Citation: | Victoria French, Chuanshen Du, E. Johan Foster. Mycelium as a self-growing biobased material for the fabrication of single-layer masks[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 399-407. doi: 10.1016/j.jobab.2023.07.001 |
Abbas, W.A., Shaheen, B.S., Ghanem, L.G., Badawy, I.M., Abodouh, M.M., Abdou, S.M., Zada, S., Allam, N.K., 2021. Cost-effective face mask filter based on hybrid composite nanofibrous layers with high filtration efficiency. Langmuir 37, 7492–7502. doi: 10.1021/acs.langmuir.1c00926
|
Abhijith, R., Ashok, A., Rejeesh, C.R., 2018. Sustainable packaging applications from mycelium to substitute polystyrene: a review. Mater. Today 5, 2139–2145.
|
Al-Hazeem, N., 2021. Manufacture of fibroustructure facemask to protect against coronavirus using electrospinning. Medico Res. Chron. 8, 103–110. doi: 10.26838/medrech.2021.8.2.480
|
Antinori, M.E., Contardi, M., Suarato, G., Armirotti, A., Bertorelli, R., Mancini, G., Debellis, D., Athanassiou, A., 2021. Advanced mycelium materials as potential self-growing biomedical scaffolds. Sci. Rep. 11, 12630. doi: 10.1038/s41598-021-91572-x
|
Appels, F.V.W., Dijksterhuis, J., Lukasiewicz, C.E., Jansen, K.M.B., Wösten, H.A.B., Krijgsheld, P., 2018. Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material. Sci. Rep. 8, 4703. doi: 10.1038/s41598-018-23171-2
|
Appels, F.V.W., van den Brandhof, J.G., Dijksterhuis, J., de Kort, G.W., Wösten, H.A.B., 2020. Fungal mycelium classified in different material families based on glycerol treatment. Commun. Biol. 3, 334. doi: 10.1038/s42003-020-1064-4
|
Aragaw, T.A., 2020. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Mar. Pollut. Bull. 159, 111517. doi: 10.1016/j.marpolbul.2020.111517
|
Athukoralalage, S.S.A., Bell, C.A., Gemmell, A.C., Rowan, A.E., Amiralian, N., 2023. Recent advances and future perspectives in engineering biodegradable face masks. J. Mater. Chem. A 11, 1575–1592. doi: 10.1039/d2ta08019b
|
Babaahmadi, V., Amid, H., Naeimirad, M., Ramakrishna, S., 2021. Biodegradable and multifunctional surgical face masks: a brief review on demands during COVID-19 pandemic, recent developments, and future perspectives. Sci. Total Environ. 798, 149233. doi: 10.1016/j.scitotenv.2021.149233
|
Carlile, M.J., 1995. The success of the hypha and mycelium. In: The Growing Fungus. Springer Netherlands, Dordrecht, pp. 3–19.
|
Choi, S., Jeon, H., Jang, M., Kim, H., Shin, G., Koo, J.M., Lee, M., Sung, H.K., Eom, Y., Yang, H.S., Jegal, J., Park, J., Oh, D.X., Hwang, S.Y., 2021. Biodegradable, efficient, and breathable multi-use face mask filter. Adv. Sci. 8, 2003155. doi: 10.1002/advs.202003155
|
Elliot, M.A., Talbot, N.J., 2004. Building filaments in the air: aerial morphogenesis in bacteria and fungi. Curr. Opin. Microbiol. 7, 594–601. doi: 10.1016/j.mib.2004.10.013
|
Elsacker, E., Vandelook, S., Van Wylick, A., Ruytinx, J., De Laet, L., Peeters, E., 2020. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environ. 725, 138431. doi: 10.1016/j.scitotenv.2020.138431
|
Fadare, O.O., Okoffo, E.D., 2020. Covid-19 face masks: a potential source of microplastic fibers in the environment. Sci. Total Environ. 737, 140279. doi: 10.1016/j.scitotenv.2020.140279
|
Filipova, I., Irbe, I., Spade, M., Skute, M., Dāboliņa, I., Baltiņa, I., Vecbiskena, L., 2020. Mechanical and air permeability performance of novel biobased materials from fungal hyphae and cellulose fibers. Materials 14, 136. doi: 10.3390/ma14010136
|
Garcia, R.A., Stevanovic, T., Berthier, J., Njamen, G., Tolnai, B., Achim, A., 2021. Cellulose, nanocellulose, and antimicrobial materials for the manufacture of disposable face masks: a review. BioResources 16, 4321–4353. doi: 10.15376/biores.16.2.garcia
|
Han, J.X., Kawauchi, M., Schiphof, K., Terauchi, Y., Yoshimi, A., Tanaka, C., Nakazawa, T., Honda, Y., 2023. Features of disruption mutants of genes encoding for hydrophobin Vmh2 and Vmh3 in mycelial formation and resistance to environmental stress in Pleurotus ostreatus. FEMS Microbiol. Lett. 370. doi: 10.3746/pnf.2023.28.3.370
|
Haneef, M., Ceseracciu, L., Canale, C., Bayer, I.S., Heredia-Guerrero, J.A., Athanassiou, A., 2017. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci. Rep. 7, 41292. doi: 10.1038/srep41292
|
He, H.J., Gao, M., Illés, B., Molnar, K., 2020. 3D printed and electrospun, transparent, hierarchical polylactic acid mask nanoporous filter. Int. J. Bioprint. 6, 278. doi: 10.18063/ijb.v6i4.278
|
Jablonský, M., Homola, J., Masaryk, M., Sláviková, M., Homolová, M., Bražinová, A., Katuščák, S., 2021. Cellulose fibers (dominant protecting means/tool) against COVID-19. Facemasks pros, cons, and challenges. BioResources 16, 2200–2203. doi: 10.15376/biores.16.2.2200-2203
|
Jones, M., Gandia, A., John, S., Bismarck, A., 2021. Leather-like material biofabrication using fungi. Nat. Sustain. 4, 9–16.
|
Jones, M., Mautner, A., Luenco, S., Bismarck, A., John, S., 2020. Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater. Des. 187, 108397. doi: 10.1016/j.matdes.2019.108397
|
Jonsirivilai, B., Torgbo, S., Sukyai, P., 2022. Multifunctional filter membrane for face mask using bacterial cellulose for highly efficient particulate matter removal. Cellulose 29, 6205–6218. doi: 10.1007/s10570-022-04641-3
|
Kwong, L.H., Wilson, R., Kumar, S., Crider, Y.S., Reyes Sanchez, Y., Rempel, D., Pillarisetti, A., 2021. Review of the breathability and filtration efficiency of common household materials for face masks. ACS Nano 15, 5904–5924. doi: 10.1021/acsnano.0c10146
|
Liu, H., Huang, J.Y., Mao, J.J., Chen, Z., Chen, G.Q., Lai, Y.K., 2019. Transparent antibacterial nanofiber air filters with highly efficient moisture resistance for sustainable particulate matter capture. iScience 19, 214–223. doi: 10.1016/j.isci.2019.07.020
|
Maclntyre, C.R., Seale, H., Dung, T.C., Hien, N.T., Nga, P.T., Chughtai, A.A., Rahman, B., Dwyer, D.E., Wang, Q.Y., 2015. A cluster randomised trial of cloth masks compared with medical masks in healthcare workers. BMJ Open 5, e006577. doi: 10.1136/bmjopen-2014-006577
|
Manan, S., Ullah, M.W., Ul-Islam, M., Atta, O.M., Yang, G., 2021. Synthesis and applications of fungal mycelium-based advanced functional materials. J. Bioresour. Bioprod. 6, 1–10. doi: 10.1016/j.jobab.2021.01.001
|
Mojumdar, A., Behera, H.T., Ray, L., 2021. Mushroom mycelia-based material: an environmental friendly alternative to synthetic packaging. In: Microbial Polymers. Springer, Singapore, pp. 131–141.
|
Moser, F.J., Trautz, M., Beger, A.L., Löwer, M., Jacobs, G., Hillringhaus, F., Wormit, A., Usadel, B., Reimer, J.J., 2017. Fungal mycelium as a building material. The Annual Symposium of the International Association for Shell and Spatial Structures.
|
O'Dowd, K., Nair, K.M., Forouzandeh, P., Mathew, S., Grant, J., Moran, R., Bartlett, J., Bird, J., Pillai, S.C., 2020. Face masks and respirators in the fight against the COVID-19 pandemic: a review of current materials, advances and future perspectives. Materials 13, 3363. doi: 10.3390/ma13153363
|
Pelletier, M.G., Holt, G.A., Wanjura, J.D., Greetham, L., McIntyre, G., Bayer, E., Kaplan-Bie, J., 2019. Acoustic evaluation of mycological biopolymer, an all-natural closed cell foam alternative. Ind. Crop. Prod. 139, 111533. doi: 10.1016/j.indcrop.2019.111533
|
Peng, L.C., Yi, J., Yang, X.Y., Xie, J., Chen, C.W., 2023. Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts. J. Bioresour. Bioprod. 8, 78–89. doi: 10.1016/j.jobab.2022.11.005
|
Pragadheeswari, R., Arunkumar, K. V, Rajakumar, R., Sangeetha, K., 2014. Nano membrane fibrous on lyocell non-woven fabric for bacterial filtration efficiency in surgical face mask. J. NanoSci. NanoTechnol. 2, 598–599.
|
Sayfutdinova, A., Samofalova, I., Barkov, A., Cherednichenko, K., Rimashevskiy, D., Vinokurov, V., 2022. Structure and properties of cellulose/mycelium biocomposites. Polymers 14, 1519. doi: 10.3390/polym14081519
|
Strasser, B.J., Schlich, T., 2020. A history of the medical mask and the rise of throwaway culture. Lancet 396, 19–20. doi: 10.1016/S0140-6736(20)31207-1
|
Sullivan, G.L., Delgado-Gallardo, J., Watson, T.M., Sarp, S., 2021. An investigation into the leaching of micro and nano particles and chemical pollutants from disposable face masks - linked to the COVID-19 pandemic. Water Res. 196, 117033. doi: 10.1016/j.watres.2021.117033
|
Sun, W.J., Tajvidi, M., Hunt, C.G., Howell, C., 2021. All-natural smart mycelium surface with tunable wettability. ACS Appl. Bio Mater. 4, 1015–1022. doi: 10.1021/acsabm.0c01449
|
Vandelook, S., Elsacker, E., Van Wylick, A., de Laet, L., Peeters, E., 2021. Current state and future prospects of pure mycelium materials. Fungal Biol. Biotechnol. 8, 20. doi: 10.1186/s40694-021-00128-1
|
Wang, L., Gao, Y.F., Xiong, J.P., Shao, W.L., Cui, C., Sun, N., Zhang, Y.T., Chang, S.Z., Han, P.J., Liu, F., He, J.X., 2022. Biodegradable and high-performance multiscale structured nanofiber membrane as mask filter media via poly(lactic acid) electrospinning. J. Colloid Interface Sci. 606, 961–970. doi: 10.1016/j.jcis.2021.08.079
|