Volume 8 Issue 4
Oct.  2023
Turn off MathJax
Article Contents
Victoria French, Chuanshen Du, E. Johan Foster. Mycelium as a self-growing biobased material for the fabrication of single-layer masks[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 399-407. doi: 10.1016/j.jobab.2023.07.001
Citation: Victoria French, Chuanshen Du, E. Johan Foster. Mycelium as a self-growing biobased material for the fabrication of single-layer masks[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 399-407. doi: 10.1016/j.jobab.2023.07.001

Mycelium as a self-growing biobased material for the fabrication of single-layer masks

doi: 10.1016/j.jobab.2023.07.001
More Information
  • Corresponding author: E-mail address: johan.foster@ubc.ca (E.J. Foster)
  • Available Online: 2023-08-01
  • Publish Date: 2023-10-28
  • Disposable face masks are an essential piece of personal protective equipment for workers in medical facilities, laboratories, and the general public to prevent the spread of illnesses and/or contamination. Covid-19 resulted in an uptick in the usage and production of face masks, exacerbating issues related to the waste and recycling of these materials. Traditionally, face masks are derived from petrochemicals, such as melt-blown or spunbound polypropylene. As such, there is a need to find sustainable mask materials that can maintain or improve the performance of petrochemical masks. This paper explores an alternative mask material that utilizes fungal mycelium as self-growing filaments to enhance the efficiency of individual polypropylene mask layers. By engineering the growth pattern and time, breathability and filtration efficiency was optimized such that one layer of the mycelium-modified mask could replace all three layers of the traditional three-layer mask. Additionally, it was found that the mycelium-modified mask exhibits asymmetric hydrophobicity, with super-hydrophobicity at the composite-air interface and lower hydrophobicity at the composite-medium interface. This property can improve the performance of the modified mask by protecting the mask from external liquids without trapping water vapor from the user's breath. The findings from this study can provide a basis for further development of mycelium to create sustainable filtration materials with enhanced functionality.

     

  • Declaration of Competing Interest
    The authors declare no conflict of interest.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2023.07.001.
  • loading
  • Abbas, W.A., Shaheen, B.S., Ghanem, L.G., Badawy, I.M., Abodouh, M.M., Abdou, S.M., Zada, S., Allam, N.K., 2021. Cost-effective face mask filter based on hybrid composite nanofibrous layers with high filtration efficiency. Langmuir 37, 7492–7502. doi: 10.1021/acs.langmuir.1c00926
    Abhijith, R., Ashok, A., Rejeesh, C.R., 2018. Sustainable packaging applications from mycelium to substitute polystyrene: a review. Mater. Today 5, 2139–2145.
    Al-Hazeem, N., 2021. Manufacture of fibroustructure facemask to protect against coronavirus using electrospinning. Medico Res. Chron. 8, 103–110. doi: 10.26838/medrech.2021.8.2.480
    Antinori, M.E., Contardi, M., Suarato, G., Armirotti, A., Bertorelli, R., Mancini, G., Debellis, D., Athanassiou, A., 2021. Advanced mycelium materials as potential self-growing biomedical scaffolds. Sci. Rep. 11, 12630. doi: 10.1038/s41598-021-91572-x
    Appels, F.V.W., Dijksterhuis, J., Lukasiewicz, C.E., Jansen, K.M.B., Wösten, H.A.B., Krijgsheld, P., 2018. Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material. Sci. Rep. 8, 4703. doi: 10.1038/s41598-018-23171-2
    Appels, F.V.W., van den Brandhof, J.G., Dijksterhuis, J., de Kort, G.W., Wösten, H.A.B., 2020. Fungal mycelium classified in different material families based on glycerol treatment. Commun. Biol. 3, 334. doi: 10.1038/s42003-020-1064-4
    Aragaw, T.A., 2020. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Mar. Pollut. Bull. 159, 111517. doi: 10.1016/j.marpolbul.2020.111517
    Athukoralalage, S.S.A., Bell, C.A., Gemmell, A.C., Rowan, A.E., Amiralian, N., 2023. Recent advances and future perspectives in engineering biodegradable face masks. J. Mater. Chem. A 11, 1575–1592. doi: 10.1039/d2ta08019b
    Babaahmadi, V., Amid, H., Naeimirad, M., Ramakrishna, S., 2021. Biodegradable and multifunctional surgical face masks: a brief review on demands during COVID-19 pandemic, recent developments, and future perspectives. Sci. Total Environ. 798, 149233. doi: 10.1016/j.scitotenv.2021.149233
    Carlile, M.J., 1995. The success of the hypha and mycelium. In: The Growing Fungus. Springer Netherlands, Dordrecht, pp. 3–19.
    Choi, S., Jeon, H., Jang, M., Kim, H., Shin, G., Koo, J.M., Lee, M., Sung, H.K., Eom, Y., Yang, H.S., Jegal, J., Park, J., Oh, D.X., Hwang, S.Y., 2021. Biodegradable, efficient, and breathable multi-use face mask filter. Adv. Sci. 8, 2003155. doi: 10.1002/advs.202003155
    Elliot, M.A., Talbot, N.J., 2004. Building filaments in the air: aerial morphogenesis in bacteria and fungi. Curr. Opin. Microbiol. 7, 594–601. doi: 10.1016/j.mib.2004.10.013
    Elsacker, E., Vandelook, S., Van Wylick, A., Ruytinx, J., De Laet, L., Peeters, E., 2020. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environ. 725, 138431. doi: 10.1016/j.scitotenv.2020.138431
    Fadare, O.O., Okoffo, E.D., 2020. Covid-19 face masks: a potential source of microplastic fibers in the environment. Sci. Total Environ. 737, 140279. doi: 10.1016/j.scitotenv.2020.140279
    Filipova, I., Irbe, I., Spade, M., Skute, M., Dāboliņa, I., Baltiņa, I., Vecbiskena, L., 2020. Mechanical and air permeability performance of novel biobased materials from fungal hyphae and cellulose fibers. Materials 14, 136. doi: 10.3390/ma14010136
    Garcia, R.A., Stevanovic, T., Berthier, J., Njamen, G., Tolnai, B., Achim, A., 2021. Cellulose, nanocellulose, and antimicrobial materials for the manufacture of disposable face masks: a review. BioResources 16, 4321–4353. doi: 10.15376/biores.16.2.garcia
    Han, J.X., Kawauchi, M., Schiphof, K., Terauchi, Y., Yoshimi, A., Tanaka, C., Nakazawa, T., Honda, Y., 2023. Features of disruption mutants of genes encoding for hydrophobin Vmh2 and Vmh3 in mycelial formation and resistance to environmental stress in Pleurotus ostreatus. FEMS Microbiol. Lett. 370. doi: 10.3746/pnf.2023.28.3.370
    Haneef, M., Ceseracciu, L., Canale, C., Bayer, I.S., Heredia-Guerrero, J.A., Athanassiou, A., 2017. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci. Rep. 7, 41292. doi: 10.1038/srep41292
    He, H.J., Gao, M., Illés, B., Molnar, K., 2020. 3D printed and electrospun, transparent, hierarchical polylactic acid mask nanoporous filter. Int. J. Bioprint. 6, 278. doi: 10.18063/ijb.v6i4.278
    Jablonský, M., Homola, J., Masaryk, M., Sláviková, M., Homolová, M., Bražinová, A., Katuščák, S., 2021. Cellulose fibers (dominant protecting means/tool) against COVID-19. Facemasks pros, cons, and challenges. BioResources 16, 2200–2203. doi: 10.15376/biores.16.2.2200-2203
    Jones, M., Gandia, A., John, S., Bismarck, A., 2021. Leather-like material biofabrication using fungi. Nat. Sustain. 4, 9–16.
    Jones, M., Mautner, A., Luenco, S., Bismarck, A., John, S., 2020. Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater. Des. 187, 108397. doi: 10.1016/j.matdes.2019.108397
    Jonsirivilai, B., Torgbo, S., Sukyai, P., 2022. Multifunctional filter membrane for face mask using bacterial cellulose for highly efficient particulate matter removal. Cellulose 29, 6205–6218. doi: 10.1007/s10570-022-04641-3
    Kwong, L.H., Wilson, R., Kumar, S., Crider, Y.S., Reyes Sanchez, Y., Rempel, D., Pillarisetti, A., 2021. Review of the breathability and filtration efficiency of common household materials for face masks. ACS Nano 15, 5904–5924. doi: 10.1021/acsnano.0c10146
    Liu, H., Huang, J.Y., Mao, J.J., Chen, Z., Chen, G.Q., Lai, Y.K., 2019. Transparent antibacterial nanofiber air filters with highly efficient moisture resistance for sustainable particulate matter capture. iScience 19, 214–223. doi: 10.1016/j.isci.2019.07.020
    Maclntyre, C.R., Seale, H., Dung, T.C., Hien, N.T., Nga, P.T., Chughtai, A.A., Rahman, B., Dwyer, D.E., Wang, Q.Y., 2015. A cluster randomised trial of cloth masks compared with medical masks in healthcare workers. BMJ Open 5, e006577. doi: 10.1136/bmjopen-2014-006577
    Manan, S., Ullah, M.W., Ul-Islam, M., Atta, O.M., Yang, G., 2021. Synthesis and applications of fungal mycelium-based advanced functional materials. J. Bioresour. Bioprod. 6, 1–10. doi: 10.1016/j.jobab.2021.01.001
    Mojumdar, A., Behera, H.T., Ray, L., 2021. Mushroom mycelia-based material: an environmental friendly alternative to synthetic packaging. In: Microbial Polymers. Springer, Singapore, pp. 131–141.
    Moser, F.J., Trautz, M., Beger, A.L., Löwer, M., Jacobs, G., Hillringhaus, F., Wormit, A., Usadel, B., Reimer, J.J., 2017. Fungal mycelium as a building material. The Annual Symposium of the International Association for Shell and Spatial Structures.
    O'Dowd, K., Nair, K.M., Forouzandeh, P., Mathew, S., Grant, J., Moran, R., Bartlett, J., Bird, J., Pillai, S.C., 2020. Face masks and respirators in the fight against the COVID-19 pandemic: a review of current materials, advances and future perspectives. Materials 13, 3363. doi: 10.3390/ma13153363
    Pelletier, M.G., Holt, G.A., Wanjura, J.D., Greetham, L., McIntyre, G., Bayer, E., Kaplan-Bie, J., 2019. Acoustic evaluation of mycological biopolymer, an all-natural closed cell foam alternative. Ind. Crop. Prod. 139, 111533. doi: 10.1016/j.indcrop.2019.111533
    Peng, L.C., Yi, J., Yang, X.Y., Xie, J., Chen, C.W., 2023. Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts. J. Bioresour. Bioprod. 8, 78–89. doi: 10.1016/j.jobab.2022.11.005
    Pragadheeswari, R., Arunkumar, K. V, Rajakumar, R., Sangeetha, K., 2014. Nano membrane fibrous on lyocell non-woven fabric for bacterial filtration efficiency in surgical face mask. J. NanoSci. NanoTechnol. 2, 598–599.
    Sayfutdinova, A., Samofalova, I., Barkov, A., Cherednichenko, K., Rimashevskiy, D., Vinokurov, V., 2022. Structure and properties of cellulose/mycelium biocomposites. Polymers 14, 1519. doi: 10.3390/polym14081519
    Strasser, B.J., Schlich, T., 2020. A history of the medical mask and the rise of throwaway culture. Lancet 396, 19–20. doi: 10.1016/S0140-6736(20)31207-1
    Sullivan, G.L., Delgado-Gallardo, J., Watson, T.M., Sarp, S., 2021. An investigation into the leaching of micro and nano particles and chemical pollutants from disposable face masks - linked to the COVID-19 pandemic. Water Res. 196, 117033. doi: 10.1016/j.watres.2021.117033
    Sun, W.J., Tajvidi, M., Hunt, C.G., Howell, C., 2021. All-natural smart mycelium surface with tunable wettability. ACS Appl. Bio Mater. 4, 1015–1022. doi: 10.1021/acsabm.0c01449
    Vandelook, S., Elsacker, E., Van Wylick, A., de Laet, L., Peeters, E., 2021. Current state and future prospects of pure mycelium materials. Fungal Biol. Biotechnol. 8, 20. doi: 10.1186/s40694-021-00128-1
    Wang, L., Gao, Y.F., Xiong, J.P., Shao, W.L., Cui, C., Sun, N., Zhang, Y.T., Chang, S.Z., Han, P.J., Liu, F., He, J.X., 2022. Biodegradable and high-performance multiscale structured nanofiber membrane as mask filter media via poly(lactic acid) electrospinning. J. Colloid Interface Sci. 606, 961–970. doi: 10.1016/j.jcis.2021.08.079
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (205) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return