Citation: | Ralfs Pomilovskis, Eliza Kaulina, Inese Mierina, Arnis Abolins, Olga Kockova, Anda Fridrihsone, Mikelis Kirpluks. Wood pulp industry by-product valorization for acrylate synthesis and bio-based polymer development via Michael addition reaction[J]. Journal of Bioresources and Bioproducts, 2023, 8(3): 265-279. doi: 10.1016/j.jobab.2023.06.001 |
Abolins, A., Pomilovskis, R., Vanags, E., Mierina, I., Michalowski, S., Fridrihsone, A., Kirpluks, M., 2021. Impact of different epoxidation approaches of tall oil fatty acids on rigid polyurethane foam thermal insulation. Materials. (Basel) 14, 894. doi: 10.3390/ma14040894
|
Aryan, V., Kraft, A., 2021. The crude tall oil value chain: global availability and the influence of regional energy policies. J. Clean. Prod. 280, 124616. doi: 10.1016/j.jclepro.2020.124616
|
Baghban, S.A., Ebrahimi, M., Khorasani, M., 2022. A facile method to synthesis of a highly acrylated epoxidized soybean oil with low viscosity: combined experimental and computational approach. Polym. Test. 115, 107727. doi: 10.1016/j.polymertesting.2022.107727
|
Barszczewska-Rybarek, I.M., Korytkowska-Wałach, A., Kurcok, M., Chladek, G., Kasperski, J., 2017. DMA analysis of the structure of crosslinked poly(methyl methacrylate)s. Acta. Bioeng. Biomech. 19, 47–53.
|
Boucher, D., Ladmiral, V., Negrell, C., Caussé, N., Pébère, N., 2021. Partially acrylated linseed oil UV-cured coating containing a dihemiacetal ester for the corrosion protection of an aluminium alloy. Prog. Org. Coat. 158, 106344. doi: 10.1016/j.porgcoat.2021.106344
|
Briede, S., Jurinovs, M., Nechausov, S., Platnieks, O., Gaidukovs, S., 2022. State-of-the-art UV-assisted 3D printing via a rapid syringe-extrusion approach for photoactive vegetable oil acrylates produced in one-step synthesis. Mol. Syst. Des. Eng. 7, 1434–1448. doi: 10.1039/d2me00085g
|
Cao, Z.Y., Gao, F., Zhao, J.Z., Wei, X., Cheng, Q., Zhong, J., Lin, C., Shu, J.B., Fu, C.Q., Shen, L., 2019. Bio-based coating materials derived from acetoacetylated soybean oil and aromatic dicarboxaldehydes. Polymers. (Basel) 11, 1809. doi: 10.3390/polym11111809
|
Cheong, M.Y., Hasan, Z.A.A., Idris, Z., 2019. Characterisation of epoxidised trimethylolpropane trioleate: NMR and thermogravimetric analysis. J. Oil. Palm. Res. 31, 146–158.
|
Claux, O., Rapinel, V., Abert-Vian, M., Chemat, F., 2023. Green Extraction of Vegetable Oils: From Tradition to Innovation. Reference Module in Food Science. Elsevier, Amsterdam.
|
Dechent, S.E., Kleij, A.W., Luinstra, G.A., 2020. Fully bio-derived CO2 polymers for non-isocyanate based polyurethane synthesis. Green. Chem 22, 969–978. doi: 10.1039/c9gc03488a
|
European Commission, 2019. The European Green Deal. Available at:
|
Gan, Y.C., Jiang, X.S., 2014. Photo-cured materials from vegetable oils. In: Liu, Z.S., Kraus, G. (Eds.), Green Materials from Plant Oils. The Royal Society of Chemistry, London, pp. 1–27.
|
Gapsari, F., Djakfar, L., Handajani, R.P., Yusran, Y.A., Hidayatullah, S., Rangappa, S.M., Siengchin, S., 2022. The application of timoho fiber coating to improve the composite performance. Results. Eng 15, 100499. doi: 10.1016/j.rineng.2022.100499
|
Ge, X.Y., Yu, L., Liu, Z.S., Liu, H.S., Chen, Y., Chen, L., 2019. Developing acrylated epoxidized soybean oil coating for improving moisture sensitivity and permeability of starch-based film. Int. J. Biol. Macromol. 125, 370–375. doi: 10.1016/j.ijbiomac.2018.11.239
|
He, X.F., Zhong, J., Cao, Z.Y., Wang, J.L., Gao, F., Xu, D.D., Shen, L., 2019. An exploration of the Knoevenagel condensation to create ambient curable coating materials based on acetoacetylated castor oil. Prog. Org. Coat. 129, 21–25. doi: 10.1016/j.porgcoat.2018.12.015
|
Hermens, J.G.H., Freese, T., van den Berg, K.J., van Gemert, R., Feringa, B.L., 2020. A coating from nature. Sci. Adv. 6, eabe0026. doi: 10.1126/sciadv.abe0026
|
Hill, L.W., 1997. Calculation of crosslink density in short chain networks. Prog. Org. Coat. 31, 235–243. doi: 10.1016/S0300-9440(97)00081-7
|
Hu, Y., Jia, P.Y., Shang, Q.Q., Zhang, M., Feng, G.D., Liu, C.G., Zhou, Y.H., 2019. Synthesis and application of UV-curable phosphorous-containing acrylated epoxidized soybean oil-based resins. J. Bioresour. Bioprod. 4, 183–191.
|
Jena, K.K., Raju, K.V.S.N., 2008. Synthesis and characterization of hyperbranched polyurethane hybrids using tetraethoxysilane (TEOS) as cross-linker. Ind. Eng. Chem. Res. 47, 9214–9224. doi: 10.1021/ie800884y
|
Kathalewar, M., Sabnis, A., D'Mello, D., 2014. Isocyanate free polyurethanes from new CNSL based bis-cyclic carbonate and its application in coatings. Eur. Polym. J. 57, 99–108. doi: 10.1016/j.eurpolymj.2014.05.008
|
Kathalewar, M.S., Joshi, P.B., Sabnis, A.S., Malshe, V.C., 2013. Non-isocyanate polyurethanes: from chemistry to applications. RSC. Adv 3, 4110–4129. doi: 10.1039/c2ra21938g
|
Kim, T.H., Kim, M., Lee, W., Kim, H.G., Lim, C.S., Seo, B., 2019. Synthesis and characterization of a polyurethane phase separated to nano size in an epoxy polymer. Coatings 9, 319. doi: 10.3390/coatings9050319
|
Kirpluks, M., Kalnbunde, D., Walterova, Z., Cabulis, U., 2017. Rapeseed oil as feedstock for high functionality polyol synthesis. J. Renew. Mater. 5, 258–270. doi: 10.7569/JRM.2017.634116
|
Kirpluks, M., Pomilovskis, R., Vanags, E., Abolins, A., Mierina, I., Fridrihsone, A., 2022. Influence of different synthesis conditions on the chemo-enzymatic epoxidation of tall oil fatty acids. Process. Biochem. 122, 38–49. doi: 10.1016/j.procbio.2022.08.024
|
Krall, E.M., Serum, E.M., Sibi, M.P., Webster, D.C., 2018. Catalyst-free lignin valorization by acetoacetylation. Structural elucidation by comparison with model compounds. Green. Chem 20, 2959–2966. doi: 10.1039/C8GC01071D
|
La Scala, J., Wool, R.P., 2002. The effect of fatty acid composition on the acrylation kinetics of epoxidized triacylglycerols. J. Am. Oil. Chem. Soc. 79, 59–63. doi: 10.1007/s11746-002-0435-4
|
Li, Y.H., Sun, X.S., 2015. Synthesis and characterization of acrylic polyols and polymers from soybean oils for pressure-sensitive adhesives. RSC. Adv 5, 44009–44017. doi: 10.1039/C5RA04399A
|
Liang, B., Kuang, S.J., Huang, J.J., Man, L.M., Yang, Z.H., Yuan, T., 2019. Synthesis and characterization of novel renewable tung oil-based UV-curable active monomers and bio-based copolymers. Prog. Org. Coat. 129, 116–124. doi: 10.5469/neuroint.2019.00073
|
Lindsay, C.D., Timperley, C.M., 2020. TRPA1 and issues relating to animal model selection for extrapolating toxicity data to humans. Hum. Exp. Toxicol. 39, 14–36. doi: 10.1177/0960327119877460
|
Liu, P.F., Zhang, X.P., Liu, R., Liu, X.Y., Liu, J.C., 2019. Highly functional bio-based acrylates with a hard core and soft arms: from synthesis to enhancement of an acrylated epoxidized soybean oil-based UV-curable coating. Prog. Org. Coat. 134, 342–348. doi: 10.1016/j.porgcoat.2019.05.025
|
Lomège, J., Lapinte, V., Negrell, C., Robin, J.J., Caillol, S., 2019. Fatty acid-based radically polymerizable monomers: from novel poly(meth)acrylates to cutting-edge properties. Biomacromolecules 20, 4–26. doi: 10.1021/acs.biomac.8b01156
|
Luo, A.F., Jiang, X.S., Lin, H., Yin, J., 2011. "Thiol-ene" photo-cured hybrid materials based on POSS and renewable vegetable oil. J. Mater. Chem. 21, 12753–12760. doi: 10.1039/c1jm11425e
|
Menard, K.P., 1999. Dynamic Mechanical Analysis: A Practical Introduction. CRC Press, Boca Raton, Fla.
|
Müller, R., Wilke, G., 2014. Synthesis and radiation curing of acrylated castor oil glycerides. J. Coat. Technol. Res. 11, 873–882. doi: 10.1007/s11998-014-9596-5
|
Naga, N., Satoh, M., Magara, T., Ahmed, K., Nakano, T., 2021. Synthesis of gels by means of Michael addition reaction of multi-functional acetoacetate and diacrylate compounds and their application to ionic conductive gels. J. Polym. Sci. 59, 2129–2139. doi: 10.1002/pol.20210388
|
Naga, N., Satoh, M., Magara, T., Ahmed, K., Nakano, T., 2022. Synthesis of porous polymers by means of Michael addition reaction of multifunctional acetoacetate and poly(ethylene glycol) diacrylate. Eur. Polym. J. 162, 110901. doi: 10.1016/j.eurpolymj.2021.110901
|
Noordover, B., Liu, W., McCracken, E., DeGooyer, B., Brinkhuis, R., Lunzer, F., 2020. Michael addition curable coatings from renewable resources with enhanced adhesion performance. J. Coat. Technol. Res. 17, 1123–1130. doi: 10.1007/s11998-020-00351-2
|
Papageorgiou, G.Z., 2018. Thinking green: sustainable polymers from renewable resources. Polymers. (Basel) 10, 952. doi: 10.3390/polym10090952
|
Paramarta, A., Webster, D.C., 2017. The exploration of Michael-addition reaction chemistry to create high performance, ambient cure thermoset coatings based on soybean oil. Prog. Org. Coat. 108, 59–67. doi: 10.1016/j.porgcoat.2017.04.004
|
Pellis, A., Malinconico, M., Guarneri, A., Gardossi, L., 2021. Renewable polymers and plastics: performance beyond the green. New. Biotechnol 60, 146–158. doi: 10.1016/j.nbt.2020.10.003
|
Perera, M., Yan, J.Y., Xu, L., Yang, M., Yan, Y.J., 2022. Bioprocess development for biolubricant production using non-edible oils, agro-industrial byproducts and wastes. J. Clean. Prod. 357, 131956. doi: 10.1016/j.jclepro.2022.131956
|
Polaczek, K., Kaulina, E., Pomilovskis, R., Fridrihsone, A., Kirpluks, M., 2022. Epoxidation of tall oil fatty acids and tall oil fatty acids methyl esters using the SpinChem® rotating bed reactor. J. Polym. Environ. 30, 4774–4786. doi: 10.1007/s10924-022-02556-5
|
Pomilovskis, R., Mierina, I., Beneš, H., Trhlíková, O., Abolins, A., Fridrihsone, A., Kirpluks, M., 2022a. The synthesis of bio-based Michael donors from tall oil fatty acids for polymer development. Polymers. (Basel) 14, 4107. doi: 10.3390/polym14194107
|
Pomilovskis, R., Mierina, I., Fridrihsone, A., Kirpluks, M., 2022b. Bio-based polymer developments from tall oil fatty acids by exploiting Michael addition. Polymers. (Basel) 14, 4068. doi: 10.3390/polym14194068
|
Rahul, R., Kitey, R., 2016. Effect of cross-linking on dynamic mechanical and fracture behavior of epoxy variants. Compos. B. Eng. 85, 336–342. doi: 10.1016/j.compositesb.2015.09.017
|
Rengasamy, S., Mannari, V., 2014. UV-curable PUDs based on sustainable acrylated polyol: study of their hydrophobic and oleophobic properties. Prog. Org. Coat. 77, 557–567. doi: 10.1016/j.porgcoat.2013.11.029
|
Rosenboom, J.G., Langer, R., Traverso, G., 2022. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137. doi: 10.1038/s41578-021-00407-8
|
Salih, A.M., Ahmad, M.B., Ibrahim, N.A., Dahlan, K.Z.H.M., Tajau, R., Mahmood, M.H., Yunus, W.M.Z.W., 2015. Synthesis of radiation curable palm oil-based epoxy acrylate: NMR and FTIR spectroscopic investigations. Molecules 20, 14191–14211. doi: 10.3390/molecules200814191
|
Smeu, I., Dobre, A.A., Cucu, E.M., Mustățea, G., Belc, N., Ungureanu, E.L., 2022. Byproducts from the vegetable oil industry: the challenges of safety and sustainability. Sustainability 14, 2039. doi: 10.3390/su14042039
|
Sonnenschein, M.F., Werness, J.B., Patankar, K.A., Jin, X., Larive, M.Z., 2016. From rigid and flexible foams to elastomers via Michael addition chemistry. Polymer. (Guildf) 106, 128–139. doi: 10.1016/j.polymer.2016.10.054
|
Sternberg, J., Pilla, S., 2020. Materials for the biorefinery: high bio-content, shape memory Kraft lignin-derived non-isocyanate polyurethane foams using a non-toxic protocol. Green. Chem 22, 6922–6935. doi: 10.1039/d0gc01659d
|
Su, Y.P., Lin, H., Zhang, S.T., Yang, Z.H., Yuan, T., 2020. One-step synthesis of novel renewable vegetable oil-based acrylate prepolymers and their application in UV-curable coatings. Polymers. (Basel) 12, 1165. doi: 10.3390/polym12051165
|
Sung, J., Sun, X.S., 2018. Cardanol modified fatty acids from camelina oils for flexible bio-based acrylates coatings. Prog. Org. Coat. 123, 242–253. doi: 10.1016/j.porgcoat.2018.02.008
|
Tang, J.J., Zhang, J.S., Lu, J.Y., Huang, J., Zhang, F., Hu, Y., Liu, C.G., An, R.R., Miao, H.C., Chen, Y.Y., Huang, T., Zhou, Y.H., 2020. Preparation and properties of plant-oil-based epoxy acrylate-like resins for UV-curable coatings. Polymers. (Basel) 12, 2165. doi: 10.3390/polym12092165
|
Trevino, A.S., Trumbo, D.L., 2002. Acetoacetylated castor oil in coatings applications. Prog. Org. Coat. 44, 49–54. doi: 10.1016/S0300-9440(01)00223-5
|
Vevere, L., Fridrihsone, A., Kirpluks, M., Cabulis, U., 2020. A review of wood biomass-based fatty acids and rosin acids use in polymeric materials. Polymers. (Basel) 12, 2706. doi: 10.3390/polym12112706
|
Wang, T., Wang, J.L., He, X.F., Cao, Z.Y., Xu, D.D., Gao, F., Zhong, J., Shen, L., 2019. An ambient curable coating material based on the Michael addition reaction of acetoacetylated castor oil and multifunctional acrylate. Coatings 9, 37. doi: 10.3390/coatings9010037
|
Witzeman, J.S., Nottingham, W.D., 1991. Transacetoacetylation with tert-butyl acetoacetate: synthetic applications. J. Org. Chem. 56, 1713–1718. doi: 10.1021/jo00005a013
|
Wuzella, G., Mahendran, A.R., Müller, U., Kandelbauer, A., Teischinger, A., 2012. Photocrosslinking of an acrylated epoxidized linseed oil: kinetics and its application for optimized wood coatings. J. Polym. Environ 20, 1063–1074. doi: 10.1007/s10924-012-0511-9
|
Xia, Y., Larock, R.C., 2010. Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green. Chem 12, 1893–1909. doi: 10.1039/c0gc00264j
|
Xu, D.D., Cao, Z.Y., Wang, T., Zhong, J., Zhao, J.Z., Gao, F., Luo, X.Y., Fang, Z.L., Cao, J.S., Xu, S.Z., Shen, L., 2019. An ambient-cured coating film obtained via a Knoevenagel and Michael addition reactions based on modified acetoacetylated castor oil prepared by a thiol-ene coupling reaction. Prog. Org. Coat. 135, 510–516. doi: 10.1016/j.porgcoat.2019.06.026
|
Zhang, C.Q., Madbouly, S.A., Kessler, M.R., 2015. Biobased polyurethanes prepared from different vegetable oils. ACS. Appl. Mater. Interfaces 7, 1226–1233. doi: 10.1021/am5071333
|
Zhang, P., Xin, J.N., Zhang, J.W., 2014. Effects of catalyst type and reaction parameters on one-step acrylation of soybean oil. ACS. Sustainable. Chem. Eng. 2, 181–187. doi: 10.1021/sc400206t
|
Zhang, P., Zhang, J.W., 2013. One-step acrylation of soybean oil (SO) for the preparation of SO-based macromonomers. Green. Chem 15, 641–645. doi: 10.1039/c3gc36961g
|