Citation: | Chenyang Cai, Yuanbo Sun, Yi Chen, Zechang Wei, Yibo Wang, Fuling Chen, Wanquan Cai, Jiawen Ji, Yuxin Ji, Yu Fu. Large scalable, ultrathin and self-cleaning cellulose aerogel film for daytime radiative cooling[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 421-429. doi: 10.1016/j.jobab.2023.06.004 |
Ali Badshah, M., Leung, E.M., Liu, P., Strzelecka, A.A., Gorodetsky, A.A., 2022. Scalable manufacturing of sustainable packaging materials with tunable thermoregulability. Nat. Sustain. 5, 434–443. doi: 10.1038/s41893-022-00847-2
|
Cai, C.Y., Wei, Z.C., Ding, C.X., Sun, B.J., Chen, W.B., Gerhard, C., Nimerovsky, E., Fu, Y., Zhang, K., 2022. Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building. Nano Lett. 22, 4106–4114. doi: 10.1021/acs.nanolett.2c00844
|
Chen, Y.P., Dang, B.K., Fu, J.Z., Wang, C., Li, C.C., Sun, Q.F., Li, H.Q., 2021. Cellulose-based hybrid structural material for radiative cooling. Nano Lett. 21, 397–404. doi: 10.1021/acs.nanolett.0c03738
|
Gamage, S., Banerjee, D., Alam, M.M., Hallberg, T., Åkerlind, C., Sultana, A., Shanker, R., Berggren, M., Crispin, X., Kariis, H., Zhao, D., Jonsson, M.P., 2021. Reflective and transparent cellulose-based passive radiative coolers. Cellulose 28, 9383–9393. doi: 10.1007/s10570-021-04112-1
|
Gamage, S., Kang, E.S.H., Åkerlind, C., Sardar, S., Edberg, J., Kariis, H., Ederth, T., Berggren, M., Jonsson, M.P., 2020. Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling. J. Mater. Chem. C 8, 11687–11694. doi: 10.1039/d0tc01226b
|
Hossain, M.M., Gu, M., 2016. Radiative cooling: principles, progress, and potentials. Adv. Sci. 3, 1500360. doi: 10.1002/advs.201500360
|
Jaramillo-Fernandez, J., Yang, H., Schertel, L., Whitworth, G.L., Garcia, P.D., Vignolini, S., Sotomayor-Torres, C.M., 2022. Highly-scattering cellulose-based films for radiative cooling. Adv. Sci. 9, e2104758. doi: 10.1002/advs.202104758
|
Li, D., Liu, X., Li, W., Lin, Z.H., Zhu, B., Li, Z.Z., Li, J.L., Li, B., Fan, S.H., Xie, J.W., Zhu, J., 2021. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16, 153–158. doi: 10.1038/s41565-020-00800-4
|
Li, J.L., Liang, Y., Li, W., Xu, N., Zhu, B., Wu, Z., Wang, X.Y., Fan, S.H., Wang, M.H., Zhu, J., 2022. Protecting ice from melting under sunlight via radiative cooling. Sci. Adv. 8, eabj9756. doi: 10.1126/sciadv.abj9756
|
Li, T., Zhai, Y., He, S.M., Gan, W.T., Wei, Z.Y., Heidarinejad, M., Dalgo, D., Mi, R.Y., Zhao, X.P., Song, J.W., Dai, J.Q., Chen, C.J., Aili, A., Vellore, A., Martini, A., Yang, R.G., Srebric, J., Yin, X.B., Hu, L.B., 2019. A radiative cooling structural material. Science 364, 760–763. doi: 10.1126/science.aau9101
|
Lin, C.J., Li, Y., Chi, C., Kwon, Y.S., Huang, J.Y., Wu, Z.X., Zheng, J.Z., Liu, G.Z., Tso, C.Y., Chao, C.Y.H., Huang, B.L., 2022. A solution-processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates. Adv. Mater. 34, e2109350. doi: 10.1002/adma.202109350
|
Liu, B.Y., Xue, C.H., Zhong, H.M., Guo, X.J., Wang, H.D., Li, H.G., Du, M.M., Huang, M.C., Wei, R.X., Song, L.G., Chang, B., Wang, Z.K., 2021. Multi-bioinspired self-cleaning energy-free cooling coatings. J. Mater. Chem. A 9, 24276–24282. doi: 10.1039/d1ta07953k
|
Liu, C.H., Feng, S.J., He, M., Chen, X., Shi, S.N., Bu, X.H., Zhou, Y.M., 2022. 3D Porous cellulose/Si-Al inorganic polymer photonic film with precisely structure-enhanced solar reflectivity for daytime radiative cooling. Mater. Today Commun. 31, 103530. doi: 10.1016/j.mtcomm.2022.103530
|
Mandal, J., Fu, Y.K., Overvig, A.C., Jia, M.X., Sun, K.R., Shi, N.N., Zhou, H., Xiao, X.H., Yu, N.F., Yang, Y., 2018. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319. doi: 10.1126/science.aat9513
|
Peng, Y.C., Fan, L.L., Jin, W.L., Ye, Y.S., Huang, Z.J., Zhai, S., Luo, X., Ma, Y.X., Tang, J., Zhou, J.W., Greenburg, L.C., Majumdar, A., Fan, S.H., Cui, Y., 2022. Coloured low-emissivity films for building envelopes for year-round energy savings. Nat. Sustain. 5, 339–347.
|
Raman, A.P., Anoma, M.A., Zhu, L.X., Rephaeli, E., Fan, S.H., 2014. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544. doi: 10.1038/nature13883
|
Shanker, R., Ravi Anusuyadevi, P., Gamage, S., Hallberg, T., Kariis, H., Banerjee, D., Svagan, A.J., Jonsson, M.P., 2022. Structurally colored cellulose nanocrystal films as transreflective radiative coolers. ACS Nano 16, 10156–10162. doi: 10.1021/acsnano.1c10959
|
Sun, H.D., Chen, Y.W., Zeng, W.C., Tang, F.J., Bi, Y.H., Lu, Q.X., Mondal, A.K., Huang, L.L., Chen, L.H., Li, J.G., 2023a. Solution-processable, robust and sustainable cooler via nano-structured engineering. Carbohydr. Polym. 314, 120948. doi: 10.1016/j.carbpol.2023.120948
|
Sun, H.D., Tang, F.J., Chen, Q.F., Xia, L.M., Guo, C.Y., Liu, H., Zhao, X.P., Zhao, D.L., Huang, L.L., Li, J.G., Chen, L.H., 2023b. A recyclable, up-scalable and eco-friendly radiative cooling material for all-day sub-ambient comfort. Chem. Eng. J. 455, 139786. doi: 10.1016/j.cej.2022.139786
|
Tian, Y.P., Shao, H., Liu, X.J., Chen, F.Q., Li, Y.S., Tang, C.Y., Zheng, Y., 2021. Superhydrophobic and recyclable cellulose-fiber-based composites for high-efficiency passive radiative cooling. ACS Appl. Mater. Interfaces 13, 22521–22530. doi: 10.1021/acsami.1c04046
|
Tu, Y.D., Wang, R.Z., Zhang, Y.N., Wang, J.Y., 2018. Progress and expectation of atmospheric water harvesting. Joule 2, 1452–1475. doi: 10.1016/j.joule.2018.07.015
|
Wang, T., Wu, Y., Shi, L., Hu, X.H., Chen, M., Wu, L.M., 2021. A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12, 365. doi: 10.1038/s41467-020-20646-7
|
Wang, X., Liu, X.H., Li, Z.Y., Zhang, H.W., Yang, Z.W., Zhou, H., Fan, T.X., 2020. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 30, 1907562. doi: 10.1002/adfm.201907562
|
Wu, J.R., He, J., Yin, K., Zhu, Z., Xiao, S., Wu, Z.P., Duan, J., 2021. Robust hierarchical porous PTFE film fabricated via femtosecond laser for self-cleaning passive cooling. Nano Lett. 21, 4209–4216. doi: 10.1021/acs.nanolett.1c00038
|
Zeng, S.N., Pian, S.J., Su, M.Y., Wang, Z.N., Wu, M.Q., Liu, X.H., Chen, M.Y., Xiang, Y.Z., Wu, J.W., Zhang, M.N., Cen, Q.Q., Tang, Y.W., Zhou, X.H., Huang, Z.H., Wang, R., Tunuhe, A., Sun, X.Y., Xia, Z.G., Tian, M.W., Chen, M., Ma, X., Yang, L.Y., Zhou, J., Zhou, H.M., Yang, Q., Li, X., Ma, Y.G., Tao, G.M., 2021. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696. doi: 10.1126/science.abi5484
|
Zhai, Y., Ma, Y.G., David, S.N., Zhao, D.L., Lou, R.N., Tan, G., Yang, R.G., Yin, X.B., 2017. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066. doi: 10.1126/science.aai7899
|
Zhang, H.W., Ly, K.C.S., Liu, X.H., Chen, Z.H., Yan, M., Wu, Z.L., Wang, X., Zheng, Y.B., Zhou, H., Fan, T.X., 2020. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. USA 117, 14657–14666. doi: 10.1073/pnas.2001802117
|
Zhang, K., Lei, X.J., Mo, C.Q., Huang, J., Wang, M., Kang, E.T., Xu, L.Q., 2023. A zero-energy, zero-emission air conditioning fabric. Adv. Sci. 10, e2206925. doi: 10.1002/advs.202206925
|
Zhao, H.X., Sun, Q.Q., Zhou, J., Deng, X., Cui, J.X., 2020. Switchable cavitation in silicone coatings for energy-saving cooling and heating. Adv. Mater. 32, e2000870. doi: 10.1002/adma.202000870
|
Zhong, H.M., Li, Y.N., Zhang, P., Gao, S.W., Liu, B.Y., Wang, Y., Meng, T., Zhou, Y.S., Hou, H.W., Xue, C.H., Zhao, Y., Wang, Z.K., 2021. Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano 15, 10076–10083. doi: 10.1021/acsnano.1c01814
|
Zhong, S.J., Zhang, J.W., Yuan, S.X., Xu, T.Q., Zhang, X., Xu, L., Zuo, T., Cai, Y., Yi, L.M., 2023. Self-assembling hierarchical flexible cellulose films assisted by electrostatic field for passive daytime radiative cooling. Chem. Eng. J. 451, 138558. doi: 10.1016/j.cej.2022.138558
|
Zhou, K., Li, W., Patel, B.B., Tao, R., Chang, Y.L., Fan, S.H., Diao, Y., Cai, L.L., 2021. Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling. Nano Lett. 21, 1493–1499. doi: 10.1021/acs.nanolett.0c04810
|
Zhou, L., Song, H.M., Liang, J.W., Singer, M., Zhou, M., Stegenburgs, E., Zhang, N., Xu, C., Ng, T., Yu, Z.F., Ooi, B., Gan, Q.Q., 2019. A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2, 718–724. doi: 10.1038/s41893-019-0348-5
|
Zhu, W.K., Droguet, B., Shen, Q.C., Zhang, Y., Parton, T.G., Shan, X.W., Parker, R.M., De Volder, M.F.L., Deng, T., Vignolini, S., Li, T., 2022. Structurally colored radiative cooling cellulosic films. Adv. Sci. 9, e2202061. doi: 10.1002/advs.202202061
|