Volume 8 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
Zhen Shang, Xingye An, Shuangxi Nie, Na Li, Haibing Cao, Zhengbai Cheng, Hongbin Liu, Yonghao Ni, Liqin Liu. Design of B/N Co-doped micro/meso porous carbon electrodes from CNF/BNNS/ZIF-8 nanocomposites for advanced supercapacitors[J]. Journal of Bioresources and Bioproducts, 2023, 8(3): 292-305. doi: 10.1016/j.jobab.2023.05.002
Citation: Zhen Shang, Xingye An, Shuangxi Nie, Na Li, Haibing Cao, Zhengbai Cheng, Hongbin Liu, Yonghao Ni, Liqin Liu. Design of B/N Co-doped micro/meso porous carbon electrodes from CNF/BNNS/ZIF-8 nanocomposites for advanced supercapacitors[J]. Journal of Bioresources and Bioproducts, 2023, 8(3): 292-305. doi: 10.1016/j.jobab.2023.05.002

Design of B/N Co-doped micro/meso porous carbon electrodes from CNF/BNNS/ZIF-8 nanocomposites for advanced supercapacitors

doi: 10.1016/j.jobab.2023.05.002
More Information
  • Corresponding author: E-mail address: anxingye@tust.edu.cn (X. An); E-mail address: yonghao@unb.ca (Y. Ni); E-mail address: liuliqin@tust.edu.cn (L. Liu)
  • Received Date: 2022-11-13
  • Accepted Date: 2023-05-04
  • Rev Recd Date: 2023-04-21
  • Available Online: 2023-07-04
  • Publish Date: 2023-07-30
  • Boron (B) and nitrogen (N) co-doped 3D hierarchical micro/meso porous carbon (BNPC) were successfully fabricated from cellulose nanofiber (CNF)/ boron nitride nanosheets (BNNS)/ zinc-methylimidazolate framework-8 (ZIF-8) nanocomposites prepared by 2D BNNS, ZIF-8 nanoparticles, and wheat straw based CNFs. Herein, CNF/ZIF-8 acts as versatile skeleton and imparts partial N dopant into porous carbon structure, while the introduced BNNS can help strengthen the hierarchical porous superstructure and endow abundant B/N co-dopants within BNPC matrix. The obtained BNPC electrode possesses a high specific surface area of 505.4 m2/g, high B/N co-doping content, and desirable hydrophilicity. Supercapacitors assembled with BNPC-2 (B/N co-doped porous carbon with a CNF/BNNS mass ratio of 1꞉2) electrodes exhibited exceptional electrochemical performance, demonstrating high capacitance stability even after 5 000 charge-discharge cycles. The devices exhibited outstanding energy density and power density, as well as the highest specific capacitance of 433.4 F/g at 1.0 A/g, when compared with other similar reports. This study proposes a facile and sustainable strategy for efficiently fabrication of rich B/N co-doped hierarchical micro/meso porous carbon electrodes from agricultural waste biomass for advanced supercapacitor performance.

     

  • Declaration of availability of data and materials
    The data and materials are available and will be kindly provided if required.
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Declaration of Competing Interest
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2023.05.002.
  • loading
  • Agari, Y., Uno, T., 1985. Thermal conductivity of polymer filled with carbon materials: effect of conductive particle chains on thermal conductivity. J. Appl. Polym. Sci. 30, 2225–2235. doi: 10.1002/app.1985.070300534
    Bian, W., Wang, X., Wang, Y.K., Yang, H.F., Huang, J.L., Cai, Z.W., Choi, M.M.F., 2018. Boron and nitrogen co-doped carbon dots as a sensitive fluorescent probe for the detection of curcumin. Luminescence 33, 174–180. doi: 10.1002/bio.3390
    Candelaria, S.L., Shao, Y.Y., Zhou, W., Li, X.L., Xiao, J., Zhang, J.G., Wang, Y., Liu, J., Li, J.H., Cao, G.Z., 2012. Nanostructured carbon for energy storage and conversion. Nano Energy 1, 195–220. doi: 10.1016/j.nanoen.2011.11.006
    Chen, C.J., Hu, L.B., 2018. Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc. Chem. Res. 51, 3154–3165. doi: 10.1021/acs.accounts.8b00391
    Chen, H., Liu, T., Mou, J.R., Zhang, W.J., Jiang, Z.J., Liu, J., Huang, J.L., Liu, M.L., 2019. Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors. Nano Energy 63, 103836. doi: 10.1016/j.nanoen.2019.06.032
    Chen, J., Huang, X.Y., Zhu, Y.K., Jiang, P.K., 2017. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct. Mater. 27, 1604754. doi: 10.1002/adfm.201604754
    Chen, L.F., Huang, Z.H., Liang, H.W., Gao, H.L., Yu, S.H., 2014. Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv. Funct. Mater. 24, 5104–5111. doi: 10.1002/adfm.201400590
    Chen, Z., Hou, L.Q., Cao, Y., Tang, Y.S., Li, Y.F., 2018. Gram-scale production of B, N co-doped graphene-like carbon for high performance supercapacitor electrodes. Appl. Surf. Sci. 435, 937–944. doi: 10.1016/j.apsusc.2017.11.159
    Cheng, Y.L., Huang, L., Xiao, X., Yao, B., Yuan, L.Y., Li, T.Q., Hu, Z.M., Wang, B., Wan, J., Zhou, J., 2015. Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 15, 66–74. doi: 10.1016/j.nanoen.2015.04.007
    Costentin, C., Porter, T.R., Savéant, J.M., 2017. How do pseudocapacitors store energy? theoretical analysis and experimental illustration. ACS Appl. Mater. Interfaces 9, 8649–8658. doi: 10.1021/acsami.6b14100
    Deng, X.Y., Li, J.J., Zhu, S., Ma, L.Y., Zhao, N.Q., 2019. Boosting the capacitive storage performance of MOF-derived carbon frameworks via structural modulation for supercapacitors. Energy Storage Mater 23, 491–498. doi: 10.1016/j.ensm.2019.04.015
    Deniz, İ., Kırcı, H., Ates, S., 2004. Optimisation of wheat straw Triticum drum kraft pulping. Ind. Crops Prod. 19, 237–243. doi: 10.1016/j.indcrop.2003.10.011
    Dubey, R., Guruviah, V., 2019. Review of carbon-based electrode materials for supercapacitor energy storage. Ionics (Kiel) 25, 1419–1445. doi: 10.1007/s11581-019-02874-0
    Ferrari, A.C., 2007. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57. doi: 10.3917/jdp.250.0047
    Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C.C., Zhi, C.Y., 2010. Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993. doi: 10.1021/nn1006495
    Guo, J.H., Yu, Y.R., Sun, L.Y., Zhang, Z.H., Zhao, Y.J., Chai, R.J., Shi, K.Q., 2020. Bio-inspired multicomponent carbon nanotube microfibers from microfluidics for supercapacitor. Chem. Eng. J. 397, 125517. doi: 10.1016/j.cej.2020.125517
    Hedjazi, S., Kordsachia, O., Patt, R., Latibari, A.J., Tschirner, U., 2009. Alkaline sulfite–anthraquinone (AS/AQ) pulping of wheat straw and totally chlorine free (TCF) bleaching of pulps. Ind. Crops Prod. 29, 27–36. doi: 10.1016/j.indcrop.2008.03.013
    Kim, B.H., Yang, K.S., 2013. Enhanced electrical capacitance of porous carbon nanofibers derived from polyacrylonitrile and boron trioxide. Electrochim. Acta 88, 597–603. doi: 10.1016/j.electacta.2012.10.123
    Kim, J.G., Kim, H.C., Kim, N.D., Khil, M.S., 2020. N-doped hierarchical porous hollow carbon nanofibers based on PAN/PVP@SAN structure for high performance supercapacitor. Compos. B Eng. 186, 107825. doi: 10.1016/j.compositesb.2020.107825
    Lamm, M.E., Li, K., Qian, J., Wang, L., Lavoine, N., Newman, R., Gardner, D.J., Li, T., Hu, L.B., Ragauskas, A.J., Tekinalp, H., Kunc, V., Ozcan, S., 2021. Recent advances in functional materials through cellulose nanofiber templating. Adv. Mater. 33, 2005538. doi: 10.1002/adma.202005538
    Li, J., Wang, Y.J., Zhang, L., Xu, Z.Y., Dai, H.Q., Wu, W.B., 2019. Nanocellulose/gelatin composite cryogels for controlled drug release. ACS Sustain. Chem. Eng. 7, 6381–6389. doi: 10.1021/acssuschemeng.9b00161
    Li, Z.W., Mi, H.Y., Liu, L., Bai, Z.Y., Zhang, J.P., Zhang, Q., Qiu, J.S., 2018. Nano-sized ZIF-8 anchored polyelectrolyte-decorated silica for nitrogen-rich hollow carbon shell frameworks toward alkaline and neutral supercapacitors. Carbon 136, 176–186. doi: 10.1016/j.carbon.2018.04.075
    Lin, T.Q., Chen, I., Liu, F.X., Yang, C.Y., Bi, H., Xu, F.F., Huang, F.Q., 2015. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513. doi: 10.1126/science.aab3798
    Louis, A.C.F., Venkatachalam, S., Gupta, S., 2022. Innovative strategy for rice straw valorization into nanocellulose and nanohemicellulose and its application. Ind. Crops Prod. 179, 114695. doi: 10.1016/j.indcrop.2022.114695
    Ma, L.Y., Liu, J., Lv, S., Zhou, Q., Shen, X.Y., Mo, S.B., Tong, H., 2019. Scalable one-step synthesis of N, S co-doped graphene-enhanced hierarchical porous carbon foam for high-performance solid-state supercapacitors. J. Mater. Chem. A 7, 7591–7603. doi: 10.1039/c9ta00038k
    Maity, C.K., Hatui, G., Sahoo, S., Saren, P., Nayak, G.C., 2019. Boron nitride based ternary nanocomposites with different carbonaceous materials decorated by polyaniline for supercapacitor application. ChemistrySelect 4, 3672–3680. doi: 10.1002/slct.201803560
    Martelli-Tosi, M., Masson, M.M., Silva, N.C., Esposto, B.S., Barros, T.T., Assis, O.B.G., Tapia-Blácido, D.R., 2018. Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films. Carbohydr. Polym. 198, 61–68. doi: 10.1016/j.carbpol.2018.06.053
    Nechyporchuk, O., Belgacem, M.N., Bras, J., 2016. Production of cellulose nanofibrils: a review of recent advances. Ind. Crops Prod. 93, 2–25. doi: 10.1016/j.indcrop.2016.02.016
    Nehra, P., Chauhan, R.P., 2022. Facile synthesis of nanocellulose from wheat straw as an agricultural waste. Iran. Polym. J. 31, 771–778. doi: 10.1007/s13726-022-01040-0
    Patil, I.M., Kapse, S., Parse, H., Thapa, R., Andersson, G., Kakade, B., 2020. 2D/3D heterostructure of h-BN/reduced graphite oxide as a remarkable electrode material for supercapacitor. J. Power Sources 479, 229092. doi: 10.1016/j.jpowsour.2020.229092
    Peng, Z.Y., Zou, Y.B., Xu, S.Q., Zhong, W.B., Yang, W.T., 2018. High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels. ACS Appl. Mater. Interfaces 10, 22190–22200. doi: 10.1021/acsami.8b05171
    Pires, J.R.A., Souza, V.G.L., Fernando, A.L., 2019. Valorization of energy crops as a source for nanocellulose production–current knowledge and future prospects. Ind. Crops Prod. 140, 111642. doi: 10.1016/j.indcrop.2019.111642
    Puziy, A.M., Poddubnaya, O.I., Gawdzik, B., Tascón, J.M.D., 2020. Phosphorus-containing carbons: preparation, properties and utilization. Carbon N Y 157, 796–846. doi: 10.1016/j.carbon.2019.10.018
    Ratajczak, P., Suss, M.E., Kaasik, F., Béguin, F., 2019. Carbon electrodes for capacitive technologies. Energy Storage Mater. 16, 126–145. doi: 10.1016/j.ensm.2018.04.031
    Raza, W., Ali, F., Raza, N., Luo, Y.W., Kim, K.H., Yang, J.H., Kumar, S., Mehmood, A., Kwon, E.E., 2018. Recent advancements in supercapacitor technology. Nano Energy 52, 441–473. doi: 10.1016/j.nanoen.2018.08.013
    Rezanezhad, S., Nazanezhad, N., Asadpur, G., 2015. Isolation of nanocellulose from rice waste via ultrasonication. Lignocellulose 2, 282–291. http://www.researchgate.net/publication/353287787_Isolation_of_Nanocellulose_from_Rice_Waste_via_Ultrasonication/download
    Saha, S., Jana, M., Samanta, P., Murmu, N.C., Kim, N.H., Kuila, T., Lee, J.H., 2017. Investigation of band structure and electrochemical properties of h-BN/rGO composites for asymmetric supercapacitor applications. Mater. Chem. Phys. 190, 153–165. doi: 10.1016/j.matchemphys.2017.01.025
    Shang, Z., An, X.Y., Liu, L.Q., Yang, J., Zhang, W., Dai, H.Q., Cao, H.B., Xu, Q.L., Liu, H.B., Ni, Y.H., 2021. Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor. Carbohydr. Polym. 251, 117107. doi: 10.1016/j.carbpol.2020.117107
    Shang, Z., An, X.Y., Zhang, H., Shen, M.X., Baker, F., Liu, Y.X., Liu, L.Q., Yang, J., Cao, H.B., Xu, Q.L., Liu, H.B., Ni, Y.H., 2020. Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon 161, 62–70. doi: 10.1016/j.carbon.2020.01.020
    Shiraishi, S., Kibe, M., Yokoyama, T., Kurihara, H., Patel, N., Oya, A., Kaburagi, Y., Hishiyama, Y., 2006. Electric double layer capacitance of multi-walled carbon nanotubes and B-doping effect. Appl. Phys. A 82, 585–591. doi: 10.1007/s00339-005-3399-6
    Wan, L., Shamsaei, E., Easton, C.D., Yu, D.B., Liang, Y., Chen, X.F., Abbasi, Z., Akbari, A., Zhang, X.W., Wang, H.T., 2017. ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor. Carbon N Y 121, 330–336. doi: 10.1016/j.carbon.2017.06.017
    Wang, Y., Bian, W., Xiao, D., 2019a. Thermally conductive and electrical insulation BNNS/CNF aerogel nano-paper. Polymers (Basel) 11, 660. doi: 10.3390/polym11040660
    Wang, D.W., Li, F., Chen, Z.G., Lu, G.Q., Cheng, H.M., 2008. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem. Mater. 20, 7195–7200. doi: 10.1021/cm801729y
    Wang, H., Yan, T.T., Shen, J.J., Zhang, J.P., Shi, L.Y., Zhang, D.S., 2020. Efficient removal of metal ions by capacitive deionization with straw waste derived graphitic porous carbon nanosheets. Environ. Sci. : Nano 7, 317–326. doi: 10.1039/c9en01233h
    Wang, Y.L., Qu, Q.L., Gao, S.T., Tang, G.S., Liu, K.M., He, S.J., Huang, C.B., 2019b. Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon N Y 155, 706–726. doi: 10.1016/j.carbon.2019.09.018
    Wang, Y.M., Liu, T., Lin, X.J., Chen, H., Chen, S., Jiang, Z.J., Chen, Y., Liu, J., Huang, J.L., Liu, M.L., 2018. Self-templated synthesis of hierarchically porous N-doped carbon derived from biomass for supercapacitors. ACS Sustain. Chem. Eng. 6, 13932–13939. doi: 10.1021/acssuschemeng.8b02255
    Wu, H., Yuan, W.Y., Zhao, Y.X., Han, D.Y., Yuan, X.W., Cheng, L.F., 2019. B, N-dual doped sisal-based multiscale porous carbon for high-rate supercapacitors. RSC Adv 9, 1476–1486. doi: 10.1039/c8ra09663e
    Zhang, G.F., Zhang, J., Qin, Q., Cui, Y.X., Luo, W.H., Sun, Y., Jin, C., Zheng, W.J., 2017. Tensile force-induced tearing and collapse of ultrathin carbon shells to surface-wrinkled grape skins for high performance supercapacitor electrodes. J. Mater. Chem. A 5, 14190–14197. doi: 10.1039/C7TA03113K
    Zhang, L.L., Zhao, X., Ji, H.X., Stoller, M.D., Lai, L.F., Murali, S., McDonnell, S., Cleveger, B., Wallace, R.M., Ruoff, R.S., 2012. Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon. Energy Environ. Sci. 5, 9618–9625. doi: 10.1039/c2ee23442d
    Zhang, Y.H., Shang, Z., Shen, M.X., Chowdhury, S.P., Ignaszak, A., Sun, S.H., Ni, Y.H., 2019. Cellulose nanofibers/reduced graphene oxide/polypyrrole aerogel electrodes for high-capacitance flexible all-solid-state supercapacitors. ACS Sustainable Chem. Eng. 7, 11175–11185. doi: 10.1021/acssuschemeng.9b00321
    Zhu, Q.L., Pachfule, P., Strubel, P., Li, Z.P., Zou, R.Q., Liu, Z., Kaskel, S., Xu, Q., 2018. Fabrication of nitrogen and sulfur co-doped hollow cellular carbon nanocapsules as efficient electrode materials for energy storage. Energy Storage Mater. 13, 72–79. doi: 10.1016/j.ensm.2017.12.027
    Zou, X.X., Wu, D.P., Mu, Y.F., Xing, L.Y., Zhang, W.C., Gao, Z.Y., Xu, F., Jiang, K., 2020. Boron and nitrogen Co-doped holey graphene aerogels with rich B–N motifs for flexible supercapacitors. Carbon 159, 94–101. doi: 10.1016/j.carbon.2019.12.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (202) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return