Volume 8 Issue 4
Oct.  2023
Turn off MathJax
Article Contents
Zhaoxian Xu, Jie Li, Pingping Li, Chenggu Cai, Sitong Chen, Boning Ding, Shuangmei Liu, Mianshen Ge, Mingjie Jin. Efficient lignin biodegradation triggered by alkali-tolerant ligninolytic bacteria through improving lignin solubility in alkaline solution[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 461-477. doi: 10.1016/j.jobab.2023.09.004
Citation: Zhaoxian Xu, Jie Li, Pingping Li, Chenggu Cai, Sitong Chen, Boning Ding, Shuangmei Liu, Mianshen Ge, Mingjie Jin. Efficient lignin biodegradation triggered by alkali-tolerant ligninolytic bacteria through improving lignin solubility in alkaline solution[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 461-477. doi: 10.1016/j.jobab.2023.09.004

Efficient lignin biodegradation triggered by alkali-tolerant ligninolytic bacteria through improving lignin solubility in alkaline solution

doi: 10.1016/j.jobab.2023.09.004
More Information
  • Corresponding author: E-mail address: jinmingjie@njust.edu.cn (M. Jin)
  • Available Online: 2023-10-11
  • Publish Date: 2023-10-28
  • Low lignin solubility in aqueous solution is one of the major bottlenecks for lignin biodegradation and bioconversion. Alkaline solution contributes to improving lignin solubility, whereas most microbes can not survive in alkaline conditions. Herein, lignin dissolution behaviors in different pH solutions were systematically investigated, which indicated that solution pH above 10.5 contributed to high solubility of alkali lignin. To match with alkaline lignin aqueous system, several alkali-tolerant ligninolytic bacteria were isolated, most of which are distinct to previously reported ones. Then, the ligninolytic capabilities of these isolates were assessed in different pH conditions by determining their assimilation on alkali lignin, lignin-derived monomers and dimers, their decolorization capabilities, and their lignin peroxidase activities. Thereafter, the underlying ligninolytic and alkali-tolerant mechanisms of Sutcliffiella sp. NC1, an alkalophilic bacterium, was analyzed on the basis of its genome information. The results not only provide valuable information for lignin biodegradation and lignin valorization, but also expand knowledge on alkali-tolerant bacteria.

     

  • Declaration of Competing Interest
    The authors declare no conflict of interest.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2023.09.004.
    1 These authors contributed equally to this work.
  • loading
  • Ali, S.S., Al-Tohamy, R., Sun, J.Z., 2022. Performance of Meyerozyma caribbica as a novel manganese peroxidase-producing yeast inhabiting wood-feeding termite gut symbionts for azo dye decolorization and detoxification. Sci. Total Environ. 806, 150665. doi: 10.1016/j.scitotenv.2021.150665
    An, X.J., Cheng, Y., Zang, H.L., Li, C.Y., 2023. Biodegradation characteristics of lignin in pulping wastewater by the thermophilic Serratia sp. AXJ-M: performance, genetic background, metabolic pathway and toxicity assessment. Environ. Pollut. 322, 121230. doi: 10.1016/j.envpol.2023.121230
    Bugg, T.D.H., Ahmad, M., Hardiman, E.M., Rahmanpour, R., 2011. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 28, 1883–1896. doi: 10.1039/c1np00042j
    Bugg, T.D.H., Williamson, J.J., Rashid, G.M.M., 2020. Bacterial enzymes for lignin depolymerisation: new biocatalysts for generation of renewable chemicals from biomass. Curr. Opin. Chem. Biol. 55, 26–33. doi: 10.1016/j.cbpa.2019.11.007
    Cai, C.G., Xu, Z.X., Zhou, H.R., Chen, S.T., Jin, M.J., 2021. Valorization of lignin components into gallate by integrated biological hydroxylation, O-demethylation, and aryl side-chain oxidation. Sci. Adv. 7, eabg4585. doi: 10.1126/sciadv.abg4585
    Donadelli, J.A., Carlos, L., Arques, A., García Einschlag, F.S., 2018. Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways. Appl. Catal. B 231, 51–61. doi: 10.1016/j.apcatb.2018.02.057
    Ellis, E.S., Hinchen, D.J., Bleem, A., Bu, L.T., Mallinson, S.J.B., Allen, M.D., Streit, B.R., Machovina, M.M., Doolin, Q.V., Michener, W.E., Johnson, C.W., Knott, B.C., Beckham, G.T., McGeehan, J.E., DuBois, J.L., 2021. Engineering a cytochrome P450 for demethylation of lignin-derived aromatic aldehydes. JACS Au 1, 252–261. doi: 10.1021/jacsau.0c00103
    Elmore, J.R., Dexter, G.N., Salvachúa, D., Martinez-Baird, J., Hatmaker, E.A., Huenemann, J.D., Klingeman, D.M., Peabody, G.L., Peterson, D.J., Singer, C., Beckham, G.T., Guss, A.M., 2021. Production of itaconic acid from alkali pretreated lignin by dynamic two stage bioconversion. Nat. Commun. 12, 2261. doi: 10.1038/s41467-021-22556-8
    Erickson, E., Bleem, A., Kuatsjah, E., Werner, A.Z., DuBois, J.L., McGeehan, J.E., Eltis, L.D., Beckham, G.T., 2022. Critical enzyme reactions in aromatic catabolism for microbial lignin conversion. Nat. Catal. 5, 86–98. doi: 10.1038/s41929-022-00747-w
    Fall, I., Czerwiec, Q., Abdellaoui, S., Doumèche, B., Ochs, M., Rémond, C., Rakotoarivonina, H., 2023. A thermostable bacterial catalase-peroxidase oxidizes phenolic compounds derived from lignins. Appl. Microbiol. Biotechnol. 107, 201–217. doi: 10.1007/s00253-022-12263-9
    Fetherolf, M.M., Levy-Booth, D.J., Navas, L.E., Liu, J., Grigg, J.C., Wilson, A., Katahira, R., Beckham, G.T., Mohn, W.W., Eltis, L.D., 2020. Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin. Proc. Natl. Acad. Sci. USA 117, 25771–25778. doi: 10.1073/pnas.1916349117
    Guo, G., Liu, C., Hao, J.X., Tian, F., Ding, K.Q., Zhang, C., Yang, F., Liu, T.F., Xu, J., Guan, Z.B., 2021. Development and characterization of a halo-thermophilic bacterial consortium for decolorization of AZO dye. Chemosphere 272, 129916. doi: 10.1016/j.chemosphere.2021.129916
    Gupta, R.S., Patel, S., Saini, N., Chen, S., 2020. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae Genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int. J. Syst. Evol. Microbiol. 70, 5753–5798. doi: 10.1099/ijsem.0.004475
    Harlington, A.C., Shearwin, K.E., Bell, S.G., Whelan, F., 2022. Efficient O-demethylation of lignin monoaromatics using the peroxygenase activity of cytochrome P450 enzymes. Chem. Commun. 58, 13321–13324. doi: 10.1039/d2cc04698a
    Huang, C.X., Jiang, X., Shen, X.J., Hu, J.G., Tang, W., Wu, X.X., Ragauskas, A., Jameel, H., Meng, X.Z., Yong, Q., 2022. Lignin-enzyme interaction: a roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renew. Sustain. Energy Rev. 154, 111822. doi: 10.1016/j.rser.2021.111822
    Kamimura, N., Sakamoto, S., Mitsuda, N., Masai, E.J., Kajita, S., 2019. Advances in microbial lignin degradation and its applications. Curr. Opin. Biotechnol. 56, 179–186. doi: 10.1016/j.copbio.2018.11.011
    Kumar, V., Chandra, D., Thakur, V., Sharma, U., Singh, D., 2023. Depolymerization of lignin using laccase from Bacillus sp. PCH94 for production of valuable chemicals: a sustainable approach for lignin valorization. Int. J. Biol. Macromol. 234, 123601. doi: 10.1016/j.ijbiomac.2023.123601
    Levy-Booth, D.J., Navas, L.E., Fetherolf, M.M., Liu, L.Y., Dalhuisen, T., Renneckar, S., Eltis, L.D., Mohn, W.W., 2022. Discovery of lignin-transforming bacteria and enzymes in thermophilic environments using stable isotope probing. ISME J. 16, 1944–1956. doi: 10.1038/s41396-022-01241-8
    Li, F., Zhao, Y.Q., Xue, L., Ma, F.Y., Dai, S.Y., Xie, S.X., 2022. Microbial lignin valorization through depolymerization to aromatics conversion. Trends Biotechnol. 40, 1469–1487. doi: 10.1016/j.tibtech.2022.09.009
    Linger, J.G., Vardon, D.R., Guarnieri, M.T., Karp, E.M., Hunsinger, G.B., Franden, M.A., Johnson, C.W., Chupka, G., Strathmann, T.J., Pienkos, P.T., Beckham, G.T., 2014. Lignin valorization through integrated biological funneling and chemical catalysis. Proc. Natl. Acad. Sci. USA 111, 12013–12018. doi: 10.1073/pnas.1410657111
    Liu, H.F., Zhu, L.L., Wallraf, A.M., Räuber, C., Grande, P.M., Anders, N., Gertler, C., Werner, B., Klankermayer, J., Leitner, W., Schwaneberg, U., 2019. Depolymerization of laccase-oxidized lignin in aqueous alkaline solution at 37 ℃. ACS Sustainable Chem. Eng. 7, 11150–11156. doi: 10.1021/acssuschemeng.9b00204
    Liu, Z.H., Li, B.Z., Yuan, J.S., Yuan, Y.J., 2022. Creative biological lignin conversion routes toward lignin valorization. Trends Biotechnol. 40, 1550–1566. doi: 10.1016/j.tibtech.2022.09.014
    Luo, C.B., Li, H.C., Li, D.Q., Nawaz, H., You, T.T., Xu, F., 2022. Efficiently unsterile polyhydroxyalkanoate production from lignocellulose by using alkali-halophilic Halomonas alkalicola M2. Bioresour. Technol. 351, 126919. doi: 10.1016/j.biortech.2022.126919
    Lynd, L.R., Beckham, G.T., Guss, A.M., Jayakody, L.N., Karp, E.M., Maranas, C., McCormick, R.L., Amador-Noguez, D., Bomble, Y.J., Davison, B.H., Foster, C., Himmel, M.E., Holwerda, E.K., Laser, M.S., Ng, C.Y., Olson, D.G., Román-Leshkov, Y., Trinh, C.T., Tuskan, G.A., Upadhayay, V., Vardon, D.R., Wang, L., Wyman, C.E., 2022. Toward low-cost biological and hybrid biological/catalytic conversion of cellulosic biomass to fuels. Energy Environ. Sci. 15, 938–990. doi: 10.1039/d1ee02540f
    Melro, E., Filipe, A., Sousa, D., Valente, A.J.M., Romano, A., Antunes, F.E., Medronho, B., 2020. Dissolution of kraft lignin in alkaline solutions. Int. J. Biol. Macromol. 148, 688–695. doi: 10.1016/j.ijbiomac.2020.01.153
    Nadaroglu, H., Polat, M.S., 2022. Microbial extremozymes: Novel Sources and Industrial applications. Microbial Extremozymes. Amsterdam: Elsevier, 67–88.
    Nawaz, M.Z., Shang, H.R., Sun, J.Z., Geng, A.L., Ali, S.S., Zhu, D.C., 2023. Genomic insights into the metabolic potential of a novel lignin-degrading and polyhydroxyalkanoates producing bacterium Pseudomonas sp. Hu109A. Chemosphere 310, 136754. doi: 10.1016/j.chemosphere.2022.136754
    Padan, E., Bibi, E.T., Ito, M., Krulwich, T.A., 2005. Alkaline pH homeostasis in bacteria: new insights. Biochim. Biophys. Acta 1717, 67–88. doi: 10.1016/j.bbamem.2005.09.010
    Patel, A., Shah, A.R., 2021. Integrated lignocellulosic biorefinery: gateway for production of second generation ethanol and value added products. J. Bioresour. Bioprod. 6, 108–128. doi: 10.1016/j.jobab.2021.02.001
    Pham, L.T.M., Deng, K., Northen, T.R., Singer, S.W., Adams, P.D., Simmons, B.A., Sale, K.L., 2021. Experimental and theoretical insights into the effects of pH on catalysis of bond-cleavage by the lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. Biotechnol. Biofuels 14, 108. doi: 10.1186/s13068-021-01953-7
    Saini, R., Kaur, A., Saini, J.K., Patel, A.K., Varjani, S., Chen, C.W., Singhania, R.R., Dong, C.D., 2023. Trends in lignin biotransformations for bio-based products and energy applications. BioEnergy Res. 16, 88–104. doi: 10.1007/s12155-022-10434-0
    Singh, A.K., Bilal, M., Iqbal, H.M.N., Raj, A., 2021. Lignin peroxidase in focus for catalytic elimination of contaminants: a critical review on recent progress and perspectives. Int. J. Biol. Macromol. 177, 58–82. doi: 10.1016/j.ijbiomac.2021.02.032
    Somayaji, A., Dhanjal, C.R., Lingamsetty, R., Vinayagam, R., Selvaraj, R., Varadavenkatesan, T., Govarthanan, M., 2022. An insight into the mechanisms of homeostasis in extremophiles. Microbiol. Res. 263, 127115. doi: 10.1016/j.micres.2022.127115
    Sonoki, T., Obi, T., Kubota, S., Higashi, M., Masai, E., Katayama, Y., 2000. Coexistence of two different O demethylation systems in lignin metabolism by Sphingomonas paucimobilis SYK-6: cloning and sequencing of the lignin biphenyl-specific O-demethylase (LigX) gene. Appl. Environ. Microbiol. 66, 2125–2132. doi: 10.1128/AEM.66.5.2125-2132.2000
    Suzuki, Y., Otsuka, Y., Araki, T., Kamimura, N., Masai, E.J., Nakamura, M., Katayama, Y., 2021. Lignin valorization through efficient microbial production of β-ketoadipate from industrial black liquor. Bioresour. Technol. 337, 125489. doi: 10.1016/j.biortech.2021.125489
    Varman, A.M., He, L., Follenfant, R., Wu, W.H., Wemmer, S., Wrobel, S.A., Tang, Y.J., Singh, S., 2016. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization. Proc. Natl. Acad. Sci. USA 113, E5802–E5811.
    Wang, J.H., Li, L.L., Xu, H.M., Zhang, Y.L., Liu, Y.X., Zhang, F.Z., Shen, G.N., Yan, L., Wang, W.W., Tang, H.Z., Qiu, H.J., Gu, J.D., Wang, W.D., 2022. Construction of a fungal consortium for effective degradation of rice straw lignin and potential application in bio-pulping. Bioresour. Technol. 344, 126168. doi: 10.1016/j.biortech.2021.126168
    Weiland, F., Barton, N., Kohlstedt, M., Becker, J., Wittmann, C., 2023. Systems metabolic engineering upgrades Corynebacterium glutamicum to high-efficiency cis, cis-muconic acid production from lignin-based aromatics. Metab. Eng. 75, 153–169. doi: 10.1016/j.ymben.2022.12.005
    Werner, A.Z., Eltis, L.D., 2023. Tandem chemocatalysis and biological funneling to valorize lignin. Trends Biotechnol. 41, 270–272. doi: 10.1016/j.tibtech.2022.12.004
    Wu, X.Y., Amanze, C., Wang, J.S., Yu, Z.J., Shen, L., Wu, X.L., Li, J.K., Yu, R.L., Liu, Y.D., Zeng, W.M., 2022. Isolation and characterization of a novel thermotolerant alkali lignin-degrading bacterium Aneurinibacillus sp. LD3 and its application in food waste composting. Chemosphere 307, 135859. doi: 10.1016/j.chemosphere.2022.135859
    Xu, L., Zhang, S.J., Zhong, C., Li, B.Z., Yuan, Y.J., 2020. Alkali-based pretreatment-facilitated lignin valorization: a review. Ind. Eng. Chem. Res. 59, 16923–16938. doi: 10.1021/acs.iecr.0c01456
    Xu, T., Zong, Q.J., Liu, H., Wang, L., Liu, Z.H., Li, B.Z., Yuan, Y.J., 2022. Identifying ligninolytic bacteria for lignin valorization to bioplastics. Bioresour. Technol. 358, 127383. doi: 10.1016/j.biortech.2022.127383
    Xu, Z.X., Qin, L., Cai, M.F., Hua, W.B., Jin, M.J., 2018. Biodegradation of kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains. Environ. Sci. Pollut. Res. Int. 25, 14171–14181. doi: 10.1007/s11356-018-1633-y
    Yang, Y.R., Ghatge, S., Hur, H.G., 2023. Improvement of thermoalkaliphilic laccase (CtLac) by a directed evolution and application to lignin degradation. Appl. Microbiol. Biotechnol. 107, 273–286. doi: 10.1007/s00253-022-12311-4
    Ye, J.W., Chen, G.Q., 2021. Halomonas as a chassis. Essays Biochem. 65, 393–403. doi: 10.1042/EBC20200159
    Zhang, S.T., Dong, Z.J., Shi, J., Yang, C.R., Fang, Y., Chen, G., Chen, H., Tian, C.J., 2022. Enzymatic hydrolysis of corn stover lignin by laccase, lignin peroxidase, and manganese peroxidase. Bioresour. Technol. 361, 127699. doi: 10.1016/j.biortech.2022.127699
    Zhao, Z.M., Zhang, S.Y., Meng, X.Z., Pu, Y.Q., Liu, Z.H., Ledford, W.K., Kilbey, S.M., Li, B.Z., Ragauskas, A.J., 2021. Elucidating the mechanisms of enhanced lignin bioconversion by an alkali sterilization strategy. Green Chem. 23, 4697–4709. doi: 10.1039/d1gc00911g
    Zhu, D.C., Qaria, M.A., Zhu, B., Sun, J.Z., Yang, B., 2022. Extremophiles and extremozymes in lignin bioprocessing. Renew. Sustain. Energy Rev. 157, 112069. doi: 10.1016/j.rser.2021.112069
    Zou, L.H., Ouyang, S.P., Hu, Y.L., Zheng, Z.J., Ouyang, J., 2021. Efficient lactic acid production from dilute acid-pretreated lignocellulosic biomass by a synthetic consortium of engineered Pseudomonas putida and Bacillus coagulans. Biotechnol. Biofuels 14, 227. doi: 10.1186/s13068-021-02078-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (297) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return