Citation: | Zhaoxian Xu, Jie Li, Pingping Li, Chenggu Cai, Sitong Chen, Boning Ding, Shuangmei Liu, Mianshen Ge, Mingjie Jin. Efficient lignin biodegradation triggered by alkali-tolerant ligninolytic bacteria through improving lignin solubility in alkaline solution[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 461-477. doi: 10.1016/j.jobab.2023.09.004 |
Ali, S.S., Al-Tohamy, R., Sun, J.Z., 2022. Performance of Meyerozyma caribbica as a novel manganese peroxidase-producing yeast inhabiting wood-feeding termite gut symbionts for azo dye decolorization and detoxification. Sci. Total Environ. 806, 150665. doi: 10.1016/j.scitotenv.2021.150665
|
An, X.J., Cheng, Y., Zang, H.L., Li, C.Y., 2023. Biodegradation characteristics of lignin in pulping wastewater by the thermophilic Serratia sp. AXJ-M: performance, genetic background, metabolic pathway and toxicity assessment. Environ. Pollut. 322, 121230. doi: 10.1016/j.envpol.2023.121230
|
Bugg, T.D.H., Ahmad, M., Hardiman, E.M., Rahmanpour, R., 2011. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 28, 1883–1896. doi: 10.1039/c1np00042j
|
Bugg, T.D.H., Williamson, J.J., Rashid, G.M.M., 2020. Bacterial enzymes for lignin depolymerisation: new biocatalysts for generation of renewable chemicals from biomass. Curr. Opin. Chem. Biol. 55, 26–33. doi: 10.1016/j.cbpa.2019.11.007
|
Cai, C.G., Xu, Z.X., Zhou, H.R., Chen, S.T., Jin, M.J., 2021. Valorization of lignin components into gallate by integrated biological hydroxylation, O-demethylation, and aryl side-chain oxidation. Sci. Adv. 7, eabg4585. doi: 10.1126/sciadv.abg4585
|
Donadelli, J.A., Carlos, L., Arques, A., García Einschlag, F.S., 2018. Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways. Appl. Catal. B 231, 51–61. doi: 10.1016/j.apcatb.2018.02.057
|
Ellis, E.S., Hinchen, D.J., Bleem, A., Bu, L.T., Mallinson, S.J.B., Allen, M.D., Streit, B.R., Machovina, M.M., Doolin, Q.V., Michener, W.E., Johnson, C.W., Knott, B.C., Beckham, G.T., McGeehan, J.E., DuBois, J.L., 2021. Engineering a cytochrome P450 for demethylation of lignin-derived aromatic aldehydes. JACS Au 1, 252–261. doi: 10.1021/jacsau.0c00103
|
Elmore, J.R., Dexter, G.N., Salvachúa, D., Martinez-Baird, J., Hatmaker, E.A., Huenemann, J.D., Klingeman, D.M., Peabody, G.L., Peterson, D.J., Singer, C., Beckham, G.T., Guss, A.M., 2021. Production of itaconic acid from alkali pretreated lignin by dynamic two stage bioconversion. Nat. Commun. 12, 2261. doi: 10.1038/s41467-021-22556-8
|
Erickson, E., Bleem, A., Kuatsjah, E., Werner, A.Z., DuBois, J.L., McGeehan, J.E., Eltis, L.D., Beckham, G.T., 2022. Critical enzyme reactions in aromatic catabolism for microbial lignin conversion. Nat. Catal. 5, 86–98. doi: 10.1038/s41929-022-00747-w
|
Fall, I., Czerwiec, Q., Abdellaoui, S., Doumèche, B., Ochs, M., Rémond, C., Rakotoarivonina, H., 2023. A thermostable bacterial catalase-peroxidase oxidizes phenolic compounds derived from lignins. Appl. Microbiol. Biotechnol. 107, 201–217. doi: 10.1007/s00253-022-12263-9
|
Fetherolf, M.M., Levy-Booth, D.J., Navas, L.E., Liu, J., Grigg, J.C., Wilson, A., Katahira, R., Beckham, G.T., Mohn, W.W., Eltis, L.D., 2020. Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin. Proc. Natl. Acad. Sci. USA 117, 25771–25778. doi: 10.1073/pnas.1916349117
|
Guo, G., Liu, C., Hao, J.X., Tian, F., Ding, K.Q., Zhang, C., Yang, F., Liu, T.F., Xu, J., Guan, Z.B., 2021. Development and characterization of a halo-thermophilic bacterial consortium for decolorization of AZO dye. Chemosphere 272, 129916. doi: 10.1016/j.chemosphere.2021.129916
|
Gupta, R.S., Patel, S., Saini, N., Chen, S., 2020. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae Genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int. J. Syst. Evol. Microbiol. 70, 5753–5798. doi: 10.1099/ijsem.0.004475
|
Harlington, A.C., Shearwin, K.E., Bell, S.G., Whelan, F., 2022. Efficient O-demethylation of lignin monoaromatics using the peroxygenase activity of cytochrome P450 enzymes. Chem. Commun. 58, 13321–13324. doi: 10.1039/d2cc04698a
|
Huang, C.X., Jiang, X., Shen, X.J., Hu, J.G., Tang, W., Wu, X.X., Ragauskas, A., Jameel, H., Meng, X.Z., Yong, Q., 2022. Lignin-enzyme interaction: a roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renew. Sustain. Energy Rev. 154, 111822. doi: 10.1016/j.rser.2021.111822
|
Kamimura, N., Sakamoto, S., Mitsuda, N., Masai, E.J., Kajita, S., 2019. Advances in microbial lignin degradation and its applications. Curr. Opin. Biotechnol. 56, 179–186. doi: 10.1016/j.copbio.2018.11.011
|
Kumar, V., Chandra, D., Thakur, V., Sharma, U., Singh, D., 2023. Depolymerization of lignin using laccase from Bacillus sp. PCH94 for production of valuable chemicals: a sustainable approach for lignin valorization. Int. J. Biol. Macromol. 234, 123601. doi: 10.1016/j.ijbiomac.2023.123601
|
Levy-Booth, D.J., Navas, L.E., Fetherolf, M.M., Liu, L.Y., Dalhuisen, T., Renneckar, S., Eltis, L.D., Mohn, W.W., 2022. Discovery of lignin-transforming bacteria and enzymes in thermophilic environments using stable isotope probing. ISME J. 16, 1944–1956. doi: 10.1038/s41396-022-01241-8
|
Li, F., Zhao, Y.Q., Xue, L., Ma, F.Y., Dai, S.Y., Xie, S.X., 2022. Microbial lignin valorization through depolymerization to aromatics conversion. Trends Biotechnol. 40, 1469–1487. doi: 10.1016/j.tibtech.2022.09.009
|
Linger, J.G., Vardon, D.R., Guarnieri, M.T., Karp, E.M., Hunsinger, G.B., Franden, M.A., Johnson, C.W., Chupka, G., Strathmann, T.J., Pienkos, P.T., Beckham, G.T., 2014. Lignin valorization through integrated biological funneling and chemical catalysis. Proc. Natl. Acad. Sci. USA 111, 12013–12018. doi: 10.1073/pnas.1410657111
|
Liu, H.F., Zhu, L.L., Wallraf, A.M., Räuber, C., Grande, P.M., Anders, N., Gertler, C., Werner, B., Klankermayer, J., Leitner, W., Schwaneberg, U., 2019. Depolymerization of laccase-oxidized lignin in aqueous alkaline solution at 37 ℃. ACS Sustainable Chem. Eng. 7, 11150–11156. doi: 10.1021/acssuschemeng.9b00204
|
Liu, Z.H., Li, B.Z., Yuan, J.S., Yuan, Y.J., 2022. Creative biological lignin conversion routes toward lignin valorization. Trends Biotechnol. 40, 1550–1566. doi: 10.1016/j.tibtech.2022.09.014
|
Luo, C.B., Li, H.C., Li, D.Q., Nawaz, H., You, T.T., Xu, F., 2022. Efficiently unsterile polyhydroxyalkanoate production from lignocellulose by using alkali-halophilic Halomonas alkalicola M2. Bioresour. Technol. 351, 126919. doi: 10.1016/j.biortech.2022.126919
|
Lynd, L.R., Beckham, G.T., Guss, A.M., Jayakody, L.N., Karp, E.M., Maranas, C., McCormick, R.L., Amador-Noguez, D., Bomble, Y.J., Davison, B.H., Foster, C., Himmel, M.E., Holwerda, E.K., Laser, M.S., Ng, C.Y., Olson, D.G., Román-Leshkov, Y., Trinh, C.T., Tuskan, G.A., Upadhayay, V., Vardon, D.R., Wang, L., Wyman, C.E., 2022. Toward low-cost biological and hybrid biological/catalytic conversion of cellulosic biomass to fuels. Energy Environ. Sci. 15, 938–990. doi: 10.1039/d1ee02540f
|
Melro, E., Filipe, A., Sousa, D., Valente, A.J.M., Romano, A., Antunes, F.E., Medronho, B., 2020. Dissolution of kraft lignin in alkaline solutions. Int. J. Biol. Macromol. 148, 688–695. doi: 10.1016/j.ijbiomac.2020.01.153
|
Nadaroglu, H., Polat, M.S., 2022. Microbial extremozymes: Novel Sources and Industrial applications. Microbial Extremozymes. Amsterdam: Elsevier, 67–88.
|
Nawaz, M.Z., Shang, H.R., Sun, J.Z., Geng, A.L., Ali, S.S., Zhu, D.C., 2023. Genomic insights into the metabolic potential of a novel lignin-degrading and polyhydroxyalkanoates producing bacterium Pseudomonas sp. Hu109A. Chemosphere 310, 136754. doi: 10.1016/j.chemosphere.2022.136754
|
Padan, E., Bibi, E.T., Ito, M., Krulwich, T.A., 2005. Alkaline pH homeostasis in bacteria: new insights. Biochim. Biophys. Acta 1717, 67–88. doi: 10.1016/j.bbamem.2005.09.010
|
Patel, A., Shah, A.R., 2021. Integrated lignocellulosic biorefinery: gateway for production of second generation ethanol and value added products. J. Bioresour. Bioprod. 6, 108–128. doi: 10.1016/j.jobab.2021.02.001
|
Pham, L.T.M., Deng, K., Northen, T.R., Singer, S.W., Adams, P.D., Simmons, B.A., Sale, K.L., 2021. Experimental and theoretical insights into the effects of pH on catalysis of bond-cleavage by the lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. Biotechnol. Biofuels 14, 108. doi: 10.1186/s13068-021-01953-7
|
Saini, R., Kaur, A., Saini, J.K., Patel, A.K., Varjani, S., Chen, C.W., Singhania, R.R., Dong, C.D., 2023. Trends in lignin biotransformations for bio-based products and energy applications. BioEnergy Res. 16, 88–104. doi: 10.1007/s12155-022-10434-0
|
Singh, A.K., Bilal, M., Iqbal, H.M.N., Raj, A., 2021. Lignin peroxidase in focus for catalytic elimination of contaminants: a critical review on recent progress and perspectives. Int. J. Biol. Macromol. 177, 58–82. doi: 10.1016/j.ijbiomac.2021.02.032
|
Somayaji, A., Dhanjal, C.R., Lingamsetty, R., Vinayagam, R., Selvaraj, R., Varadavenkatesan, T., Govarthanan, M., 2022. An insight into the mechanisms of homeostasis in extremophiles. Microbiol. Res. 263, 127115. doi: 10.1016/j.micres.2022.127115
|
Sonoki, T., Obi, T., Kubota, S., Higashi, M., Masai, E., Katayama, Y., 2000. Coexistence of two different O demethylation systems in lignin metabolism by Sphingomonas paucimobilis SYK-6: cloning and sequencing of the lignin biphenyl-specific O-demethylase (LigX) gene. Appl. Environ. Microbiol. 66, 2125–2132. doi: 10.1128/AEM.66.5.2125-2132.2000
|
Suzuki, Y., Otsuka, Y., Araki, T., Kamimura, N., Masai, E.J., Nakamura, M., Katayama, Y., 2021. Lignin valorization through efficient microbial production of β-ketoadipate from industrial black liquor. Bioresour. Technol. 337, 125489. doi: 10.1016/j.biortech.2021.125489
|
Varman, A.M., He, L., Follenfant, R., Wu, W.H., Wemmer, S., Wrobel, S.A., Tang, Y.J., Singh, S., 2016. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization. Proc. Natl. Acad. Sci. USA 113, E5802–E5811.
|
Wang, J.H., Li, L.L., Xu, H.M., Zhang, Y.L., Liu, Y.X., Zhang, F.Z., Shen, G.N., Yan, L., Wang, W.W., Tang, H.Z., Qiu, H.J., Gu, J.D., Wang, W.D., 2022. Construction of a fungal consortium for effective degradation of rice straw lignin and potential application in bio-pulping. Bioresour. Technol. 344, 126168. doi: 10.1016/j.biortech.2021.126168
|
Weiland, F., Barton, N., Kohlstedt, M., Becker, J., Wittmann, C., 2023. Systems metabolic engineering upgrades Corynebacterium glutamicum to high-efficiency cis, cis-muconic acid production from lignin-based aromatics. Metab. Eng. 75, 153–169. doi: 10.1016/j.ymben.2022.12.005
|
Werner, A.Z., Eltis, L.D., 2023. Tandem chemocatalysis and biological funneling to valorize lignin. Trends Biotechnol. 41, 270–272. doi: 10.1016/j.tibtech.2022.12.004
|
Wu, X.Y., Amanze, C., Wang, J.S., Yu, Z.J., Shen, L., Wu, X.L., Li, J.K., Yu, R.L., Liu, Y.D., Zeng, W.M., 2022. Isolation and characterization of a novel thermotolerant alkali lignin-degrading bacterium Aneurinibacillus sp. LD3 and its application in food waste composting. Chemosphere 307, 135859. doi: 10.1016/j.chemosphere.2022.135859
|
Xu, L., Zhang, S.J., Zhong, C., Li, B.Z., Yuan, Y.J., 2020. Alkali-based pretreatment-facilitated lignin valorization: a review. Ind. Eng. Chem. Res. 59, 16923–16938. doi: 10.1021/acs.iecr.0c01456
|
Xu, T., Zong, Q.J., Liu, H., Wang, L., Liu, Z.H., Li, B.Z., Yuan, Y.J., 2022. Identifying ligninolytic bacteria for lignin valorization to bioplastics. Bioresour. Technol. 358, 127383. doi: 10.1016/j.biortech.2022.127383
|
Xu, Z.X., Qin, L., Cai, M.F., Hua, W.B., Jin, M.J., 2018. Biodegradation of kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains. Environ. Sci. Pollut. Res. Int. 25, 14171–14181. doi: 10.1007/s11356-018-1633-y
|
Yang, Y.R., Ghatge, S., Hur, H.G., 2023. Improvement of thermoalkaliphilic laccase (CtLac) by a directed evolution and application to lignin degradation. Appl. Microbiol. Biotechnol. 107, 273–286. doi: 10.1007/s00253-022-12311-4
|
Ye, J.W., Chen, G.Q., 2021. Halomonas as a chassis. Essays Biochem. 65, 393–403. doi: 10.1042/EBC20200159
|
Zhang, S.T., Dong, Z.J., Shi, J., Yang, C.R., Fang, Y., Chen, G., Chen, H., Tian, C.J., 2022. Enzymatic hydrolysis of corn stover lignin by laccase, lignin peroxidase, and manganese peroxidase. Bioresour. Technol. 361, 127699. doi: 10.1016/j.biortech.2022.127699
|
Zhao, Z.M., Zhang, S.Y., Meng, X.Z., Pu, Y.Q., Liu, Z.H., Ledford, W.K., Kilbey, S.M., Li, B.Z., Ragauskas, A.J., 2021. Elucidating the mechanisms of enhanced lignin bioconversion by an alkali sterilization strategy. Green Chem. 23, 4697–4709. doi: 10.1039/d1gc00911g
|
Zhu, D.C., Qaria, M.A., Zhu, B., Sun, J.Z., Yang, B., 2022. Extremophiles and extremozymes in lignin bioprocessing. Renew. Sustain. Energy Rev. 157, 112069. doi: 10.1016/j.rser.2021.112069
|
Zou, L.H., Ouyang, S.P., Hu, Y.L., Zheng, Z.J., Ouyang, J., 2021. Efficient lactic acid production from dilute acid-pretreated lignocellulosic biomass by a synthetic consortium of engineered Pseudomonas putida and Bacillus coagulans. Biotechnol. Biofuels 14, 227. doi: 10.1186/s13068-021-02078-7
|