Citation: | Shusheng Pang. Recent advances in thermochemical conversion of woody biomass for production of green hydrogen and CO2 capture: A review[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 319-332. doi: 10.1016/j.jobab.2023.06.002 |
Abdin, Z., Tang, C.G., Liu, Y., Catchpole, K., 2021. Large-scale stationary hydrogen storage via liquid organic hydrogen carriers. iScience 24, 102966. doi: 10.1016/j.isci.2021.102966
|
Afkhamipour, M., Mofarahi, M., Rezaei, A., Mahmoodi, R., Lee, C.H., 2019. Experimental and theoretical investigation of equilibrium absorption performance of CO2 using a mixed 1-dimethylamino-2-propanol (1DMA2P) and monoethanolamine (MEA) solution. Fuel 256, 115877. doi: 10.1016/j.fuel.2019.115877
|
Asadullah, M., 2014. Biomass gasification gas cleaning for downstream applications: a comparative critical review. Renew. Sustain. Energy Rev. 40, 118–132. doi: 10.1016/j.rser.2014.07.132
|
Baker, E.H., 1962. The calcium oxide-carbon dioxide system in the pressure range 1—300 atmospheres. J. Chem. Soc. 464–470.
|
Baraj, E., Ciahotný, K., Hlinčík, T., 2021. The water gas shift reaction: catalysts and reaction mechanism. Fuel 288, 119817. doi: 10.1016/j.fuel.2020.119817
|
Boerrigter, H., Paasen, S., Bergman, P., Koenemann, J.W., Emmen, R., 2005a. "OLGA" Tar Removal Technology: Proof-of-Concept (PoC) for Application in Integrated Biomass Gasification Combined Heat and Power (CHP) Systems. Energy Research Centre of the Netherlands (ECN), the Netherlands Report ECN-C-05-009.
|
Boerrigter, H., Paasen, S.V., Bergman, P., Konemann, J.W., Emmen, R., 2005b. Tar Removal from Biomass Product Gas; Development and Optimisation of the OLGA Tar Removal Technology. Energy Research Centre of the Netherlands (ECN), the Netherlands.
|
Boretti, A., Banik, B.K., 2021. Advances in hydrogen production from natural gas reforming. Adv. Energy Sustain. Res. 2, 2100097. doi: 10.1002/aesr.202100097
|
Cao, Y.C., Yang, Y.W., Zhao, X.L., Li, Q.F., 2021. A review of seasonal hydrogen storage multi-energy systems based on temporal and spatial characteristics. J. Renew. Mater. 9, 1823–1842. doi: 10.32604/jrm.2021.015722
|
Choi, Y., Stenger, H.G., 2003. Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen. J. Power Sources 124, 432–439. doi: 10.2514/2.3138
|
Conway, W., Bruggink, S., Beyad, Y., Luo, W.L., Melián-Cabrera, I., Puxty, G., Feron, P., 2015. CO2 absorption into aqueous amine blended solutions containing monoethanolamine (MEA), N, N-dimethylethanolamine (DMEA), N, N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) for post-combustion capture processes. Chem. Eng. Sci. 126, 446–454. doi: 10.1016/j.ces.2014.12.053
|
Dashtestani, F., Nusheh, M., Siriwongrungson, V., Hongrapipat, J., Materic, V., Yip, A.C.K., Pang, S.S., 2021a. Effect of the presence of HCl on simultaneous CO2 capture and contaminants removal from simulated biomass gasification producer gas by CaO-Fe2O3 sorbent in calcium looping cycles. Energies 14, 8167. doi: 10.3390/en14238167
|
Dashtestani, F., Nusheh, M., Siriwongrungson, V., Hongrapipat, J., Materic, V., Pang, S., 2021. Effect of H2S and NH3 in biomass gasification producer gas on CO2 capture performance of an innovative CaO and Fe2O3 based sorbent. Fuel 295, 120586. doi: 10.1016/j.fuel.2021.120586
|
Dashtestani, F., Nusheh, M., Siriwongrungson, V., Hongrapipat, J., Materic, V., Pang, S.S., 2020. CO2 capture from biomass gasification producer gas using a novel calcium and iron-based sorbent through carbonation–calcination looping. Ind. Eng. Chem. Res. 59, 18447–18459. doi: 10.1021/acs.iecr.0c03025
|
Drift, A.V.D., Der, C.M.V., Boerrigter, M.H., 2005. MILENA Gasification Technology for High Efficient SNG Production from Biomass. Energy Research Centre of the Netherlands (ECN), the Netherlands.
|
Duhoux, B., Mehrani, P., Lu, D.Y., Symonds, R.T., Anthony, E.J., Macchi, A., 2016. Combined calcium looping and chemical looping combustion for post-combustion carbon dioxide capture: process simulation and sensitivity analysis. Energy Technol. 4, 1158–1170. doi: 10.1002/ente.201600024
|
Ferreira-Aparicio, P., Rodriguez-Ramos, I., Guerrero-Ruiz, A., 2002. On the performance of porous vycor membranes for conversion enhancement in the dehydrogenation of methylcyclohexane to toluene. J. Catal. 212, 182–192. doi: 10.1006/jcat.2002.3786
|
Florin, N., Fennell, P., 2011. Synthetic CaO-based sorbent for CO2 capture. Energy Procedia 4, 830–838. doi: 10.1016/j.egypro.2011.01.126
|
Gianotti, E., Taillades-Jacquin, M., Rozière, J., Jones, D.J., 2018. High-purity hydrogen generation via dehydrogenation of organic carriers: a review on the catalytic process. ACS Catal. 8, 4660–4680. doi: 10.1021/acscatal.7b04278
|
Gonzalez-Olmos, R., Gutierrez-Ortega, A., Sempere, J., Nomen, R., 2022. Zeolite versus carbon adsorbents in carbon capture: a comparison from an operational and life cycle perspective. J. CO2 Util. 55, 101791. doi: 10.1016/j.jcou.2021.101791
|
Haaf, M., Peters, J., Hilz, J., Unger, A., Ströhle, J., Epple, B., 2020. Combustion of solid recovered fuels within the calcium looping process - experimental demonstration at 1 MWth scale. Exp. Therm. Fluid Sci. 113, 110023. doi: 10.1016/j.expthermflusci.2019.110023
|
Hallac, B., Brown, J., Stavitski, E., Harrison, R., Argyle, M., 2018. In situ UV-visible assessment of iron-based high-temperature water-gas shift catalysts promoted with lanthana: an extent of reduction study. Catalysts 8, 63. doi: 10.3390/catal8020063
|
Hongrapipat, J., Pang, S.S., Saw, W.L., 2016. Removal of NH3 and H2S from producer gas in a dual fluidised bed steam gasifier by optimisation of operation conditions and application of bed materials. Biomass Convers. Biorefin. 6, 105–113. doi: 10.1007/s13399-015-0167-5
|
Hongrapipat, J., Yip, A.C.K., Marshall, A.T., Saw, W.L., Pang, S., 2014. Investigation of simultaneous removal of ammonia and hydrogen sulphide from producer gas in biomass gasification by titanomagnetite. Fuel 135, 235–242. doi: 10.1016/j.fuel.2014.06.037
|
Hu, Y.C., Liu, W.Q., Peng, Y., Yang, Y.D., Sun, J., Chen, H.Q., Zhou, Z.J., Xu, M.H., 2017. One-step synthesis of highly efficient CaO-based CO2 sorbent pellets via gel-casting technique. Fuel Process. Technol. 160, 70–77. doi: 10.1016/j.fuproc.2017.02.016
|
Hydrogen Production: Natural gas reforming, 2023. Available at:
|
International Energy Agency (IEA), 2021. Global hydrogen review 2021. Available at:
|
International Energy Agency (IEA), 2022. Global hydrogen review 2022. Available at:
|
Ji, M.D., Wang, J.L., 2021. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. Int. J. Hydrog. Energy 46, 38612–38635. doi: 10.1016/j.ijhydene.2021.09.142
|
Joensen, F., Rostrup-Nielsen, J.R., 2002. Conversion of hydrocarbons and alcohols for fuel cells. J. Power Sources 105, 195–201. doi: 10.1016/S0378-7753(01)00939-9
|
Juutilainen, S.J., Simell, P.A., Krause, A.O.I., 2006. Zirconia: selective oxidation catalyst for removal of tar and ammonia from biomass gasification gas. Appl. Catal. B 62, 86–92. doi: 10.1016/j.apcatb.2005.05.009
|
Khan, F.M., Krishnamoorthi, V., Mahmud, T., 2011. Modelling reactive absorption of CO2 in packed columns for post-combustion carbon capture applications. Chem. Eng. Res. Des. 89, 1600–1608. doi: 10.1016/j.cherd.2010.09.020
|
Kostyniuk, A., Grilc, M., Likozar, B., 2019. Catalytic cracking of biomass-derived hydrocarbon tars or model compounds to form biobased benzene, toluene, and xylene isomer mixtures. Ind. Eng. Chem. Res. 58, 7690–7705. doi: 10.1021/acs.iecr.9b01219
|
Majchrzak-Kucęba, I., Wawrzyńczak, D., Ściubidło, A., 2022. Experimental investigation into CO2 capture from the cement plant by VPSA technology using zeolite 13X and activated carbon. J. CO2 Util. 61, 102027. doi: 10.1016/j.jcou.2022.102027
|
Manovic, V., Anthony, E.J., 2007. Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles. Environ. Sci. Technol. 41, 1420–1425. doi: 10.1021/es0621344
|
Materić, V., Symonds, R., Lu, D., Holt, R., Manović, V., 2014. Performance of hydration reactivated Ca looping sorbents in a pilot-scale, oxy-fired dual fluid bed unit. Energy Fuels 28, 5363–5372. doi: 10.1021/ef501203v
|
Mendes, D., Mendes, A., Madeira, L.M., Iulianelli, A., Sousa, J.M., Basile, A., 2010. The water-gas shift reaction: from conventional catalytic systems to Pd-based membrane reactors: a review. Asia Pac. J. Chem. Eng. 5, 111–137. doi: 10.1002/apj.364
|
Modisha, P.M., Ouma, C.N.M., Garidzirai, R., Wasserscheid, P., Bessarabov, D., 2019. The prospect of hydrogen storage using liquid organic hydrogen carriers. Energy Fuels 33, 2778–2796. doi: 10.1021/acs.energyfuels.9b00296
|
Monteiro, J.G.M.S., Majeed, H., Knuutila, H., Svendsen, H.F., 2015. Kinetics of CO2 absorption in aqueous blends of N, N-diethylethanolamine (DEEA) and N-methyl-1, 3-propane-diamine (MAPA). Chem. Eng. Sci. 129, 145–155. doi: 10.1016/j.ces.2015.02.001
|
Montenegro Camacho, Y.S., Bensaid, S., Lorentzou, S., Russo, N., Fino, D., 2017. Structured catalytic reactor for soot abatement in a reducing atmosphere. Fuel Process. Technol. 167, 462–473. doi: 10.1016/j.fuproc.2017.07.031
|
Murray, L.J., Dincă, M., Long, J.R., 2009. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 38, 1294–1314. doi: 10.1039/b802256a
|
Nakamura, S., Kitano, S., Yoshikawa, K., 2016. Biomass gasification process with the tar removal technologies utilizing bio-oil scrubber and char bed. Appl. Energy 170, 186–192. doi: 10.1016/j.apenergy.2016.02.113
|
Navas-Anguita, Z., García-Gusano, D., Dufour, J., Iribarren, D., 2020. Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport. Appl. Energy 259, 114121. doi: 10.1016/j.apenergy.2019.114121
|
Newsome, D.S., 1980. The water-gas shift reaction. Catal. Rev. 21, 275–318. doi: 10.1080/03602458008067535
|
Niermann, M., Beckendorff, A., Kaltschmitt, M., Bonhoff, K., 2019. Liquid Organic Hydrogen Carrier (LOHC): assessment based on chemical and economic properties. Int. J. Hydrog. Energy 44, 6631–6654 [LinkOut]. doi: 10.1016/j.ijhydene.2019.01.199
|
Oda, K., Akamatsu, K., Sugawara, T., Kikuchi, R., Segawa, A., Nakao, S.I., 2010. Dehydrogenation of methylcyclohexane to produce high-purity hydrogen using membrane reactors with amorphous silica membranes. Ind. Eng. Chem. Res. 49, 11287–11293. doi: 10.1021/ie101210x
|
Oemar, U., Ang, M.L., Hee, W.F., Hidajat, K., Kawi, S., 2014. Perovskite LaxM1−xNi0.8Fe0.2O3 catalyst for steam reforming of toluene: crucial role of alkaline earth metal at low steam condition. Appl. Catal. B 148/149, 231–242. doi: 10.1016/j.apcatb.2013.10.001
|
Olabi, A.G., Bahri, A.S., Abdelghafar, A.A., Baroutaji, A., Sayed, E.T., Alami, A.H., Rezk, H., Ali Abdelkareem, M., 2021. Large-vscale hydrogen production and storage technologies: current status and future directions. Int. J. Hydrog. Energy 46, 23498–23528. doi: 10.1016/j.ijhydene.2020.10.110
|
Palma, V., Ruocco, C., Cortese, M., Martino, M., 2019. Recent advances in structured catalysts preparation and use in water-gas shift reaction. Catalysts 9, 991. doi: 10.3390/catal9120991
|
Pang, S., Xu, Q., 2010. Drying of woody biomass for bioenergy using packed moving bed dryer: mathematical modeling and optimization. Dry. Technol. 28, 702–709. doi: 10.1080/07373931003799251
|
Pang, S.S., 2019. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnol. Adv. 37, 589–597. doi: 10.1007/978-3-030-36808-1_64
|
Pang, S.S., Mujumdar, A.S., 2010. Drying of woody biomass for bioenergy: drying technologies and optimization for an integrated bioenergy plant. Dry. Technol. 28, 690–701. doi: 10.1080/07373931003799236
|
Pellegrini, L.A., De Guido, G., Moioli, S., 2020. Design of the CO2 removal section for PSA tail gas treatment in a hydrogen production plant. Front. Energy Res. 8, 77. doi: 10.3389/fenrg.2020.00077
|
Perejón, A., Romeo, L.M., Lara, Y., Lisbona, P., Martínez, A., Valverde, J.M., 2016. The Calcium-Looping technology for CO2 capture: on the important roles of energy integration and sorbent behavior. Appl. Energy 162, 787–807. doi: 10.1016/j.apenergy.2015.10.121
|
Pfeifer, C., Rauch, R., Hofbauer, H., 2004. In-bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier. Ind. Eng. Chem. Res. 43, 1634–1640. doi: 10.1021/ie030742b
|
Rabou, L., Almansa, G.A., 2015. 500 Hours Producing Bio-SNG from MILENA Gasification Using the ESME System ECN System for MEthanation (ESME): A Novel Technology Successfully Proven. Energy Research Centre of the Netherlands (ECN), the Netherlands.
|
Saw, W., McKinnon, H., Gilmour, I., Pang, S.S., 2012. Production of hydrogen-rich syngas from steam gasification of blend of biosolids and wood using a dual fluidised bed gasifier. Fuel 93, 473–478. doi: 10.1016/j.fuel.2011.08.047
|
Saw, W.L., Pang, S.S., 2012. The influence of calcite loading on producer gas composition and tar concentration of radiata pine pellets in a dual fluidised bed steam gasifier. Fuel 102, 445–452. doi: 10.1016/j.fuel.2012.07.013
|
Saw, W.L., Pang, S.S., 2013. Co-gasification of blended lignite and wood pellets in a 100 kW dual fluidised bed steam gasifier: the influence of lignite ratio on producer gas composition and tar content. Fuel 112, 117–124. doi: 10.1016/j.fuel.2013.05.019
|
Shayan, E., Zare, V., Mirzaee, I., 2018. Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents. Energy Convers. Manag. 159, 30–41. doi: 10.1016/j.enconman.2017.12.096
|
Siqueira, R.M., Freitas, G.R., Peixoto, H.R., do Nascimento, J.F., Musse, A.P.S., Torres, A.E.B., Azevedo, D.C.S., Bastos-Neto, M., 2017. Carbon dioxide capture by pressure swing adsorption. Energy Procedia 114, 2182–2192. doi: 10.1016/j.egypro.2017.03.1355
|
Song, C.S., Pan, W., 2004. Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios. Catal. Today 98, 463–484. doi: 10.1016/j.cattod.2004.09.054
|
Terlouw, T., Bauer, C., McKenna, R., Mazzotti, M., 2022. Large-scale hydrogen production via water electrolysis: a techno-economic and environmental assessment. Energy Environ. Sci. 15, 3583–3602. doi: 10.1039/d2ee01023b
|
The World's First Global Hydrogen Supply Chain Demonstration Project, 2017. Available at:
|
Tontiwachwuthikul, P., Meisen, A., Lim, C.J., 1992. CO2 absorption by NaOH, monoethanolamine and 2-amino-2-methyl-1-propanol solutions in a packed column. Chem. Eng. Sci. 47, 381–390. doi: 10.1016/0009-2509(92)80028-B
|
Valente, A., Iribarren, D., Gálvez-Martos, J.L., Dufour, J., 2019. Robust eco-efficiency assessment of hydrogen from biomass gasification as an alternative to conventional hydrogen: a life-cycle study with and without external costs. Sci. Total Environ. 650, 1465–1475. doi: 10.1016/j.scitotenv.2018.09.089
|
Valverde, J.M., Sanchez-Jimenez, P.E., Perez-Maqueda, L.A., 2014. Role of precalcination and regeneration conditions on postcombustion CO2 capture in the Ca-looping technology. Appl. Energy 136, 347–356. doi: 10.1016/j.apenergy.2014.09.052
|
Wang, Y.J., Pang, S.S., 2018a. Investigation of hydrogen sulphide removal from simulated producer gas of biomass gasification by titanomagnetite. Biomass Bioenergy 109, 61–70. doi: 10.1117/12.2302687
|
Wang, Y.J., Pang, S.S., 2018b. The effects of temperature and gas species on ammonia removal in the simulated producer gas of biomass gasification by H2-reduced titanomagnetite. Energy Fuels 32, 5134–5144. doi: 10.1021/acs.energyfuels.7b03851
|
Wijayanta, A.T., Oda, T., Purnomo, C.W., Kashiwagi, T., Aziz, M., 2019. Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: comparison review. Int. J. Hydrog. Energy 44, 15026–15044. doi: 10.1016/j.ijhydene.2019.04.112
|
Wu, N., Lan, K., Yao, Y., 2023. An integrated techno-economic and environmental assessment for carbon capture in hydrogen production by biomass gasification. Resour. Conserv. Recycl. 188, 106693. doi: 10.1016/j.resconrec.2022.106693
|
Xu, Q.X., Pang, S.S., 2008. Mathematical modeling of rotary drying of woody biomass. Dry. Technol. 26, 1344–1350. doi: 10.1080/07373930802331050
|
Zeng, X., Ueki, Y., Yoshiie, R., Naruse, I., Wang, F., Han, Z.N., Xu, G.W., 2020. Recent progress in tar removal by char and the applications: a comprehensive analysis. Carbon Resour. Convers. 3, 1–18. doi: 10.1016/j.crcon.2019.12.001
|
Zhang, Y.L., Hu, G., Zhang, H., Liu, Q.F., Zhou, J.B., 2021. Thermodynamic analysis and optimization for steam methane reforming hydrogen production system using high temperature gas-cooled reactor pebble-bed module. J. Nucl. Sci. Technol. 58, 1359–1372. doi: 10.1080/00223131.2021.1951863
|
Zhang, Y.S., Zhang, S.J., Gossage, J.L., Lou, H.H., Benson, T.J., 2014. Thermodynamic analyses of tri-reforming reactions to produce syngas. Energy Fuels 28, 2717–2726. doi: 10.1021/ef500084m
|
Zhang, Z.Y., Pang, S.S., 2019. Experimental investigation of tar formation and producer gas composition in biomass steam gasification in a 100 kW dual fluidised bed gasifier. Renew. Energy 132, 416–424. doi: 10.1016/j.renene.2018.07.144
|
Zhao, X.H., Joseph, B., Kuhn, J., Ozcan, S., 2020. Biogas reforming to syngas: a review. iScience 23, 101082. doi: 10.1016/j.isci.2020.101082
|
Züttel, A., 2004. Hydrogen storage methods. Naturwissenschaften 91, 157–172. doi: 10.1007/s00114-004-0516-x
|