Citation: | Ayyoob Arpanaei, Qiliang Fu, Tripti Singh. Nanotechnology approaches towards biodeterioration-resistant wood: A review[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 3-26. doi: 10.1016/j.jobab.2023.09.001 |
Adamová, T., Hradecký, J., Pánek, M., 2020. Volatile organic compounds (VOCs) from wood and wood-based panels: methods for evaluation, potential health risks, and mitigation. Polymers 12, 2289. doi: 10.3390/polym12102289
|
Aguayo, M.G., Oviedo, C., Reyes, L., Navarrete, J., Gómez, L., Torres, H., Gaviño, G., Trollund, E., 2021. Radiata pine wood treated with copper nanoparticles: leaching analysis and fungal degradation. Forests 12, 1606. doi: 10.3390/f12111606
|
Ahmadi, A., Sokunbi, M., Patel, T., Chang, M.W., Ahmad, Z., Singh, N., 2022. Influence of critical parameters on cytotoxicity induced by mesoporous silica nanoparticles. Nanomaterials 12, 2016. doi: 10.3390/nano12122016
|
Al-Zahrani, S.S., Bora, R.S., Al-Garni, S.M., 2021. Antimicrobial activity of chitosan nanoparticles. Biotechnol. Biotechnol. Equip. 35, 1874–1880. doi: 10.1080/13102818.2022.2027816
|
Amburgey, T.L., 2008. Insects that infest seasoned wood in structures. In: Development of Commercial Wood Preservatives, ACS Symposium Series. New York, American Chemical Society, 3–32.
|
Anastasiadis, S.H., Chrissopoulou, K., Stratakis, E., Kavatzikidou, P., Kaklamani, G., Ranella, A., 2022. How the physicochemical properties of manufactured nanomaterials affect their performance in dispersion and their applications in biomedicine: a review. Nanomaterials 12, 552. doi: 10.3390/nano12030552
|
Arendsen, L.P., Thakar, R., Sultan, A.H., 2019. The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clin. Microbiol. Rev. 32, e00125–e00118. http://www.xueshufan.com/publication/2967973612
|
Ayanleye, S., Udele, K., Nasir, V., Zhang, X.F., Militz, H., 2022. Durability and protection of mass timber structures: a review. J. Build. Eng. 46, 103731. doi: 10.1016/j.jobe.2021.103731
|
Aydın, S., Terzi, E., Kartal, S.N., Pişkin, S., Kılıç Depren, S., Kantürk Figen, A., 2020. New manufacturing methodology for boron-based rods for remedial treatments of wood: solubilities and some physical and thermal properties of the rods. SN Appl. Sci. 2, 1–12. doi: 10.5455/medscience.2020.06.121
|
Bahmani, M., Schmidt, O., 2018. Plant essential oils for environment-friendly protection of wood objects against fungi. Maderas Cienc. Tecnol. 20, 325–332. http://www.xueshufan.com/publication/2883773158
|
Bain, J., 1978. Lyctus brunneus (Stephens) (Coleoptera: Lyctidae), a powder-post beetle. For. Timber Insects New Zeal. 33, 8.
|
Bayal, M., Janardhanan, P., Tom, E., Chandran, N., Devadathan, S., Ranjeet, D., Unniyampurath, U., Pilankatta, R., Nair, S.S., 2019. Cytotoxicity of nanoparticles - Are the size and shape only matters? or the media parameters too?: A study on band engineered ZnS nanoparticles and calculations based on equivolume stress model. Nanotoxicology 13, 1005–1020. doi: 10.1080/17435390.2019.1602678
|
Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., Rizzolio, F., 2019. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules 25, 112. doi: 10.3390/molecules25010112
|
Baysal, E., Ozaki, S.K., Yalinkilic, M.K., 2004. Dimensional stabilization of wood treated with furfuryl alcohol catalysed by borates. Wood Sci. Technol. 38, 405–415.
|
Bergman, R., Puettmann, M., Taylor, A., Skog, K.E., 2014. The carbon impacts of wood products. For. Prod. J. 64, 220–231.
|
Bhagia, S., Ďurkovič, J., Lagaňa, R., Kardošová, M., Kačík, F., Cernescu, A., Schäfer, P., Yoo, C.G., Ragauskas, A.J., 2022. Nanoscale FTIR and mechanical mapping of plant cell walls for understanding biomass deconstruction. ACS Sustain. Chem. Eng. 10, 3016–3026. doi: 10.1021/acssuschemeng.1c08163
|
Bi, W.Z., Li, H.T., Hui, D., Gaff, M., Lorenzo, R., Corbi, I., Corbi, O., Ashraf, M., 2021. Effects of chemical modification and nanotechnology on wood properties. Nanotechnol. Rev. 10, 978–1008. doi: 10.1515/ntrev-2021-0065
|
Borges, C.C., Tonoli, G.H.D., Cruz, T.M., Duarte, P.J., Junqueira, T.A., 2018. Nanoparticles-based wood preservatives: the next generation of wood protection? CERNE 24, 397–407. doi: 10.1590/01047760201824042531
|
Bossert, D., Geers, C., Placencia Peña, M.I., Volkmer, T., Rothen-Rutishauser, B., Petri-Fink, A., 2020. Size and surface charge dependent impregnation of nanoparticles in soft- and hardwood. Chemistry 2, 361–373. doi: 10.3390/chemistry2020023
|
Brelid, P.L., 2013. Benchmarking and State of the Art Report for Modified Wood. SP Rep. No. 54, SP Tech. Res. Inst. Sweden, Stock. Sweden, 1–31.
|
Burgert, I., Cabane, E., Zollfrank, C., Berglund, L., 2015. Bio-inspired functional wood-based materials–hybrids and replicates. Int. Mater. Rev. 60, 431–450. doi: 10.1179/1743280415Y.0000000009
|
Cabral Almada, C., Montibus, M., Ham-Pichavant, F., Tapin-Lingua, S., Labat, G., Silva Perez, D.D.A., Grelier, S., 2021. Growth inhibition of wood-decay fungi by lignin-related aromatic compounds. Eur. J. Wood Wood Prod. 79, 1057–1065. doi: 10.1007/s00107-021-01689-z
|
Cai, T.L., Shen, X.Y., Huang, E.Z., Yan, Y.T., Shen, X.P., Wang, F.Q., Wang, Z., Sun, Q.F., 2020. Ag nanoparticles supported on MgAl-LDH decorated wood veneer with enhanced flame retardancy, water repellency and antimicrobial activity. Colloids Surf. A 598, 124878. doi: 10.1016/j.colsurfa.2020.124878
|
Can, A., Sivrikaya, H., Hazer, B., Palanti, S., 2022. Beech (Fagus orientalis) wood modification through the incorporation of polystyrene-ricinoleic acid copolymer with Ag nanoparticles. Cellulose 29, 1149–1161. doi: 10.1007/s10570-021-04341-4
|
Candelier, K., Thevenon, M.F., Petrissans, A., Dumarcay, S., Gerardin, P., Petrissans, M., 2016. Control of wood thermal treatment and its effects on decay resistance: a review. Ann. For. Sci. 73, 571–583. doi: 10.1007/s13595-016-0541-x
|
Carvalho, S.G., Araujo, V.H.S., Dos Santos, A.M., Duarte, J.L., Silvestre, A.L.P., Fonseca-Santos, B., Villanova, J.C.O., Gremião, M.P.D., Chorilli, M., 2020. Advances and challenges in nanocarriers and nanomedicines for veterinary application. Int. J. Pharm. 580, 119214. doi: 10.1016/j.ijpharm.2020.119214
|
Casado-Sanz, Silva-Castro, Ponce-Herrero, Martín-Ramos, Martín-Gil, Acuña-Rello, 2019. White-rot fungi control on Populus spp. wood by pressure treatments with silver nanoparticles, chitosan oligomers and Propolis. Forests 10, 885. doi: 10.3390/f10100885
|
Chen, C.J., Kuang, Y.D., Zhu, S.Z., Burgert, I., Keplinger, T., Gong, A., Li, T., Berglund, L., Eichhorn, S.J., Hu, L.B., 2020. Structure-property-function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666. doi: 10.1038/s41578-020-0195-z
|
Chen, J.S., An, L.L., Bae, J.H., Heo, J.W., Han, S.Y., Kim, Y.S., 2021. Green and facile synthesis of aminated lignin-silver complex and its antibacterial activity. Ind. Crops Prod. 173, 114102. doi: 10.1016/j.indcrop.2021.114102
|
Cheng, L.S., Ren, S.B., Lu, X.N., 2020. Application of eco-friendly waterborne polyurethane composite coating incorporated with nano cellulose crystalline and silver nano particles on wood antibacterial board. Polymers 12, 407. doi: 10.3390/polym12020407
|
Chirkova, J., Andersone, I., Irbe, I., Spince, B., Andersons, B., 2011. Lignins as agents for bio-protection of wood. Holzforschung 65: 497–502. doi: 10.1515/HF.2011.092
|
Chittenden, C., Singh, T., 2011. Antifungal activity of essential oils against wood degrading fungi and their applications as wood preservatives. Int. Wood Prod. J. 2, 44–48. doi: 10.1179/2042645311Y.0000000004
|
Churkina, G., Organschi, A., Reyer, C.P.O., Ruff, A., Vinke, K., Liu, Z., Reck, B.K., Graedel, T.E., Schellnhuber, H.J., 2020. Buildings as a global carbon sink. Nat. Sustain. 3, 269–276. doi: 10.1038/s41893-019-0462-4
|
Civardi, C., Schlagenhauf, L., Kaiser, J.P., Hirsch, C., Mucchino, C., Wichser, A., Wick, P., Schwarze, F.W.M.R., 2016. Release of copper-amended particles from micronized copper-pressure-treated wood during mechanical abrasion. J. Nanobiotechnol. 14, 77. doi: 10.1186/s12951-016-0232-7
|
Clausen, C.A., 2012. Enhancing durability of wood-based composites with nanotechnology. Proc. Nanotechnol. Wood Compos. Symp. 218.
|
Cruces, E., Arancibia-Miranda, N., Manquián-Cerda, K., Perreault, F., Bolan, N., Azócar, M.I., Cubillos, V., Montory, J., Rubio, M.A., Sarkar, B., 2022. Copper/silver bimetallic nanoparticles supported on aluminosilicate geomaterials as antibacterial agents. ACS Appl. Nano Mater. 5, 1472–1483. doi: 10.1021/acsanm.1c04031
|
Cruz-Luna, A.R., Cruz-Martínez, H., Vásquez-López, A., Medina, D.I., 2021. Metal nanoparticles as novel antifungal agents for sustainable agriculture: current advances and future directions. J. Fungi 7, 1033. doi: 10.3390/jof7121033
|
Dai, X.H., Qi, Y.R., Luo, H.X., He, Z.X., Wei, L.X., Dong, X.Y., Ma, X.X., Yang, D.Q., Li, Y.F., 2022. Leachability and anti-mold efficiency of nanosilver on poplar wood surface. Polymers 14, 884. doi: 10.3390/polym14050884
|
De Filpo, G., Palermo, A.M., Rachiele, F., Nicoletta, F.P., 2013. Preventing fungal growth in wood by titanium dioxide nanoparticles. Int. Biodeterior. Biodegrad. 85, 217–222. doi: 10.1016/j.ibiod.2013.07.007
|
de Lima, N.N., de Castro, V.R., Lopes, N.F., Nunes, Í.L., Andrade, F.A., Zanuncio, A.J.V., de Cassia Oliveira Carneiro, A., Araújo, S., 2022. Tannin extracts as a preservative for pine thermo-mechanically densified wood. BioResources 18, 641–652. doi: 10.15376/biores.18.1.641-652
|
Deng, Y.H., Zhao, H.J., Qian, Y., Lü, L., Wang, B.B., Qiu, X.Q., 2016. Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance. Ind. Crops Prod. 87, 191–197. doi: 10.1016/j.indcrop.2016.03.056
|
Dhiman, N.K., Sidhu, N., Agnihotri, S., Mukherjee, A., Reddy, M.S., 2022. Role of nanomaterials in protecting building materials from degradation and deterioration. Biodegradation and Biodeterioration at the Nanoscale. Amsterdam: Elsevier, 405–475.
|
Ding, X.C., Richter, D.L., Matuana, L.M., Heiden, P.A., 2011. Efficient one-pot synthesis and loading of self-assembled amphiphilic chitosan nanoparticles for low-leaching wood preservation. Carbohydr. Polym. 86, 58–64. doi: 10.1016/j.carbpol.2011.04.002
|
Ding, Y., Pang, Z.Q., Lan, K., Yao, Y., Panzarasa, G., Xu, L., Ricco, M.L., Rammer, D.R., Zhu, J.Y., Hu, M., Pan, X.J., Li, T., Burgert, I., Hu, L.B., 2023. Emerging engineered wood for building applications. Chem. Rev. 123, 1843–1888. doi: 10.1021/acs.chemrev.2c00450
|
Do, T.T.H., Ly, T.B.T., Hoang, N.T., Tran, V.T., 2022. A new integrated circular economy index and a combined method for optimization of wood production chain considering carbon neutrality. Chemosphere 311, 137029.
|
Dollwet, H., Sorenson, J., 1985. Historic uses of copper compounds in medicine. Trace Elem. Med. 2, 80–87.
|
Donaldson, L.A., 2019. Wood cell wall ultrastructure The key to understanding wood properties and behaviour. IAWA J. 40, 645–672. doi: 10.1163/22941932-40190258
|
Donaldson, L.A., 2022. Super-resolution imaging of Douglas fir xylem cell wall nanostructure using SRRF microscopy. Plant Methods 18, 27. doi: 10.1186/s13007-022-00865-3
|
Donath, S., Militz, H., Mai, C., 2004. Wood modification with alkoxysilanes. Wood Sci. Technol. 38, 555–566.
|
Donath, S., Militz, H., Mai, C., 2006. Treatment of wood with aminofunctional silanes for protection against wood destroying fungi. Holzforschung 60, 210–216. doi: 10.1515/hf.2006.035
|
Dong, X.Y., Zhuo, X., Wei, J., Zhang, G., Li, Y.F., 2017. Wood-based nanocomposite derived by in situ formation of organic-inorganic hybrid polymer within wood via a sol-gel method. ACS Appl. Mater. Interfaces 9, 9070–9078. doi: 10.1021/acsami.7b01174
|
Eaton, R.A.; Hale, M.D.C., 1993. Wood : Decay, Pests, and Protection. New York: Chapman & Hall London.
|
Elam, J., Björdal, C.G., 2022. Long-term study on wood degradation in urban soil-water systems - implications for service life of historic foundation piles. Int. Biodeterior. Biodegrad. 167, 105356. doi: 10.1016/j.ibiod.2021.105356
|
Elieh-Ali-Komi, D., Hamblin, M.R., 2016. Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. 4, 411–427. http://www.researchgate.net/file.PostFileLoader.html?id=584d1f234048544f1d38bb74&assetKey=AS%3A438044059803648%401481449250946
|
Emmerich, L., Bollmus, S., Militz, H., 2019. Wood modification with DMDHEU (1.3-dimethylol-4.5-dihydroxyethyleneurea): state of the art, recent research activities and future perspectives. Wood Mater. Sci. Eng. 14, 3–18. doi: 10.1080/17480272.2017.1417907
|
Ermeydan, M.A., Cabane, E., Gierlinger, N., Koetz, J., Burgert, I., 2014. Improvement of wood material properties via in situ polymerization of styrene into tosylated cell walls. RSC Adv. 4, 12981–12988. doi: 10.1039/c4ra00741g
|
Esteves, B.M., Pereira, H.M., 2008. Wood modification by heat treatment: a review. BioResources 4, 370–404. doi: 10.15376/biores.4.1.Esteves
|
Evans, P., Matsunaga, H., Kiguchi, M., 2008. Large-scale application of nanotechnology for wood protection. Nat. Nanotechnol. 3, 577. doi: 10.1038/nnano.2008.286
|
Evans, P.D., Matsunaga, H., Preston, A.F., Kewish, C.M., 2022. Wood protection for carbon sequestration: a review of existing approaches and future directions. Curr. For. Rep. 8, 181–198. doi: 10.1007/s40725-022-00166-x
|
Fan, X.Z., Yahia, L., Sacher, E., 2021. Antimicrobial properties of the Ag, Cu nanoparticle system. Biology 10, 137. doi: 10.3390/biology10020137
|
Feng, B., Zhang, S.B., Wang, D., Li, Y.L., Zheng, P., Gao, L., Huo, D., Cheng, L., Wei, S.Y., 2022. Study on antibacterial wood coatings with soybean protein isolate nano-silver hydrosol. Prog. Org. Coat. 165, 106766. doi: 10.1016/j.porgcoat.2022.106766
|
Fierascu, R.C., Doni, M., Fierascu, I., 2020. Selected aspects regarding the restoration/conservation of traditional wood and masonry building materials: a short overview of the last decade findings. Appl. Sci. 10, 1164. doi: 10.3390/app10031164
|
Figueiredo, P., Lintinen, K., Hirvonen, J.T., Kostiainen, M.A., Santos, H.A., 2018. Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 93, 233–269. doi: 10.1504/IJPM.2018.10010239
|
Freeman, M.H., McIntyre, C.R., 2008. A comprehensive review of copper-based wood preservatives with a focus on new micronized or dispersed copper systems. For. Prod. J. 58, 6–27.
|
Freeman, M.H., Nicholas, D.D., Schultz, T.P., 2006. Nonarsenical wood protection: alternatives for chromated copper arsenate, creosote and pentachlorophenol. Environ. Impacts Treat. Wood 2006, 19–36. doi: 10.1201/9781420006216.ch2
|
Freeman, M.H., Shupe, T., Vlosky, R., Barnes, H., 2003. Past, present, and future of the wood preservation industry. For. Prod. J. 53, 8–15.
|
Ganguly, P., Breen, A., Pillai, S.C., 2018. Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances. ACS Biomater. Sci. Eng. 4, 2237–2275. doi: 10.1021/acsbiomaterials.8b00068
|
Geng, A.X., Yang, H.Q., Chen, J.X., Hong, Y.X., 2017. Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation. For. Policy Econ. 85, 192–200. doi: 10.1016/j.forpol.2017.08.007
|
Gold, R.E., Jones, S.C., 2000. Handbook of Household and Structural Insect Pests, Handbook Series: Entomological Society of America. New York: Entomological Society of America.
|
Goodell, B., 2001. Wood products: deterioration by insects and marine organisms. In: Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P.B.T. E. (Eds.). Encyclopedia of Materials: Science and Technology. Oxford: Elsevier, 9696–9701.
|
Goodell, B., 2020. Fungi involved in the biodeterioration and bioconversion of lignocellulose substrates. Genetics and Biotechnology. Cham: Springer International Publishing, 369–397.
|
Goodell, B., Winandy, J.E., Morrell, J.J., 2020. Fungal degradation of wood: emerging data, new insights and changing perceptions. Coatings 10, 1210. doi: 10.3390/coatings10121210
|
Greene, J.M., Hosanna, H.R., Willson, B., Quinn, J.C., 2023. Whole life embodied emissions and net-zero emissions potential for a mid-rise office building constructed with mass timber. Sustain. Mater. Technol. 35, e00528. doi: 10.1016/j.susmat.2022.e00528
|
Henn, K.A., Forsman, N., Zou, T., Österberg, M., 2021. Colloidal lignin particles and epoxies for bio-based, durable, and multiresistant nanostructured coatings. ACS Appl. Mater. Interfaces 13, 34793–34806. doi: 10.1021/acsami.1c06087
|
Hill, C., 2006. Wood modification: chemical, thermal and other processes. Wiley Series in Renewable Resources. Hoboken: John Wiley & Sons Inc.
|
Hill, C., Altgen, M., Rautkari, L., 2021. Thermal modification of wood—a review: chemical changes and hygroscopicity. J. Mater. Sci. 56, 6581–6614. doi: 10.1007/s10853-020-05722-z
|
Hong, J.H., An, S., Song, K.Y., Kim, Y.I., Yarin, A.L., Kim, J.J., Yoon, S.S., 2019. Eco-friendly lignin nanofiber mat for protection of wood against attacks by environmentally hazardous fungi. Polym. Test. 74, 113–118. doi: 10.1016/j.polymertesting.2018.12.023
|
Hu, J.B., Skinner, C., Ormondroyd, G., Thevenon, M.F., 2023. Life cycle assessment of a novel tannin-boron association for wood protection. Sci. Total Environ. 858, 159739. doi: 10.1016/j.scitotenv.2022.159739
|
Hussain, I., Singh, T., Chittenden, C., 2012. Preparation of chitosan oligomers and characterization: their antifungal activities and decay resistance. Holzforschung 66, 119–125. http://doc.paperpass.com/foreign/rgArti2012139236432.html
|
Jasmani, L., Rusli, R., Khadiran, T., Jalil, R., Adnan, S., 2020. Application of nanotechnology in wood-based products industry: a review. Nanoscale Res. Lett. 15, 207. doi: 10.1186/s11671-020-03438-2
|
Jiang, P., Zhu, Y., Wu, Y.Q., Lin, Q.Q., Yu, Y.L., Yu, W.J., Huang, Y.X., 2021. Synthesis of flame-retardant, bactericidal, and color-adjusting wood fibers with metal phenolic networks. Ind. Crops Prod. 170, 113796. doi: 10.1016/j.indcrop.2021.113796
|
Jones, D., Sandberg, D., 2020. A review of wood modification globally–updated findings from COST FP1407. Interdiscip. Perspect. Built Environ. 1: 1–31.
|
Jones, D., Sandberg, D., Goli, G., Todaro, L., 2019. Wood modification in Europe a state-of-the-art about processes, products and applications. Wood Modification in Europe: A State-of-the-Art about Processes, Products and Applications. Available at:
|
Kalleshwaraswamy, C.M., Shanbhag, R.R., Sundararaj, R., 2022. Wood Degradation by Termites: Ecology, Economics and Protection. Science of Wood Degradation and its Protection. Singapore: Springer, 147–170.
|
Kalwar, K., Shan, D., 2018. Antimicrobial effect of silver nanoparticles (AgNPs) and their mechanism: a mini review. Micro Nano Lett. 13, 277–280. doi: 10.1049/mnl.2017.0648
|
Karny, A., Zinger, A., Kajal, A., Shainsky-Roitman, J., Schroeder, A., 2018. Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops. Sci. Rep. 8, 7589. doi: 10.1038/s41598-018-25197-y
|
Kartal, S.N., 2006. Combined effect of boron compounds and heat treatments on wood properties: boron release and decay and termite resistance. Holzforschung 60, 455–458. doi: 10.1515/hf.2006.072
|
Kartal, S.N., Green, F., Clausen, C.A., 2009. Do the unique properties of nanometals affect leachability or efficacy against fungi and termites? Int. Biodeterior. Biodegrad. 63, 490–495. doi: 10.1016/j.ibiod.2009.01.007
|
Kartal, S.N., Terzi, E., Yılmaz, H., Goodell, B., 2015. Bioremediation and decay of wood treated with ACQ, micronized ACQ, nano-CuO and CCA wood preservatives. Int. Biodeterior. Biodegrad. 99, 95–101. doi: 10.1016/j.ibiod.2015.01.004
|
Kemnitz, E., Mahn, S., Krahl, T., 2020. Nano metal fluorides: small particles with great properties. ChemTexts 6, 19. doi: 10.1007/s40828-020-00115-w
|
Khademibami, L., Bobadilha, G.S., 2022. Recent developments studies on wood protection research in academia: a review. Front. For. Glob. Change 5, 793177. doi: 10.3389/ffgc.2022.793177
|
Khademibami, L., Shmulsky, R., Barnes, H.M., Jeremic-nikolic, D., 2018. Nano-chitosan particles as wood preservatives. Am. Wood Prot. Assoc. 114, 24–32.
|
Kroese, H.W., Dawson, B.S.W., Franich, R.A., 2001. Characterisation of solvent components in light organic solvent preservative (LOSP) treated pine sapwood boards. Holz. Als. Roh. Und Werkstoff. 59, 71–72. doi: 10.1007/s001070050477
|
Kushwah, K.S., Verma, D.K., 2021. Biological synthesis of metallic nanoparticles from different plant species, In: Pham, P.V (Ed.). 21st Century Nanostructured Materials. Rijeka: IntechOpen, 1–14.
|
Lankveld, C., Alexander, J., Bongers, F., Wielders, H., 2015. Accoya ® and Tricoya ® for use in innovative joinery. Proc. Eighth Eur. Conf. Wood Modif, 216–224.
|
Lebow, S., Lebow, P., Woodward, B., Kirker, G., Arango, R., 2015. Fifty-year durability evaluation of posts treated with industrial wood preservatives. For. Prod. J. 65, 307–313. http://forest.ckcest.cn/d/hxwx/AVkKIhb849MUqoKBOJY1.html
|
Lekounougou, S., Kocaefe, D., 2014. Durability of thermally modifiedPinus banksiana(Jack pine) wood against brown and white rot fungi. Int. Wood Prod. J. 5, 92–97. doi: 10.1179/2042645313Y.0000000057
|
Lesar, B., Humar, M., 2011. Use of wax emulsions for improvement of wood durability and sorption properties. Eur. J. Wood Wood Prod. 69, 231–238. doi: 10.1007/s00107-010-0425-y
|
Li, T., Cui, L.Z., Song, X.F., Cui, X.Y., Wei, Y.L., Tang, L., Mu, Y.H., Xu, Z.H., 2022. Wood decay fungi: an analysis of worldwide research. J. Soils Sediments 22, 1688–1702. doi: 10.1007/s11368-022-03225-9
|
Li, W.J., Ren, D., Zhang, X.X., Wang, H.K., Yu, Y., 2016. The furfurylation of wood: a nanomechanical study of modified wood cells. BioResources 11: 3614–3625.
|
Li, Y.C., Liao, C.Z., Tjong, S.C., 2020. Recent advances in zinc oxide nanostructures with antimicrobial activities. Int. J. Mol. Sci. 21, 8836. doi: 10.3390/ijms21228836
|
Li, Y.F., Dong, X.Y., Liu, Y.X., Li, J., Wang, F.H., 2011. Improvement of decay resistance of wood via combination treatment on wood cell wall: swell-bonding with maleic anhydride and graft copolymerization with glycidyl methacrylate and methyl methacrylate. Int. Biodeterior. Biodegrad. 65, 1087–1094. doi: 10.1016/j.ibiod.2011.08.009
|
Li, Y.F., Liu, Y.X., Wang, X.M., Wu, Q.L., Yu, H.P., Li, J., 2011. Wood-polymer composites prepared by the in situ polymerization of monomers within wood. J. Appl. Polym. Sci. 119, 3207–3216. doi: 10.1002/app.32837
|
Liang, W.L., Yu, A.X., Wang, G.D., Zheng, F., Jia, J.L., Xu, H.H., 2018. Chitosan-based nanoparticles of avermectin to control pine wood nematodes. Int. J. Biol. Macromol. 112, 258–263. doi: 10.1016/j.ijbiomac.2018.01.174
|
Lin, L., Cao, J.M., Zhang, J., Cui, Q.L., Liu, Y., 2020. Enhanced anti-mold property and mechanism description of Ag/TiO2 wood-based nanocomposites formation by ultrasound- and vacuum-impregnation. Nanomaterials 10, 682. doi: 10.3390/nano10040682
|
Liu, Y., Laks, P., Heiden, P., 2002. Controlled release of biocides in solid wood. Ⅰ. Efficacy against brown rot wood decay fungus (Gloeophyllum trabeum). J. Appl. Polym. Sci. 86, 596–607. doi: 10.1002/app.10896
|
Liu, Y., Laks, P., Heiden, P., 2002. Controlled release of biocides in solid wood. Ⅲ. Preparation and characterization of surfactant-free nanoparticles. J. Appl. Polym. Sci. 86, 615–621. doi: 10.1002/app.10898
|
Liu, Y., Yan, L., Heiden, P., Laks, P., 2001. Use of nanoparticles for controlled release of biocides in solid wood. J. Appl. Polym. Sci. 79, 458–465. doi: 10.1002/1097-4628(20010118)79:3<458::AID-APP80>3.0.CO;2-H
|
López de Dicastillo, C., Guerrero Correa, M., Martínez, F.B., Streitt, C., José Galotto, M., 2021. Antimicrobial effect of titanium dioxide nanoparticles. In: Mareș, M., Lim, S.H.E., Lai, K.S., Cristina, R.T. (Eds.), Antimicrobial Resistance. Rijeka: IntechOpen, 1–18.
|
Lozhechnikova, A., Bellanger, H., Michen, B., Burgert, I., Österberg, M., 2017. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood. Appl. Surf. Sci. 396, 1273–1281. doi: 10.1016/j.apsusc.2016.11.132
|
Lucia, A., Murace, M., Sartor, G., Keil, G., Cámera, R., Rubio, R.G., Guzmán, E., 2021. Oil in water nanoemulsions loaded with tebuconazole for Populus wood protection against white- and brown-rot fungi. Forests 12, 1234. doi: 10.3390/f12091234
|
Luzi, F., Yang, W.J., Ma, P.M., Torre, L., Puglia, D., 2021. Lignin-based Materials With Antioxidant and Antimicrobial properties. Lignin-Based Materials for Biomedical Applications. Amsterdam: Elsevier, 291–326.
|
Mantanis, G., Terzi, E., Kartal, S.N., Papadopoulos, A.N., 2014. Evaluation of mold, decay and termite resistance of pine wood treated with zinc- and copper-based nanocompounds. Int. Biodeterior. Biodegrad. 90, 140–144. doi: 10.1016/j.ibiod.2014.02.010
|
Mantanis, G.I., 2017. Chemical modification of wood by acetylation or furfurylation: a review of the present scaled-up technologies. BioResources 12, 4478–4489. http://ojs.cnr.ncsu.edu/index.php/BioRes/article/download/BioRes_12_2_Mantanis_Review_Chemical_Modification_Wood_Acetylation/5287
|
Marais, B.N., Brischke, C., Militz, H., 2022. Wood durability in terrestrial and aquatic environments–a review of biotic and abiotic influence factors. Wood Mater. Sci. Eng. 17, 82–105. doi: 10.1080/17480272.2020.1779810
|
Marzbani, P., Mohammadnia-afrouzi, Y., 2014. Investigation on leaching and decay resistance of wood treated with nano-titanium dioxide. Adv. Environ. Biol. 8, 974–978.
|
Mattos, B.D., Tardy, B.L., Magalhães, W.L.E., Rojas, O.J., 2017. Controlled release for crop and wood protection: recent progress toward sustainable and safe nanostructured biocidal systems. J. Control. Release 262, 139–150. doi: 10.1016/j.jconrel.2017.07.025
|
Mindess, S., 2007. Environmental deterioration of timber. In: WIT Transactions on State of the Art in Science and Engineering. Wit Press, 287–305.
|
Mirda, E., Idroes, R., Khairan, K., Tallei, T.E., Ramli, M., Earlia, N., Maulana, A., Idroes, G.M., Muslem, M., Jalil, Z., 2021. Synthesis of chitosan-silver nanoparticle composite spheres and their antimicrobial activities. Polymers 13, 3990. doi: 10.3390/polym13223990
|
Mitchell, M.J., Billingsley, M.M., Haley, R.M., Wechsler, M.E., Peppas, N.A., Langer, R., 2021. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124. doi: 10.1038/s41573-020-0090-8
|
Miyazaki K., Bowman K., 2023. Predictability of fossil fuel CO2 from air quality emissions. Nat. Commun. 14, 1604. doi: 10.1038/s41467-023-37264-8
|
Morin-Crini, N., Lichtfouse, E., Torri, G., Crini, G., 2019. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ. Chem. Lett. 17, 1667–1692. doi: 10.1007/s10311-019-00904-x
|
Moya, R., Berrocal, A., Rodriguez-Zuñiga, A., Vega-Baudrit, J., Noguera, S.C., 2014. Effect of silver nanoparticles on white-rot wood decay and some physical properties of three tropical wood species. Wood Fiber Sci. 46, 527–538.
|
Mustata, F., Rosu, D., Varganici, C.D., Rosu, L., Rosca, I., Tudorachi, N., 2022. Assessing the thermal and fungal behavior of eco-friendly epoxy thermosets derived from vegetable oils for wood protective coatings. Prog. Org. Coat. 163, 106612.
|
Nicholson C., Howat, C., Sargent, R., Technologist, S.S., Thumm, A., Scientist, S., Hinkley, A.S., 2023. Enhancing product information and materials verification. Build 193, 71–73.
|
Ning, L.L., Zhang, L.L., Zhang, S.D., Wang, W., 2022. How does surfactant affect the hydrophobicity of wax-coated wood? Colloids Surf. A 650, 129606.
|
Nowrouzi, Z., Mohebby, B., Younesi, H., 2016. Influences of nano-chitosan treatment on certain properties of wood. J. Indian Acad. Wood Sci. 13, 16–20. doi: 10.1007/s13196-016-0160-z
|
Obanda, D.N., Shupe, T.F., Barnes, H.M., 2008. Reducing leaching of boron-based wood preservatives - a review of research. Bioresour. Technol. 99, 7312–7322.
|
Österberg, M., Sipponen, M.H., Mattos, B.D., Rojas, O.J., 2020. Spherical lignin particles: a review on their sustainability and applications. Green Chem. 22, 2712–2733. doi: 10.1039/d0gc00096e
|
Palanti, S., Vignali, F., Elviri, L., Lucchetti, C., Mucchino, C., Predieri, G., 2017. Effect of amine functionalization and ageing on copper and boron leaching from wood preservatives grafted to siloxane networks. BioResources 12, 4943–4957.
|
Pan, Y.D., Birdsey, R.A., Fang, J.Y., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S.L., Rautiainen, A., Sitch, S., Hayes, D., 2011. A large and persistent carbon sink in the world's forests. Science 333, 988–993. doi: 10.1126/science.1201609
|
Pánek, M., Reinprecht, L., Hulla, M., 2014. Ten essential oils for beech wood protection - efficacy against wood-destroying fungi and moulds, and effect on wood discoloration. BioResources 9, 5588–5603.
|
Papadopoulos, A.N., 2023. Nanotechnology and wood science. Nanomaterials 13, 691. doi: 10.3390/nano13040691
|
Papadopoulos, A.N., Bikiaris, D.N., Mitropoulos, A.C., Kyzas, G.Z., 2019. Nanomaterials and chemical modifications for enhanced key wood properties: a review. Nanomaterials 9, 607. doi: 10.3390/nano9040607
|
Papadopoulos, A.N., Taghiyari, H.R., 2019. Innovative wood surface treatments based on nanotechnology. Coatings 9, 866. doi: 10.3390/coatings9120866
|
Pati, S.K., Malladi, V.R., Balaji, M., Swain, D., 2014. Deterioration of wood by marine borers in a tropical harbour: influence of environmental parameters and biotic factors. Int. J. Mar. Sci. https://doi.org/10.5376/ijms.2014.04.0013.
|
Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., Rodriguez-Torres, M.D.P., Acosta-Torres, L.S., Diaz-Torres, L.A., Grillo, R., Swamy, M.K., Sharma, S., Habtemariam, S., Shin, H.S., 2018. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71.
|
Peralta-Videa, J.R., Huang, Y.X., Parsons, J.G., Zhao, L.J., Lopez-Moreno, L., Hernandez-Viezcas, J.A., Gardea-Torresdey, J.L., 2016. Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol. Environ. Eng. 1, 4.
|
Perdikaki, A., Galeou, A., Pilatos, G., Karatasios, I., Kanellopoulos, N.K., Prombona, A., Karanikolos, G.N., 2016. Ag and Cu monometallic and Ag/Cu bimetallic nanoparticle-graphene composites with enhanced antibacterial performance. ACS Appl. Mater. Interfaces 8, 27498–27510. doi: 10.1021/acsami.6b08403
|
Poncsák, S., Kocaefe, D., Bouazara, M., Pichette, A., 2006. Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Sci. Technol. 40, 647–663. doi: 10.1007/s00226-006-0082-9
|
Qi, Y.R., Dai, X.H., Wei, L.X., Luo, H.X., Liu, Y.L., Dong, X.Y., Yang, D.Q., Li, Y.F., 2022. Nano-AgCu alloy on wood surface for mold resistance. Nanomaterials 12, 1192. doi: 10.3390/nano12071192
|
Ramalingam, V., 2022. Chapter 10: silver nanoparticles for biomedical applications. In: Kesharwani, P., Singh, K.K. (Eds.). Nanoparticle Therapeutics. Academic Press, 359–375.
|
Reinprecht, L., Iždinský, J., Vidholdová, Z., 2018. Biological resistance and application properties of particleboards containing nano-zinc oxide. Adv. Mater. Sci. Eng. 2018, 1–8.
|
Reinprecht, L., Repák, M., Iždinský, J., Vidholdová, Z., 2022. Decay resistance of nano-zinc oxide, and PEG 6000, and thermally modified wood. Forests 13, 731. doi: 10.3390/f13050731
|
Ribera, J., Michel, E., Schwarze, F.W.M.R., 2020. Influence of soil characteristics on wood biodeterioration by brown rot fungi. Appl. Sci. 10, 8837. doi: 10.3390/app10248837
|
Riduan, S.N., Zhang, Y.G., 2021. Recent advances of zinc-based antimicrobial materials. Chem. Asian J. 16, 2588–2595. doi: 10.1002/asia.202100656
|
Rosenberg, M., Visnapuu, M., Saal, K., Danilian, D., Pärna, R., Ivask, A., Kisand, V., 2021. Preparation and characterization of photocatalytically active antibacterial surfaces covered with acrylic matrix embedded nano-ZnO and nano-ZnO/Ag. Nanomaterials 11, 3384. doi: 10.3390/nano11123384
|
Rosu, L., Varganici, C.D., Mustata, F., Rusu, T., Rosu, D., Rosca, I., Tudorachi, N., Teacă, C.A., 2018. Enhancing the thermal and fungal resistance of wood treated with natural and synthetic derived epoxy resins. ACS Sustain. Chem. Eng. 6, 5470–5478. doi: 10.1021/acssuschemeng.8b00331
|
Rowell, R., 2006. Acetylation of wood - Journey from analytical technique to commercial reality. For. Prod. J. 56, 4–12.
|
Rowell, R.M., 2006. Chemical modification of wood: a short review. Wood Mater. Sci. Eng. 1, 29–33. doi: 10.1080/17480270600670923
|
Rowell, R.M., Dickerson, J.P., 2014. Acetylation of wood. ACS Symposium Series. Washington, DC: American Chemical Society, 301–327.
|
Salem, M.Z.M., 2021. Silver Nanoparticle Applications in wood, Wood-Based Panels, and Textiles. Silver Nanomaterials for Agri-Food Applications. Amsterdam: Elsevier, 219–234.
|
Salem, M.Z.M., Zidan, Y.E., El Hadidi, N.M.N., Mansour, M.M.A., Abo Elgat, W.A.A., 2016. Evaluation of usage three natural extracts applied to three commercial wood species against five common molds. Int. Biodeterior. Biodegrad. 110, 206–226.
|
Sánchez-Hernández, E., Langa-Lomba, N., González-García, V., Casanova-Gascón, J., Martín-Gil, J., Santiago-Aliste, A., Torres-Sánchez, S., Martín-Ramos, P., 2022. Lignin–chitosan nanocarriers for the delivery of bioactive natural products against wood-decay phytopathogens. Agronomy 12, 461. doi: 10.3390/agronomy12020461
|
Sanchez-Silva, M., Rosowsky, D.V., 2008. Biodeterioration of construction materials: state of the art and future challenges. J. Mater. Civ. Eng. 20, 352–365.
|
Schubert, M., Panzarasa, G., Burgert, I., 2023. Sustainability in wood products: a new perspective for handling natural diversity. Chem. Rev. 123, 1889–1924. doi: 10.1021/acs.chemrev.2c00360
|
Schultz, T.P., Nicholas, D.D., 2004. Protection of wood against biodeterioration. Encycl. For. Sci. 1274–1282.
|
Schwarze, F.W.M.R., 2007. Wood decay under the microscope. Fungal Biol. Rev. 21, 133–170.
|
Semenzin, E., Subramanian, V., Pizzol, L., Zabeo, A., Fransman, W., Oksel, C., Hristozov, D., Marcomini, A., 2019. Controlling the risks of nano-enabled products through the life cycle: the case of nano copper oxide paint for wood protection and nano-pigments used in the automotive industry. Environ. Int. 131, 104901.
|
Shevelev, A.B., Isakova, E.P., Trubnikova, E.V., La Porta, N., Martens, S., Medvedeva, O.A., Trubnikov, D.V., Akbaev, R.M., Biryukova, Y.K., Zylkova, M.V., Lebedeva, A.A., Smirnova, M.S., Deryabina, Y.I., 2018. A study of antimicrobial activity of polyphenols derived from wood. Bull. Russ. State Med. Univ., 46–49. doi: 10.24075/brsmu.2018.043
|
Shilova, O.A., Tsvetkova, I.N., Vlasov, D.Y., Ryabusheva, Y.V., Sokolov, G.S., Kychkin, A.K., Văn Nguyên, C., Khoroshavina, Y.V., 2022. Microbiologically induced deterioration and environmentally friendly protection of wood products. Biodegradation and Biodeterioration At the Nanoscale. Amsterdam: Elsevier, 283–321.
|
Shiny, K.S., Sundararaj, R., Mamatha, N., Lingappa, B., 2019. A new approach to wood protection: preliminary study of biologically synthesized copper oxide nanoparticle formulation as an environmental friendly wood protectant against decay fungi and termites. Maderas Cienc. Tecnol. 21, 347–356.
|
Shukla, S.R., Kamdem, D.P., 2023. Effect of micronized copper treatments on retention, strength properties, copper leaching and decay resistance of plantation grown Melia dubia Cav. wood. Eur. J. Wood Wood Prod. 81, 513–528. doi: 10.1007/s00107-022-01889-1
|
Singh, A.P., Kim, Y.S., Chavan, R.R., 2022. Advances in understanding microbial deterioration of buried and waterlogged archaeological woods: a review. Forests 13, 394. doi: 10.3390/f13030394
|
Singh, A.P., Kim, Y.S., Singh, T., 2016. Bacterial degradation of wood. Secondary Xylem Biology. Amsterdam: Elsevier, 169–190.
|
Singh, T., Arpanaei, A., Elustondo, D., Wang, Y., Stocchero, A., West, T.A.P., Fu, Q.L., 2022. Emerging technologies for the development of wood products towards extended carbon storage and CO2 capture. Carbon Capture Sci. Technol. 4, 100057.
|
Singh, T., Chittenden, C., 2021. Synergistic ability of chitosan and Trichoderma harzianum to control the growth and discolouration of common sapstain fungi of Pinus radiata. Forests 12, 542. doi: 10.3390/f12050542
|
Singh, T., Page, D., Bennett, A., 2014. Effectiveness of on-site remediation treatments for framing timber. Int. Biodeterior. Biodegrad. 86, 136–141.
|
Singh, T., Simpson, I., Page, D., 2016. Remedial boron treatment of difficult to access timber in buildings. Eur. J. Wood Wood Prod. 74, 703–710. doi: 10.1007/s00107-016-1061-y
|
Singh, T., Singh, A.P., 2012. A review on natural products as wood protectant. Wood Sci. Technol. 46, 851–870. doi: 10.1007/s00226-011-0448-5
|
Singh, T., Vesentini, D., Singh, A.P., Daniel, G., 2008. Effect of chitosan on physiological, morphological, and ultrastructural characteristics of wood-degrading fungi. Int. Biodeterior. Biodegrad. 62, 116–124.
|
Soo, J.Z., Chai, L.C., Ang, B.C., Ong, B.H., 2020. Enhancing the antibacterial performance of titanium dioxide nanofibers by coating with silver nanoparticles. ACS Appl. Nano Mater. 3, 5743–5751. doi: 10.1021/acsanm.0c00925
|
Spear, M.J., Curling, S.F., Dimitriou, A., Ormondroyd, G.A., 2021. Review of functional treatments for modified wood. Coatings 11, 327. doi: 10.3390/coatings11030327
|
Stefanowski, B.K., Spear, M., Pitman, A., 2018. Review of the use of pf and related resins for modification of solid wood. Timber 2018 165–179.
|
Teng, T.J., Mat Arip, M.N., Sudesh, K., Nemoikina, A., Jalaludin, Z., Ng, E.P., Lee, H.L., 2018. Conventional technology and nanotechnology in wood preservation: a review. BioResources 13: 9220–9252.
|
Thybring, E.E., Kymäläinen, M., Rautkari, L., 2018. Moisture in modified wood and its relevance for fungal decay. iForest Biogeosci. For. 11, 418–422. doi: 10.3832/ifor2406-011
|
Thygesen, L.G., Ehmcke, G., Barsberg, S., Pilgård, A., 2020. Furfurylation result of Radiata pine depends on the solvent. Wood Sci. Technol. 54, 929–942. doi: 10.1007/s00226-020-01194-1
|
Tran, N.T., Nguyen, T.T.T., Ha, D., Nguyen, T.H., Nguyen, N.N., Baek, K., Nguyen, N.T., Tran, C.K., Tran, T.T.V., Le, H.V., Nguyen, D.M., Hoang, D., 2021. Highly functional materials based on nano-lignin, lignin, and lignin/silica hybrid capped silver nanoparticles with antibacterial activities. Biomacromolecules 22, 5327–5338. doi: 10.1021/acs.biomac.1c01250
|
Treu, A., Zimmer, K., Brischke, C., Larnøy, E., Gobakken, L.R., Aloui, F., Cragg, S.M., Flæte, P.O., Humar, M., Westin, M., Borges, L., Williams, J., 2019. Durability and protection of timber structures in marine environments in Europe: an overview. BioResources 14, 10161–10184. doi: 10.15376/biores.14.4.treu
|
Tsvetkova, I.N., Krasil'nikova, L.N., Khoroshavina, Y.V., Galushko, A.S., Yu, V.F., Kychkin, A.K., Shilova, O.A., 2019. Sol-gel preparation of protective and decorative coatings on wood. J. Sol Gel Sci. Technol. 92, 474–483. doi: 10.1007/s10971-019-04996-3
|
Ulyshen, M.D., Sheehan, T.N., 2021. The importance of termites and fire to dead wood consumption in the longleaf pine ecosystem. Sci. Rep. 11, 24109.
|
Usmani, S.M., Plarre, R., Hübert, T., Kemnitz, E., 2020, Termite resistance of pine wood treated with nano metal fluorides. Eur. J. Wood Wood Prod. 78, 493–499. doi: 10.1007/s00107-020-01522-z
|
Usmani, S.M., Voss, L., Stephan, I., Hübert, T., Kemnitz, E., 2022. Improved durability of wood treated with nano metal fluorides against brown-rot and white-rot fungi. Appl. Sci. 12, 1727. doi: 10.3390/app12031727
|
van Niekerk, P.B., Brischke, C., Niklewski, J., 2021. Estimating the service life of timber structures concerning risk and influence of fungal decay: a review of existing theory and modelling approaches. Forests 12, 588. doi: 10.3390/f12050588
|
Vega-Vásquez, P., Mosier, N.S., Irudayaraj, J., 2020. Nanoscale drug delivery systems: from medicine to agriculture. Front. Bioeng. Biotechnol. 8, 79.
|
Wang, D.Y., Ling, Q.H., Nie, Y.J., Zhang, Y., Zhang, W.H., Wang, H., Sun, F.L., 2021. In-situ cross-linking of waterborne epoxy resin inside wood for enhancing its dimensional stability, thermal stability, and decay resistance. ACS Appl. Polym. Mater. 3, 6265–6273. doi: 10.1021/acsapm.1c01070
|
Wang, L.L., Hu, C., Shao, L.Q., 2017. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249.
|
Weigenand, O., Humar, M., Daniel, G., Militz, H., Mai, C., 2008. Decay resistance of wood treated with amino-silicone compounds. Holzforschung 62, 112–118. doi: 10.1515/hf.2008.016
|
Weththimuni, M.L., Capsoni, D., Malagodi, M., Licchelli, M., 2019. Improving wood resistance to decay by nanostructured ZnO-based treatments. J. Nanomater. 2019, 1–11. doi: 10.1155/2019/6715756
|
Wimmers, G., 2017. Wood: a construction material for tall buildings. Nat. Rev. Mater. 2, 17051.
|
Winandy, J.E., Morrell, J.J., 2017. Improving the utility, performance, and durability of wood- and bio-based composites. Ann. For. Sci. 74, 25.
|
Woźniak, M., 2022. Antifungal agents in wood protection: a review. Molecules 27, 6392. doi: 10.3390/molecules27196392
|
Woźniak, M., Gromadzka, K., Kwaśniewska-Sip, P., Cofta, G., Ratajczak, I., 2022. Chitosan-caffeine formulation as an ecological preservative in wood protection. Wood Sci. Technol. 56, 1851–1867. doi: 10.1007/s00226-022-01426-6
|
Woźniak, M., Kwaśniewska-Sip, P., Waśkiewicz, A., Cofta, G., Ratajczak, I., 2020. The possibility of Propolis extract application in wood protection. Forests 11, 465. doi: 10.3390/f11040465
|
Wu, X.Y., Yang, F., Gan, J., Kong, Z.Q., Wu, Y., 2021. A superhydrophobic, antibacterial, and durable surface of poplar wood. Nanomaterials 11, 1885. doi: 10.3390/nano11081885
|
Xie, Y.J., Hill, C.A.S., Xiao, Z.F., Militz, H., Mai, C., 2010. Silane coupling agents used for natural fiber/polymer composites: a review. Compos. A 41, 806–819.
|
Yadav, J., Jasrotia, P., Kashyap, P.L., Bhardwaj, A.K., Kumar, S., Singh, M., Singh, G.P., 2021. Nanopesticides: current status and scope for their application in agriculture. Plant Prot. Sci. 58, 1–17. doi: 10.17221/102/2020-pps
|
Yang, L.C., Wu, Y., Yang, F., Wang, W.H., 2021. The effect of antibacterial and waterproof coating prepared from hexadecyltrimethoxysilane and nano-titanium dioxide on wood properties. Front. Mater. 8, 699579.
|
Yi, L., Yang, Q., Yan, L., Wang, N., 2023. A facile strategy to construct ZnO nanoparticles reinforced transparent fire-retardant coatings for achieving antibacterial activity and long-term fire protection of wood substrates. J. Build. Eng. 72, 106630.
|
Yona, A.M.C., Žigon, J., Matjaž, P., Petrič, M., 2021. Potentials of silicate-based formulations for wood protection and improvement of mechanical properties: a review. Wood Sci. Technol. 55, 887–918. doi: 10.1007/s00226-021-01290-w
|
Yu, F., 2021. Ecological impacts of fungal wood decay types: a review of current knowledge and future research directions. Ecol. Res. 36, 910–931. doi: 10.1109/itnec52019.2021.9587128
|
Yu, L., Tian, M., Li, L., Wu, Z., Chen, S., Chen, J., Xi, X., 2020. Study of nano colloidal silica sol based protectant on the prevention of masson pine. Wood Res. 65, 797–808. doi: 10.37763/wr.1336-4561/65.5.797808
|
Yun, J.Y., Wei, L., Li, W., Gong, D.Q., Qin, H.Y., Feng, X.J., Li, G.J., Ling, Z., Wang, P., Yin, B.S., 2021. Isolating high antimicrobial ability lignin from bamboo kraft lignin by organosolv fractionation. Front. Bioeng. Biotechnol. 9, 683796.
|
Zabel, R.A., Morrell, J.J., 2020. Wood deterioration agents. In: Zabel, R.A., Morrell, J.J.B.T. (Eds.). Wood Microbiology; Decay and its Prevention. San Diego: Academic Press, 19–54.
|
Zelinka, S.L., Altgen, M., Emmerich, L., Guigo, N., Keplinger, T., Kymäläinen, M., Thybring, E.E., Thygesen, L.G., 2022. Review of wood modification and wood functionalization technologies. Forests 13, 1004. doi: 10.3390/f13071004
|
Zhou, H.Y., Wen, D.X., Hao, X.L., Chen, C.F., Zhao, N.H., Ou, R.X., Wang, Q.W., 2023. Nanostructured multifunctional wood hybrids fabricated via in situ mineralization of zinc borate in hierarchical wood structures. Chem. Eng. J. 451, 138308.
|
Zhou, X.H., Yan, Z.S., Zhou, X.P., Wang, C.M., Liu, H.L., Zhou, H.D., 2022. Retraction notice to an assessment of volatile organic compounds pollutant emissions from wood materials: a review. Chemosphere 308, 136460.
|
Zhu, Y., Plaza, N., Kojima, Y., Yoshida, M., Zhang, J.W., Jellison, J., Pingali, S.V., O'Neill, H., Goodell, B., 2020. Nanostructural analysis of enzymatic and non-enzymatic brown rot fungal deconstruction of the lignocellulose cell wall. Front. Microbiol. 11, 1389.
|
Zikeli, F., Romagnoli, M., Mugnozza, G.S., 2022. Lignin Nanoparticles in Coatings For Wood Preservation. Micro and Nanolignin in Aqueous Dispersions and Polymers. Amsterdam: Elsevier, 357–384.
|