomac.2016.01.111
|
Pan, X.J., Kadla, J.F., Ehara, K., Gilkes, N., Saddler, J.N., 2006. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J. Agric. Food Chem. 54, 5806–5813. doi: 10.1021/jf0605392
|
Ride, J.P., 1975. Lignification in wounded wheat leaves in response to fungi and its possible role in resistance. Physiol. Plant Pathol. 5, 125–134. doi: 10.1016/0048-4059(75)90016-8
|
Roadhouse, F.E., MacDougall, D., 1956. A study of the nature of plant lignin by means of alkaline nitrobenzene oxidation. Biochem. J. 63, 33–39. doi: 10.1042/bj0630033
|
Sannigrahi, P., Ragauskas, A.J., Miller, S.J., 2010. Lignin structural modifications resulting from ethanol organosolv treatment of loblolly pine. Energy Fuels 24, 683–689. doi: 10.1021/ef900845t
|
Sawamura, K., Tobimatsu, Y., Kamitakahara, H., Takano, T., 2017. Lignin functionalization through chemical demethylation: preparation and tannin-like properties of demethylated guaiacyl-type synthetic lignins. ACS Sustain. Chem. Eng. 5, 5424–5431. doi: 10.1021/acssuschemeng.7b00748
|
Sheng, Y.Y., Ma, Z.H., Wang, X., Han, Y., 2022. Ethanol organosolv lignin from different agricultural residues: toward basic structural units and antioxidant activity. Food Chem. 376, 131895. doi: 10.1016/j.foodchem.2021.131895
|
Shu, F., Jiang, B., Yuan, Y.F., Li, M.H., Wu, W.J., Jin, Y.C., Xiao, H.N., 2021. Biological activities and emerging roles of lignin and lignin-based products: a review. Biomacromolecules 22, 4905–4918. doi: 10.1021/acs.biomac.1c00805
|
Steinhubl, S.R., 2008. Why have antioxidants failed in clinical trials? Am. J. Cardiol. 101, S14–S19.
|
Sugiarto, S., Leow, Y., Tan, C.L., Wang, G., Kai, D., 2022. How far is lignin from being a biomedical material? Bioact. Mater. 8, 71–94. doi: 10.1016/j.bioactmat.2021.06.023
|
Sun, R.C., 2010. Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels: Chemistry, Extractives, Lignins, Hemicelluloses and Cellulose. Elsevier, Amsterdam.
|
Wang, H.F., Wang, Y.K., Yih, K.H., 2008. DPPH free-radical scavenging ability, total phenolic content, and chemical composition analysis of forty-five kinds of essential oils. J. Cosmet. Sci. 59, 509–522.
|
Wang, L.Y., Lagerquist, L., Zhang, Y.C., Koppolu, R., Tirri, T., Sulaeva, I., von Schoultz, S., Vähäsalo, L., Pranovich, A., Rosenau, T., Eklund, P.C., Willför, S., Xu, C.L., Wang, X.J., 2020. Tailored thermosetting wood adhesive based on well-defined hardwood lignin fractions. ACS Sustain. Chem. Eng. 8, 13517–13526. doi: 10.1021/acssuschemeng.0c05408
|
Wu, Y., Qian, Y., Lou, H.M., Yang, D.J., Qiu, X.Q., 2019. Enhancing the broad-spectrum adsorption of lignin through methoxyl activation, grafting modification, and reverse self-assembly. ACS Sustain. Chem. Eng. 7, 15966–15973. doi: 10.1021/acssuschemeng.9b02317
|
Xiao, L.F., Liu, W.F., Huang, J.H., Lou, H.M., Qiu, X.Q., 2021. Study on the antioxidant activity of lignin and its application performance in SBS elastomer. Ind. Eng. Chem. Res. 60, 790–797. doi: 10.1021/acs.iecr.0c04699
|
Xie, D., Gan, T., Su, C., Han, Y., Liu, Z.L., Cao, Y.F., 2020. Structural characterization and antioxidant activity of water-soluble lignin-carbohydrate complexes (LCCs) isolated from wheat straw. Int. J. Biol. Macromol. 161, 315–324. doi: 10.1016/j.ijbiomac.2020.06.049
|
Ye, K., Liu, Y., Wu, S.B., Zhuang, J.P., 2021. A review for lignin valorization: challenges and perspectives in catalytic hydrogenolysis. Ind. Crops Prod. 172, 114008. doi: 10.1016/j.indcrop.2021.114008
|
Yu, X.N., Chen, S.S., Wang, W.C., Deng, T.S., Wang, H.L., 2022. Empowering alkali lignin with high performance in pickering emulsion by selective phenolation for the protection and controlled-release of agrochemical. J. Clean. Prod. 339, 130769. doi: 10.1016/j.jclepro.2022.130769
|
Zhang, A.P., Liu, C.F., Sun, R.C., Xie, J., 2013. Extraction, purification, and characterization of lignin fractions from sugarcane bagasse. BioResources 8, 1604–1614.
|
Zhao, L.S., Ouyang, X.P., Ma, G.F., Qian, Y., Qiu, X.Q., Ruan, T., 2018. Improving antioxidant activity of lignin by hydrogenolysis. Ind. Crops Prod. 125, 228–235. doi: 10.1016/j.indcrop.2018.09.002
|
Zheng, L.M., Lu, G., Pei, W.H., Yan, W.J., Li, Y.X., Zhang, L., Huang, C.X., Jiang, Q., 2021. Understanding the relationship between the structural properties of lignin and their biological activities. Int. J. Biol. Macromol. 190, 291–300. doi: 10.1016/j.ijbiomac.2021.08.168
|
Zhong, Y.J., Seidi, F., Wang, Y.L., Zheng, L., Jin, Y.C., Xiao, H.N., 2022. Injectable chitosan hydrogels tailored with antibacterial and antioxidant dual functions for regenerative wound healing. Carbohydr. Polym. 298, 120103. doi: 10.1016/j.carbpol.2022.120103
|
Zhou, Q.W., Chen, J.C., Wang, C., Yang, G.H., Ji, X.X., Peng, J.M., Xu, F., 2020. Quantitative structures and thermal properties of Miscanthus × giganteus lignin after alcoholamine-based ionic liquid pretreatment. Ind. Crops Prod. 147, 112232. doi: 10.1016/j.indcrop.2020.112232
|
Zhu, B., Wang, K.H., Liang, Z.L., Zhu, Z.J., Yang, J., 2022. Transcriptome analysis of glutathione response: RNA-seq provides insights into balance between antioxidant response and glucosinolate metabolism. Antioxidants (Basel) 11, 1322. doi: 10.3390/antiox11071322
|
Zou, C.Y., Li, J.Q., Wu, W.J., 2022. Study on differences in the enzyme hydrolysis induced from lignins from diverse types of lignocellulosic biomass. Energy Sources A Recov. Util. Environ. Eff. 44, 9293–9309. doi: 10.1080/15567036.2022.2130475
|
Zuo, L., Yao, S.Y., Wang, W., Duan, W.H., 2008. An efficient method for demethylation of aryl methyl ethers. Tetrahedron Lett. 49, 4054–4056. doi: 10.1016/j.tetlet.2008.04.070
|