Volume 8 Issue 4
Oct.  2023
Turn off MathJax
Article Contents
Segun E. Ibitoye, Rasheedat M. Mahamood, Tien-Chien Jen, Chanchal Loha, Esther T. Akinlabi. An overview of biomass solid fuels: Biomass sources, processing methods, and morphological and microstructural properties[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 333-360. doi: 10.1016/j.jobab.2023.09.005
Citation: Segun E. Ibitoye, Rasheedat M. Mahamood, Tien-Chien Jen, Chanchal Loha, Esther T. Akinlabi. An overview of biomass solid fuels: Biomass sources, processing methods, and morphological and microstructural properties[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 333-360. doi: 10.1016/j.jobab.2023.09.005

An overview of biomass solid fuels: Biomass sources, processing methods, and morphological and microstructural properties

doi: 10.1016/j.jobab.2023.09.005
More Information
  • Corresponding author: E-mail address: ibitoye.s@unilorin.edu.ng (S.E. Ibitoye)
  • Available Online: 2023-09-30
  • Publish Date: 2023-10-28
  • Biomass solid fuel (BSF) has emerged as a promising renewable energy source, but its morphological and microstructural properties are crucial in determining their physical, mechanical, and chemical characteristics. This paper provides an overview of recent research on BSF. The focus is on biomass sources, BSF processing methods, and morphological and microstructural properties, with a special emphasis on energy-related studies. Specific inclusion and exclusion criteria were established for the study to ensure relevance. The inclusion criteria encompassed studies about BSFs and studies investigating the influence of biomass sources and processing methods on the morphological and microstructural properties of solid fuels within the past five years. Various technologies for converting biomass into usable energy were discussed, including gasification, torrefaction, carbonization, hydrothermal carbonization (HTC), and pyrolysis. Each has advantages and disadvantages in energy performance, techno-economics, and climate impact. Gasification is efficient but requires high investment. Pyrolysis produces bio-oil, char, and gases based on feedstock availability. Carbonization generates low-cost biochar for solid fuels and carbon sequestration applications. Torrefaction increases energy density for co-firing with coal. HTC processes wet biomass efficiently with lower energy input. Thermal treatment affects BSF durability and strength, often leading to less durability due to voids and gaps between particles. Hydrothermal carbonization alters surface morphology, creating cavities, pores, and distinctive shapes. Slow pyrolysis generates biochar with better morphological properties, while fast pyrolysis yields biochar with lower porosity and surface area. Wood constitutes 67% of the biomass sources utilized for bioenergy generation, followed by wood residues (5%), agro-residues (4%), municipal solid wastes (3%), energy crops (3%), livestock wastes (3%), and forest residues (1%). Each source has advantages and drawbacks, such as availability, cost, environmental impact, and suitability for specific regions and energy requirements. This review is valuable for energy professionals, researchers, and policymakers interested in biomass solid fuel.

     

  • Declaration of Competing Interest
    The authors have no financial or non-financial interest to disclose.
  • loading
  • Abdullah, N., Mohd Taib, R., Mohamad Aziz, N.S., Omar, M.R., Disa, N.M., 2023. Banana pseudo-stem biochar derived from slow and fast pyrolysis process. Heliyon 9, e12940. doi: 10.1016/j.heliyon.2023.e12940
    Afolabi, O.O.D., Sohail, M., Cheng, Y.L., 2020. Optimisation and characterisation of hydrochar production from spent coffee grounds by hydrothermal carbonisation. Renew. Energy 147, 1380–1391. doi: 10.1016/j.renene.2019.09.098
    Ajimotokan, H.A., Ibitoye, S.E., Odusote, J.K., Adesoye, O.A., Omoniyi, P.O., 2019. Physico-mechanical properties of composite briquettes from corncob and rice husk. J. Bioresour. Bioprod. 4, 159–165.
    Albashabsheh, N.T., Heier Stamm, J.L., 2021. Optimization of lignocellulosic biomass-to-biofuel supply chains with densification: literature review. Biomass Bioenergy 144, 105888. doi: 10.1016/j.biombioe.2020.105888
    Albers, A., Avadí, A., Benoist, A., Collet, P., Hélias, A., 2020. Modelling dynamic soil organic carbon flows of annual and perennial energy crops to inform energy-transport policy scenarios in France. Sci. Total Environ. 718, 135278. doi: 10.1016/j.scitotenv.2019.135278
    Ali Siyal, A., Liu, Y., Ali, B., Mao, X., Hussain, S., Fu, J., Ao, W.Y., Zhou, C.B., Wang, L., Liu, G.Q., Dai, J.J., 2022. Pyrolysis of pellets prepared from pure and blended biomass feedstocks: characterization and analysis of pellets quality. J. Anal. Appl. Pyrolysis 161, 105422. doi: 10.1016/j.jaap.2021.105422
    Anejionu, O.C.D., Woods, J., 2019. Preliminary farm-level estimation of 20-year impact of introduction of energy crops in conventional farms in the UK. Renew. Sustain. Energy Rev. 116, 109407. doi: 10.1016/j.rser.2019.109407
    Aragón-Briceño, C.I., Pozarlik, A.K., Bramer, E.A., Niedzwiecki, L., Pawlak-Kruczek, H., Brem, G., 2021. Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: a review. Renew. Energy 171, 401–415. doi: 10.1016/j.renene.2021.02.109
    Araújo, A.G., Pereira Carneiro, A.M., Palha, R.P., 2020. Sustainable construction management: a systematic review of the literature with meta-analysis. J. Clean. Prod. 256, 120350. doi: 10.1016/j.jclepro.2020.120350
    Avcıoğlu, A.O., Dayıoğlu, M.A., Türker, U., 2019. Assessment of the energy potential of agricultural biomass residues in Turkey. Renew. Energy 138, 610–619. doi: 10.1016/j.renene.2019.01.053
    Awasthi, M.K., Sarsaiya, S., Patel, A., Juneja, A., Singh, R.P., Yan, B.H., Awasthi, S.K., Jain, A., Liu, T., Duan, Y.M., Pandey, A., Zhang, Z.Q., Taherzadeh, M.J., 2020. Refining biomass residues for sustainable energy and bio-products: an assessment of technology, its importance, and strategic applications in circular bio-economy. Renew. Sustain. Energy Rev. 127, 109876. doi: 10.1016/j.rser.2020.109876
    Awasthi, M.K., Sindhu, R., Sirohi, R., Kumar, V., Ahluwalia, V., Binod, P., Juneja, A., Kumar, D., Yan, B.H., Sarsaiya, S., Zhang, Z.Q., Pandey, A., Taherzadeh, M.J., 2022. Agricultural waste biorefinery development towards circular bioeconomy. Renew. Sustain. Energy Rev. 158, 112122. doi: 10.1016/j.rser.2022.112122
    Aydin, E.S., Yucel, O., Sadikoglu, H., 2019. Experimental study on hydrogen-rich syngas production via gasification of pine cone particles and wood pellets in a fixed bed downdraft gasifier. Int. J. Hydrogen Energy 44, 17389–17396. doi: 10.1016/j.ijhydene.2019.02.175
    Balali, A., Yunusa-Kaltungo, A., Edwards, R., 2023. A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques. Renew. Sustain. Energy Rev. 171, 113013.
    Balcioglu, G., Jeswani, H.K., Azapagic, A., 2023. Energy from forest residues in Turkey: an environmental and economic life cycle assessment of different technologies. Sci. Total Environ. 874, 162316. doi: 10.1016/j.scitotenv.2023.162316
    Bamisile, O., Cai, D.S., Li, J., Adun, H., Olukoya, R., Bamisile, O., Huang, Q., 2023. Renewable energy and electricity incapacitation in sub-Sahara Africa: analysis of a 100% renewable electrification in Chad. Energy Rep. 9, 1–12.
    Baral, N.R., Asher, Z.D., Trinko, D., Sproul, E., Quiroz-Arita, C., Quinn, J.C., Bradley, T.H., 2021. Biomass feedstock transport using fuel cell and battery electric trucks improves lifecycle metrics of biofuel sustainability and economy. J. Clean. Prod. 279, 123593. doi: 10.1016/j.jclepro.2020.123593
    Bareschino, P., Marrasso, E., Roselli, C., 2021. Tobacco stalks as a sustainable energy source in civil sector: assessment of techno-economic and environmental potential. Renew. Energy 175, 373–390. doi: 10.1016/j.renene.2021.04.101
    Berghel, J., Ståhl, M., Frodeson, S., Pichler, W., Weigl-Kuska, M., 2022. A comparison of relevant data and results from single pellet press research is mission impossible: a review. Bioresour. Technol. Rep. 18, 101054. doi: 10.1016/j.biteb.2022.101054
    Brand, M.A., Jacinto, R.C., 2020. Apple pruning residues: potential for burning in boiler systems and pellet production. Renew. Energy 152, 458–466. doi: 10.1016/j.renene.2020.01.037
    Brazil, O.A.V., Vilanova-Neta, J.L., Silva, N.O., Vieira, I.M.M., Lima, Á. S., Santos Ruzene, D., Silva, D.P., Figueiredo, R.T., 2019. Integral use of lignocellulosic residues from different sunflower accessions: analysis of the production potential for biofuels. J. Clean. Prod. 221, 430–438. doi: 10.1016/j.jclepro.2019.02.274
    Brigagão, G.V., de Queiroz Fernandes Araújo, O., de Medeiros, J.L., Mikulcic, H., Duic, N., 2019. A techno-economic analysis of thermochemical pathways for corncob-to-energy: fast pyrolysis to bio-oil, gasification to methanol and combustion to electricity. Fuel Process. Technol. 193, 102–113. doi: 10.1016/j.fuproc.2019.05.011
    Cai, C.Y., Li, F.F., Liu, L.L., Tan, Z.J., 2019. Deep eutectic solvents used as the green media for the efficient extraction of caffeine from Chinese dark tea. Sep. Purif. Technol. 227, 115723. doi: 10.1016/j.seppur.2019.115723
    Caicedo-Zuñiga, J., Casanova, F., Duque, J., Jaime García, J., 2022. Laboratory and field testing to characterize the compaction of sugarcane agricultural residue bales. Energy Convers. Manag. X 16, 100326.
    Cao, Z.Y., Zhang, S.Y., Huang, X.H., Liu, H.Y., Sun, M.Y., Lyu, J.F., 2020. Correlations between the compressive strength of the hydrochar pellets and the chemical components: evolution and densification mechanism. J. Anal. Appl. Pyrolysis 152, 104956. doi: 10.1016/j.jaap.2020.104956
    Casas-Ledón, Y., Flores, M., Jiménez, R., Ronsse, F., Dewulf, J., Arteaga-Pérez, L.E., 2019. On the environmental and economic issues associated with the forestry residues-to-heat and electricity route in Chile: sawdust gasification as a case study. Energy 170, 763–776. doi: 10.1016/j.energy.2018.12.132
    Chen, D.Y., Cen, K.H., Gan, Z.Y., Zhuang, X.Z., Ba, Y.P., 2022. Comparative study of electric-heating torrefaction and solar-driven torrefaction of biomass: characterization of property variation and energy usage with torrefaction severity. Appl. Energy Combust. Sci. 9, 100051.
    Chen, H.H., Dai, Z.M., Jager, H.I., Wullschleger, S.D., Xu, J.M., Schadt, C.W., 2019. Influences of nitrogen fertilization and climate regime on the above-ground biomass yields of miscanthus and switchgrass: a meta-analysis. Renew. Sustain. Energy Rev. 108, 303–311. doi: 10.1016/j.rser.2019.03.037
    Chen, Y.J., Syed-Hassan, S.S.A., Li, Q.L., Deng, Z.T., Hu, X., Xu, J., Jiang, L., Su, S., Hu, S., Wang, Y., Xiang, J., 2022. Effects of temperature and aspect ratio on heterogeneity of the biochar from pyrolysis of biomass pellet. Fuel Process. Technol. 235, 107366. doi: 10.1016/j.fuproc.2022.107366
    Chen, Y.Z., Pinegar, L., Immonen, J., Powell, K.M., 2023. Conversion of food waste to renewable energy: a techno-economic and environmental assessment. J. Clean. Prod. 385, 135741. doi: 10.1016/j.jclepro.2022.135741
    Chun, D.D., Ni, D., Simson, A., 2022. The effect of inherent inorganics and CO2 co-pyrolysis on biochar production from biowastes and their gasification reactivity. Biomass Bioenergy 158, 106361. doi: 10.1016/j.biombioe.2022.106361
    Cormos, C.C., 2023. Green hydrogen production from decarbonized biomass gasification: an integrated techno-economic and environmental analysis. Energy 270, 126926. doi: 10.1016/j.energy.2023.126926
    Corton, J., Donnison, I.S., Ross, A.B., Lea-Langton, A.R., Wachendorf, M., Fraser, M.D., 2021. Impact of vegetation type and pre-processing on product yields and properties following hydrothermal conversion of conservation biomass. Renew. Sustain. Energy Rev. 137, 110462. doi: 10.1016/j.rser.2020.110462
    da Silva Alves, L., de Almeida Moreira, B.R., da Silva Viana, R., Pardo-Gimenez, A., Dias, E.S., Noble, R., Zied, D.C., 2021. Recycling spent mushroom substrate into fuel pellets for low-emission bioenergy producing systems. J. Clean. Prod. 313, 127875. doi: 10.1016/j.jclepro.2021.127875
    da Silva, S.B., Arantes, M.D.C., de Andrade, J.K.B., Andrade, C.R., de Cássia Oliveira Carneiro, A., de Paula Protásio, T., 2020. Influence of physical and chemical compositions on the properties and energy use of lignocellulosic biomass pellets in Brazil. Renew. Energy 147, 1870–1879. doi: 10.1016/j.renene.2019.09.131
    Dai, X., Theppitak, S., Yoshikawa, K., 2019. Pelletization of carbonized wood using organic binders with biomass gasification residue as additive. Energy Procedia 158, 509–515. doi: 10.1016/j.egypro.2019.01.144
    del Pozo, C., Rego, F., Yang, Y., Puy, N., Bartrolí, J., Fàbregas, E., Bridgwater, A.V., 2021. Converting coffee silverskin to value-added products by a slow pyrolysis-based biorefinery process. Fuel Process. Technol. 214, 106708. doi: 10.1016/j.fuproc.2020.106708
    Dhaundiyal, A., Bercesi, G., Atsu, D., Toth, L., 2021. Development of a small-scale reactor for upgraded biofuel pellets. Renew. Energy 170, 1197–1214. doi: 10.1016/j.renene.2021.02.057
    Diao, R., Lu, H., Yang, Y.J., Bai, J., Zhu, X.F., 2022. Strategic valorization of bio-oil distillation sludge via gasification: a comparative study for reactivities, kinetics, prediction and ash deposition. Chem. Eng. J. 433, 134334. doi: 10.1016/j.cej.2021.134334
    Duc Bui, V., Phuong Vu, H., Phuong Nguyen, H., Quang Duong, X., Tuyen Nguyen, D., Tuan Pham, M., Quy Phong Nguyen, P., 2023. Techno-economic assessment and logistics management of biomass in the conversion progress to bioenergy. Sustain. Energy Technol. Assess. 55, 102991.
    Dudziec, P., Stachowicz, P., Stolarski, M.J., 2023. Diversity of properties of sawmill residues used as feedstock for energy generation. Renew. Energy 202, 822–833. doi: 10.1016/j.renene.2022.12.002
    Dumortier, J., Dokoohaki, H., Elobeid, A., Hayes, D.J., Laird, D., Miguez, F.E., 2020. Global land-use and carbon emission implications from biochar application to cropland in the United States. J. Clean. Prod. 258, 120684. doi: 10.1016/j.jclepro.2020.120684
    Eltigani, A., Olsson, A., Krause, A., Ernest, B., Fridahl, M., Yanda, P., Hansson, A., 2022. Exploring lessons from five years of biochar-producing cookstoves in the Kagera region, Tanzania. Energy Sustain. Dev. 71, 141–150. doi: 10.1016/j.esd.2022.09.015
    Erses Yay, A.S., Birinci, B., Açıkalın, S., Yay, K., 2021. Hydrothermal carbonization of olive pomace and determining the environmental impacts of post-process products. J. Clean. Prod. 315, 128087. doi: 10.1016/j.jclepro.2021.128087
    Fahmy, M., Hall, P.W., Suckling, I.D., Bennett, P., Wijeyekoon, S., 2021. Identifying and evaluating symbiotic opportunities for wood processing through techno-economic superstructure optimisation–A methodology and case study for the Kawerau industrial cluster in New Zealand. J. Clean. Prod. 328, 129494. doi: 10.1016/j.jclepro.2021.129494
    Falk, G., Shinhe, G.P., Teixeira, L.B., Moraes, E.G., Novaes de Oliveira, A.P., 2019. Synthesis of silica nanoparticles from sugarcane bagasse ash and nano-silicon via magnesiothermic reactions. Ceram. Int. 45, 21618–21624. doi: 10.1016/j.ceramint.2019.07.157
    Fang, S.Q., Jiang, L.Y., Li, P., Bai, J., Chang, C., 2020. Study on pyrolysis products characteristics of medical waste and fractional condensation of the pyrolysis oil. Energy 195, 116969. doi: 10.1016/j.energy.2020.116969
    Farajollahi, H., Hossainpour, S., 2023. Techno-economic assessment of biomass and coal co-fueled chemical looping combustion unit integrated with supercritical CO2 cycle and organic rankine cycle. Energy 274, 127309. doi: 10.1016/j.energy.2023.127309
    Feiz, R., Johansson, M., Lindkvist, E., Moestedt, J., Påledal, S.N., Ometto, F., 2022. The biogas yield, climate impact, energy balance, nutrient recovery, and resource cost of biogas production from household food waste—a comparison of multiple cases from Sweden. J. Clean. Prod. 378, 134536. doi: 10.1016/j.jclepro.2022.134536
    Fodah, A.E.M., Ghosal, M.K., Behera, D., 2021. Quality assessment of bio-oil and biochar from microwave-assisted pyrolysis of corn stover using different adsorbents. J. Energy Inst. 98, 63–76. doi: 10.1016/j.joei.2021.06.008
    Food and Agriculture Organization of the United Nations, 2022. World Food and Agriculture: Statistical Yearbook 2022. Available at: https://www.fao.org/3/cc2212en/cc2212en.pdf.
    García, R., González-Vázquez, M.P., Martín, A.J., Pevida, C., Rubiera, F., 2020. Pelletization of torrefied biomass with solid and liquid bio-additives. Renew. Energy 151, 175–183. doi: 10.1016/j.renene.2019.11.004
    Gaurav, G.K., Mehmood, T., Cheng, L., Klemeš, J.J., Shrivastava, D.K., 2020. Water hyacinth as a biomass: a review. J. Clean. Prod. 277, 122214. doi: 10.1016/j.jclepro.2020.122214
    Glushkov, D.O., Nyashina, G.S., Anand, R., Strizhak, P.A., 2021. Composition of gas produced from the direct combustion and pyrolysis of biomass. Process. Saf. Environ. Prot. 156, 43–56. doi: 10.1016/j.psep.2021.09.039
    Gonçalves, E.C.B.M., Moura, F.J., Teixeira, M.A., 2021. Cyperus giganteus pruning residues from constructed wetlands: potential for energy production. J. Clean. Prod. 325, 129319. doi: 10.1016/j.jclepro.2021.129319
    Gong, X.Y., Wang, Y., Huang, D.Y., Zhang, J.B., 2022. Effects of microplastics of different sizes on the Chlorella vulgaris - Ganoderma lucidum co-pellets formation processes. Sci. Total Environ. 820, 153266. doi: 10.1016/j.scitotenv.2022.153266
    Guo, F.H., Chen, J., He, Y., Gardy, J., Sun, Y.H., Jiang, J.Y., Jiang, X.X., 2022a. Upgrading agro-pellets by torrefaction and co-pelletization process using food waste as a pellet binder. Renew. Energy 191, 213–224. doi: 10.1016/j.renene.2022.04.012
    Guo, T.Y., Yu, Y., Wan, Z.M., Zargar, S., Wu, J., Bi, R., Sokhansanj, S., Tu, Q.S., Rojas, O.J., 2022b. Energy pellets from whole-wheat straw processed with a deep eutectic solvent: a comprehensive thermal, molecular and environmental evaluation. Renew. Energy 194, 902–911. doi: 10.1016/j.renene.2022.05.143
    Gupta, A., Siddiqui, H., Rathi, S., Mahajani, S., 2021. Intra-pellet transport limitations in the pyrolysis of raintree leaves litter. Energy 216, 119267. doi: 10.1016/j.energy.2020.119267
    Gvozdyakov, D.V., Zenkov, A.V., Kaltaev, A.Z., 2022. Characteristics of spraying and ignition of coal-water fuels based on lignite and liquid pyrolysis products of wood waste. Energy 257, 124813. doi: 10.1016/j.energy.2022.124813
    Hai, T., Mishra, P., Mohamad Zain, J., Saini, K., Manoj Kumar, N., Ab Wahid, Z., 2023. Co-digestion of domestic kitchen food waste and palm oil mill effluent for biohydrogen production. Sustain. Energy Technol. Assess. 55, 102965.
    Heredia Salgado, M.A., Tarelho, L.A.C., Rivadeneira, D., Ramírez, V., Sinche, D., 2020. Energetic valorization of the residual biomass produced during Jatropha curcas oil extraction. Renew. Energy 146, 1640–1648. doi: 10.1016/j.renene.2019.07.154
    How, B.S., Ngan, S.L., Hong, B.H., Lam, H.L., Ng, W.P.Q., Yusup, S., Ghani, W.A.W.A.K., Kansha, Y., Chan, Y.H., Cheah, K.W., Shahbaz, M., Singh, H.K.G., Yusuf, N.R., Ahmad Shuhaili, A.F., Rambli, J., 2019. An outlook of Malaysian biomass industry commercialisation: perspectives and challenges. Renew. Sustain. Energy Rev. 113, 109277. doi: 10.1016/j.rser.2019.109277
    Hu, Q., Shao, J.G., Yang, H.P., Yao, D.D., Wang, X.H., Chen, H.P., 2015. Effects of binders on the properties of bio-char pellets. Appl. Energy 157, 508–516. doi: 10.1016/j.apenergy.2015.05.019
    Husain, Z., Shakeelur Raheman, A.R., Ansari, K.B., Pandit, A.B., Khan, M.S., Qyyum, M.A., Lam, S.S., 2022. Nano-sized mesoporous biochar derived from biomass pyrolysis as electrochemical energy storage supercapacitor. Mater. Sci. Energy Technol. 5, 99–109.
    Ibitoye, S.E., Jen, T.C., Mahamood, R.M., Akinlabi, E.T., 2021a. Densification of agro-residues for sustainable energy generation: an overview. Bioresour. Bioprocess. 8, 75. doi: 10.1186/s40643-021-00427-w
    Ibitoye, S.E., Jen, T.C., Mahamood, R.M., Akinlabi, E.T., 2021b. Generation of sustainable energy from agro-residues through thermal pretreatment for developing nations: a review. Adv. Energy Sustain. Res. 2, 2100107. doi: 10.1002/aesr.202100107
    Ibitoye, S.E., Jen, T.C., Mahamood, R.M., Akinlabi, E.T., 2021c. Improving the combustion properties of corncob biomass via torrefaction for solid fuel applications. J. Compos. Sci. 5, 260. doi: 10.3390/jcs5100260
    Ibitoye, S.E., Mahamood, R.M., Jen, T.C., Akinlabi, E.T., 2022. Combustion, physical, and mechanical characterization of composites fuel briquettes from carbonized banana stalk and corncob. Int. J. Renew. Energy Dev. 11, 435–447. doi: 10.14710/ijred.2022.41290
    Ibitoye, S.E., Mahamood, R.M., Jen, T.C., Akinlabi, E.T., 2023a. Combined torrefaction and densification of rice husk: effect of process parameters. In: Advances in Material Science and Engineering. Springer, pp. 201–211 Singapore.
    Ibitoye, S.E., Mahamood, R.M., Jen, T.C., Akinlabi, E.T., 2023b. Investigation of Mechanical Properties of Torrefied Corncob and Rice Husk Briquettes: Modeling and Simulation. In: Advances in Material Science and Engineering. Springer, pp. 167–175 Singapore.
    Ibitoye, S.E., Mahamood, R.M., Jen, T.C., Loha, C., Akinlabi, E.T., 2023c. Design and fabrication of biomass densification machine for teaching and research purposes. Biomass Convers. Biorefin., 1–12. doi: 10.1007/s13399-023-04455-8
    Irfan Sadaq, S., Nawazish Mehdi, S., Mohinoddin, M., 2023. Experimental analysis on solar photovoltaic (SPV) panel for diverse slope angles at different wind speeds. Mater. Today Proc. 1–7. doi: 10.1016/j.matpr.2023.04.265.
    Jelonek, Z., Drobniak, A., Mastalerz, M., Jelonek, I., 2020. Assessing pellet fuels quality: a novel application for reflected light microscopy. Int. J. Coal Geol. 222, 103433. doi: 10.1016/j.coal.2020.103433
    Jesus, H., Leite, P., Souza, D., Don, M., Vidaurre, G. B., Rog, C., Paula, T. De., 2020. Pelletization of eucalyptus wood and coffee growing wastes: strategies for biomass valorization and sustainable bioenergy production. Renew. Energy, 149, 128–140. doi: 10.1016/j.renene.2019.12.015.
    Khare, V., Khare, C.J., Nema, S., Baredar, P., 2022. Path towards sustainable energy development: status of renewable energy in Indian subcontinent. Clean. Energy Syst. 3, 100020. doi: 10.1016/j.cles.2022.100020
    Khiari, B., Jeguirim, M., Limousy, L., Bennici, S., 2019. Biomass derived chars for energy applications. Renew. Sustain. Energy Rev. 108, 253–273. doi: 10.1016/j.rser.2019.03.057
    Kieush, L., Schenk, J., Pfeiffer, A., Koveria, A., Rantitsch, G., Hopfinger, H., 2022. Investigation on the influence of wood pellets on the reactivity of coke with CO2 and its microstructure properties. Fuel 309, 122151. doi: 10.1016/j.fuel.2021.122151
    Knápek, J., Králík, T., Vávrová, K., Valentová, M., Horák, M., Outrata, D., 2021. Policy implications of competition between conventional and energy crops. Renew. Sustain. Energy Rev. 151, 111618. doi: 10.1016/j.rser.2021.111618
    Koesoemadinata, V.C., Chou, K., Baharin, N.S.K., Yahya, W.J., Ali Muhammad Yuzir, M., Akhir, F.N.M., Iwamoto, K., Hata, S., Aid, S.R.B., Othman, N., Ida, T., Murakami, Y., Hara, H., 2021. The effectiveness of biological pretreatment of oil palm empty fruit bunch on its conversion into bio-coke. Bioresour. Technol. Rep. 15, 100765. doi: 10.1016/j.biteb.2021.100765
    Kolapkar, S.S., Zinchik, S., Burli, P., Lin, Y.Q., Hartley, D.S., Klinger, J., Handler, R., Bar-Ziv, E., 2022. Integrated torrefaction-extrusion system for solid fuel pellet production from mixed fiber-plastic wastes: techno-economic analysis and life cycle assessment. Fuel Process. Technol. 226, 107094. doi: 10.1016/j.fuproc.2021.107094
    Kongto, P., Palamanit, A., Chaiprapat, S., Tippayawong, N., 2021. Enhancing the fuel properties of rubberwood biomass by moving bed torrefaction process for further applications. Renew. Energy 170, 703–713. doi: 10.1016/j.renene.2021.02.012
    Koskela, A., Suopajärvi, H., Uusitalo, J., Fabritius, T., 2023. Evolution of biocarbon strength and structure during gasification in CO2 containing gas atmosphere. Fuel Commun. 14, 100082. doi: 10.1016/j.jfueco.2022.100082
    Kouchaki-Penchah, H., Bahn, O., Vaillancourt, K., Levasseur, A., 2022. The contribution of forest-based bioenergy in achieving deep decarbonization: insights for Quebec (Canada) using a TIMES approach. Energy Convers. Manag. 252, 115081. doi: 10.1016/j.enconman.2021.115081
    Koulouri, M.E., Templeton, M.R., Fowler, G.D., 2023. Source separation of human excreta: effect on resource recovery via pyrolysis. J. Environ. Manag. 338, 117782. doi: 10.1016/j.jenvman.2023.117782
    Králík, T., Knápek, J., Vávrová, K., Outrata, D., Romportl, D., Horák, M., Jandera, J., 2023. Ecosystem services and economic competitiveness of perennial energy crops in the modelling of biomass potential - a case study of the Czech Republic. Renew. Sustain. Energy Rev. 173, 113120. doi: 10.1016/j.rser.2022.113120
    Krishna Koundinya, K., Dobhal, P., Ahmad, T., Mondal, S., Kumar Sharma, A., Kumar Singh, V., 2023. A technical review on thermochemical pathways for production of energy from corncob residue. Renew. Energy Focus. 44, 174–185. doi: 10.1016/j.ref.2022.12.007
    Kung, K.S., Ghoniem, A.F., 2019. Multi-scale analysis of drying thermally thick biomass for bioenergy applications. Energy 187, 115989. doi: 10.1016/j.energy.2019.115989
    Kuznetsov, G.V., Nigay, N.A., Syrodoy, S.V., Gutareva, N.Y., Malyshev, D.Y., 2022. A comparative analysis of the characteristics of the water removal processes in preparation for incineration of typical wood waste and forest combustible materials. Energy 239, 122362. doi: 10.1016/j.energy.2021.122362
    Kwoczynski, Z., Čmelík, J., 2021. Characterization of biomass wastes and its possibility of agriculture utilization due to biochar production by torrefaction process. J. Clean. Prod. 280, 124302. doi: 10.1016/j.jclepro.2020.124302
    Lahiri, A., Daniel, S., Kanthapazham, R., Vanaraj, R., Thambidurai, A., Peter, L.S., 2023. A critical review on food waste management for the production of materials and biofuel. J. Hazard. Mater. Adv. 10, 100266. doi: 10.1016/j.hazadv.2023.100266
    Le, H.S., Chen, W.H., Forruque Ahmed, S., Said, Z., Rafa, N., Le, A.T., Ağbulut, Ü., Veza, I., Phuong Nguyen, X., Quang Duong, X., Huang, Z.H., Hoang, A.T., 2022. Hydrothermal carbonization of food waste as sustainable energy conversion path. Bioresour. Technol. 363, 127958. doi: 10.1016/j.biortech.2022.127958
    Lebiocka, M., Montusiewicz, A., Pasieczna-Patkowska, S., Szaja, A., 2023. Pretreatment of herbal waste using sonication. Bioresour. Technol. 377, 128932. doi: 10.1016/j.biortech.2023.128932
    Li, S.M., Harris, S., Anandhi, A., Chen, G., 2019. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: a review and data syntheses. J. Clean. Prod. 215, 890–902. doi: 10.1016/j.jclepro.2019.01.106
    Lin, B.Q., Okyere, M.A., 2023. Race and energy poverty: the moderating role of subsidies in South Africa. Energy Econ. 117, 106464. doi: 10.1016/j.eneco.2022.106464
    Lisowski, A., Pajor, M., Świętochowski, A., Dąbrowska, M., Klonowski, J., Mieszkalski, L., Ekielski, A., Stasiak, M., Piątek, M., 2019. Effects of moisture content, temperature, and die thickness on the compaction process, and the density and strength of walnut shell pellets. Renew. Energy 141, 770–781. doi: 10.1016/j.renene.2019.04.050
    Liu, R.S., Alsenani, T.R., Kumar, J., Adnan Othman, N., Majdi, H.S., Hoang, A.T., Ben Moussa, S., Dang Khoa Pham, N., 2023. Effect of O2 transport membrane and CO2 capture membranes on the performance of the biomass-based power generation: an artificial intelligence based multi-objective optimization and techno-economic and environmental evaluation. Sep. Purif. Technol. 323, 124401. doi: 10.1016/j.seppur.2023.124401
    Liu, T.Y., Wen, C., Li, C.K., Yan, K., Li, R., Jing, Z.Q., Zhang, B.H., Ma, J.J., 2022. Integrated water washing and carbonization pretreatment of typical herbaceous and woody biomass: fuel properties, combustion behaviors, and techno-economic assessments. Renew. Energy 200, 218–233. doi: 10.1016/j.renene.2022.09.073
    Ma, Z.Y., Liu, X.Y., Li, G.X., Qiu, X.M., Yao, D., Zhu, Z.Y., Wang, Y.L., Gao, J., Cui, P.Z., 2021. Energy consumption, environmental performance, and techno-economic feasibility analysis of the biomass-to-hydrogen process with and without carbon capture and storage. J. Environ. Chem. Eng. 9, 106752. doi: 10.1016/j.jece.2021.106752
    Maaoui, A., Ben Hassen Trabelsi, A., Ben Abdallah, A., Chagtmi, R., Lopez, G., Cortazar, M., Olazar, M., 2023. Assessment of pine wood biomass wastes valorization by pyrolysis with focus on fast pyrolysis biochar production. J. Energy Inst. 108, 101242. doi: 10.1016/j.joei.2023.101242
    Mahbub, N., Gemechu, E., Zhang, H., Kumar, A., 2019. The life cycle greenhouse gas emission benefits from alternative uses of biofuel coproducts. Sustain. Energy Technol. Assess. 34, 173–186.
    Maheshwari, Z., Kengne, K., Bhat, O., 2023. A comprehensive review on wind turbine emulators. Renew. Sustain. Energy Rev. 180, 113297. doi: 10.1016/j.rser.2023.113297
    Makepa, D.C., Chihobo, C.H., Ruziwa, W.R., Musademba, D., 2023. A systematic review of the techno-economic assessment and biomass supply chain uncertainties of biofuels production from fast pyrolysis of lignocellulosic biomass. Fuel Commun. 14, 100086. doi: 10.1016/j.jfueco.2023.100086
    Manić, N., Janković, B., Stojiljković, D., Popović, M., Cvetković, S., Mikulčić, H., 2023. Thermodynamic study on energy crops thermochemical conversion to increase the efficiency of energy production. Thermochim. Acta 719, 179408. doi: 10.1016/j.tca.2022.179408
    Manouchehrinejad, M., Ted Bilek, E.M., Mani, S., 2021. Techno-economic analysis of integrated torrefaction and pelletization systems to produce torrefied wood pellets. Renew. Energy 178, 483–493. doi: 10.1016/j.renene.2021.06.064
    Marrugo, G., Valdés, C.F., Gómez, C., Chejne, F., 2019. Pelletizing of Colombian agro-industrial biomasses with crude glycerol. Renew. Energy 134, 558–568. doi: 10.1016/j.renene.2018.11.004
    Martínez-Guido, S.I., García-Trejo, J.F., Gutiérrez-Antonio, C., Domínguez-González, A., Gómez-Castro, F.I., Ponce-Ortega, J.M., 2021. The integration of pelletized agricultural residues into electricity grid: perspectives from the human, environmental and economic aspects. J. Clean. Prod. 321, 128932. doi: 10.1016/j.jclepro.2021.128932
    Matkowski, P., Lisowski, A., Świętochowski, A., 2020. Effect of compacted dose of pure straw and blends of straw with calcium carbonate or cassava starch on pelletising process and pellet quality. J. Clean. Prod. 277, 124006. doi: 10.1016/j.jclepro.2020.124006
    Medina-Martos, E., Istrate, I.R., Villamil, J.A., Gálvez-Martos, J.L., Dufour, J., Mohedano, Á. F., 2020. Techno-economic and life cycle assessment of an integrated hydrothermal carbonization system for sewage sludge. J. Clean. Prod. 277, 122930. doi: 10.1016/j.jclepro.2020.122930
    Michelangelli, O.P., Gaspar-Cunha, A., Covas, J.A., 2014. The influence of pellet-barrel friction on the granular transport in a single screw extruder. Powder Technol. 264, 401–408. doi: 10.1016/j.powtec.2014.05.066
    Mitchual, S.J., 2014. Densification of sawdust of tropical hardwoods and maize cobs at room temperature using low compacting pressure without a binder. Kwame Nkrumah University of Science and Technology, pp. 1–264 Kabwe.
    Mohanakrishna, G., Sneha, N.P., Rafi, S.M., Sarkar, O., 2023. Dark fermentative hydrogen production: potential of food waste as future energy needs. Sci. Total Environ. 888, 163801. doi: 10.1016/j.scitotenv.2023.163801
    Monyai, P., Chivanga, S.C., Katsande, N., 2023. Inequalities in access to energy in informal settlements: towards energy justice in Gqeberha and Komani in South Africa. Water Energy Nexus 6, 1–5. doi: 10.1016/j.wen.2023.01.001
    Mu, L., Wang, R.Y., Xie, P.W., Li, Y.L., Huang, X.K., Yin, H.C., Dong, M., 2023. Comparative investigation on the pyrolysis of crop, woody, and herbaceous biomass: Pyrolytic products, structural characteristics, and CO2 gasification. Fuel 335, 126940. doi: 10.1016/j.fuel.2022.126940
    Mumbach, G.D., Alves, J.L.F., da Silva, J.C.G., Di Domenico, M., Arias, S., Pacheco, J.G.A., Marangoni, C., Machado, R.A.F., Bolzan, A., 2022. Prospecting pecan nutshell pyrolysis as a source of bioenergy and bio-based chemicals using multicomponent kinetic modeling, thermodynamic parameters estimation, and Py-GC/MS analysis. Renew. Sustain. Energy Rev. 153, 111753. doi: 10.1016/j.rser.2021.111753
    Murshed, M., Ozturk, I., 2023. Rethinking energy poverty reduction through improving electricity accessibility: a regional analysis on selected African nations. Energy 267, 126547. doi: 10.1016/j.energy.2022.126547
    Nasiri, S., Hajinezhad, A., Kianmehr, M.H., 2023. Increasing the efficiency of municipal solid waste energy by investigating the effect of die temperature and retention time on the produced pellets: a case study of Kahrizak, Iran. Process. Saf. Environ. Prot. 173, 131–142. doi: 10.1016/j.psep.2023.03.016
    Naveen, S., Aravind, S., Yamini, B., Vasudhareni, R., Gopinath, K.P., Arun, J., Pugazhendhi, A., 2023. A review on solar energy intensified biomass valorization and value-added products production: practicability, challenges, techno economic and lifecycle assessment. J. Clean. Prod. 405, 137028. doi: 10.1016/j.jclepro.2023.137028
    Nazimudheen, G., Sekhar, N.C., Sunny, A., Kallingal, A., Hasanath, B., 2021. Physiochemical characterization and thermal kinetics of lignin recovered from sustainable agrowaste for bioenergy applications. Int. J. Hydrogen Energy 46, 4798–4807. doi: 10.1016/j.ijhydene.2020.03.172
    Odeyemi, S.O., Abdulwahab, R., Adeniyi, A.G., Atoyebi, O.D., 2020. Physical and mechanical properties of cement-bonded particle board produced from African balsam tree (Populous Balsamifera) and periwinkle shell residues. Results Eng. 6, 100126. doi: 10.1016/j.rineng.2020.100126
    Okolie, J.A., Nanda, S., Dalai, A.K., Kozinski, J.A., 2020. Hydrothermal gasification of soybean straw and flax straw for hydrogen-rich syngas production: experimental and thermodynamic modeling. Energy Convers. Manag. 208, 112545. doi: 10.1016/j.enconman.2020.112545
    Okorie, D.I., Lin, B.Q., 2022. Africa's biofuel energy and emissions prospect: forward-looking into 2030. Sustain. Energy Technol. Assess. 53, 102775.
    Olatunji, K.O., Ahmed, N.A., Madyira, D.M., Adebayo, A.O., Ogunkunle, O., Adeleke, O., 2022. Performance evaluation of ANFIS and RSM modeling in predicting biogas and methane yields from Arachis hypogea shells pretreated with size reduction. Renew. Energy 189, 288–303. doi: 10.1016/j.renene.2022.02.088
    Ong, H.C., Yu, K.L., Chen, W.H., Pillejera, M.K., Bi, X.T., Tran, K.Q., Pétrissans, A., Pétrissans, M., 2021. Variation of lignocellulosic biomass structure from torrefaction: a critical review. Renew. Sustain. Energy Rev. 152, 111698. doi: 10.1016/j.rser.2021.111698
    Orisaleye, J.I., Jekayinfa, S.O., Braimoh, O.M., Edhere, V.O., 2022. Empirical models for physical properties of abura (Mitragyna ciliata) sawdust briquettes using response surface methodology. Clean. Eng. Technol. 7, 100447. doi: 10.1016/j.clet.2022.100447
    Orisaleye, J.I., Ojolo, S.J., Ajiboye, J.S., 2020. Mathematical modelling of die pressure of a screw briquetting machine. J. King Saud Univ. Eng. Sci. 32, 555–560. doi: 10.1016/j.jksus.2018.08.008
    Patil, A., Benavides, P.T., Monceaux, D.A., Engelberth, A.S., 2023. Techno-economic assessment and life cycle assessment of three potential pathways for biomass liquefaction. Bioresour. Technol. Rep. 21, 101383. doi: 10.1016/j.biteb.2023.101383
    Pegoretti Leite de Souza, H.J., Muñoz, F., Mendonça, R.T., Sáez, K., Olave, R., Segura, C., de Souza, D.P.L., de Paula Protásio, T., Rodríguez-Soalleiro, R., 2021. Influence of lignin distribution, physicochemical characteristics and microstructure on the quality of biofuel pellets made from four different types of biomass. Renew. Energy 163, 1802–1816. doi: 10.1016/j.renene.2020.10.065
    Plaza, D., Artigas, J., Ábrego, J., Gonzalo, A., Sánchez, J.L., Dro, A.D., Richardson, Y., 2019. Design and operation of a small-scale carbonization kiln for cashew nutshell valorization in Burkina Faso. Energy Sustain. Dev. 53, 71–80. doi: 10.1016/j.esd.2019.10.005
    Prabhune, A., Dey, R., 2023. Green and sustainable solvents of the future: deep eutectic solvents. J. Mol. Liq. 379, 121676. doi: 10.1016/j.molliq.2023.121676
    Prasad, R.D., Raturi, A., 2021. Prospects of sustainable biomass-based power generation in a small island country. J. Clean. Prod. 318, 128519. doi: 10.1016/j.jclepro.2021.128519
    Qin, F.Z., Zhang, C., Zeng, G.M., Huang, D.L., Tan, X.F., Duan, A.B., 2022. Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity. Renew. Sustain. Energy Rev. 157, 112056. doi: 10.1016/j.rser.2021.112056
    Rabha, D.K., 2021. Performance investigation of a passive-cum-active dryer with a biomass-fired heater integrated with a plate heat exchanger. Renew. Energy 169, 598–607. doi: 10.1016/j.renene.2020.12.126
    Rajput, S.P., Jadhav, S.V., Thorat, B.N., 2020. Methods to improve properties of fuel pellets obtained from different biomass sources: effect of biomass blends and binders. Fuel Process. Technol. 199, 106255. doi: 10.1016/j.fuproc.2019.106255
    Real Guimarães, H., Marcon Bressanin, J., Lopes Motta, I., Ferreira Chagas, M., Colling Klein, B., Bonomi, A., Maciel Filho, R., Djun Barbosa Watanabe, M., 2023. Decentralization of sustainable aviation fuel production in Brazil through biomass-to-liquids routes: a techno-economic and environmental evaluation. Energy Convers. Manag. 276, 116547. doi: 10.1016/j.enconman.2022.116547
    Ríos-Badrán, I.M., Luzardo-Ocampo, I., García-Trejo, J.F., Santos-Cruz, J., Gutiérrez-Antonio, C., 2020. Production and characterization of fuel pellets from rice husk and wheat straw. Renew. Energy 145, 500–507. doi: 10.1016/j.renene.2019.06.048
    Riva, L., Nielsen, H.K., Skreiberg, Ø., Wang, L., Bartocci, P., Barbanera, M., Bidini, G., Fantozzi, F., 2019a. Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke. Appl. Energy 256, 113933. doi: 10.1016/j.apenergy.2019.113933
    Riva, L., Surup, G.R., Buø, T.V., Nielsen, H.K., 2019b. A study of densified biochar as carbon source in the silicon and ferrosilicon production. Energy 181, 985–996. doi: 10.1016/j.energy.2019.06.013
    Román, S., Ledesma, B., Álvarez, A., Coronella, C., Qaramaleki, S.V., 2020. Suitability of hydrothermal carbonization to convert water hyacinth to added-value products. Renew. Energy 146, 1649–1658. doi: 10.1016/j.renene.2019.07.157
    Ruiz, H.A., Sganzerla, W.G., Larnaudie, V., Veersma, R.J., van Erven, G., Shiva, Ríos-González, L.J., Rodríguez-Jasso, R.M., Rosero-Chasoy, G., Ferrari, M.D., Kabel, M.A., Forster-Carneiro, T., Lareo, C., 2023. Advances in process design, techno-economic assessment and environmental aspects for hydrothermal pretreatment in the fractionation of biomass under biorefinery concept. Bioresour. Technol. 369, 128469. doi: 10.1016/j.biortech.2022.128469
    Sahoo, K., Khatri, P., Kanwar, A., Singh, H.P., Mani, S., Bergman, R., Runge, T., Kumar, D., 2022. Integrated environmental and economic assessments of producing energy crops with cover crops for simultaneous use as biofuel feedstocks and animal fodder. Ind. Crops Prod. 179, 114681. doi: 10.1016/j.indcrop.2022.114681
    Sahu, S.N., Meikap, B.C., Biswal, S.K., 2022. Magnetization roasting of waste iron ore beneficiation plant tailings using sawdust biomass; A novel approach to produce metallurgical grade pellets. J. Clean. Prod. 343, 130894. doi: 10.1016/j.jclepro.2022.130894
    Salimbeni, A., Lombardi, G., Rizzo, A.M., Chiaramonti, D., 2022. Techno-economic feasibility assessment of sorption enhanced gasification of municipal solid waste for hydrogen production. Int. J. Hydrogen Energy, 47, 6586–6604. doi: 10.1016/j.ijhydene.2021.12.037
    Salimbeni, A., Lombardi, G., Rizzo, A.M., Chiaramonti, D., 2023. Techno-economic feasibility of integrating biomass slow pyrolysis in an EAF steelmaking site: a case study. Appl. Energy 339, 120991. doi: 10.1016/j.apenergy.2023.120991
    San Miguel, G., Sánchez, F., Pérez, A., Velasco, L., 2022. One-step torrefaction and densification of woody and herbaceous biomass feedstocks. Renew. Energy 195, 825–840. doi: 10.1016/j.renene.2022.06.085
    Santos, J., Ouadi, M., Jahangiri, H., Hornung, A., 2020. Valorisation of lignocellulosic biomass investigating different pyrolysis temperatures. J. Energy Inst. 93, 1960–1969. doi: 10.1016/j.joei.2020.04.011
    Santos, M. P. S., & Hanak, D. P. (2022). Techno-economic feasibility assessment of sorption enhanced gasification of municipal solid waste for hydrogen production. International Journal of Hydrogen Energy, 47(10), 6586–6604. doi: 10.1016/j.ijhydene.2021.12.037.
    Saravanakumar, A., Vijayakumar, P., Hoang, A.T., Kwon, E.E., Chen, W.H., 2023. Thermochemical conversion of large-size woody biomass for carbon neutrality: principles, applications, and issues. Bioresour. Technol. 370, 128562. doi: 10.1016/j.biortech.2022.128562
    Saravanan, A., Yaashikaa, P.R., Kumar, P.S., Thamarai, P., Deivayanai, V.C., Rangasamy, G., 2023a. A comprehensive review on techno-economic analysis of biomass valorization and conversional technologies of lignocellulosic residues. Ind. Crops Prod. 200, 116822. doi: 10.1016/j.indcrop.2023.116822
    Saravanan, A., Yaashikaa, P.R., Kumar, P.S., Vickram, A.S., Karishma, S., Kamalesh, R., Rangasamy, G., 2023b. Techno-economic and environmental sustainability prospects on biochemical conversion of agricultural and algal biomass to biofuels. J. Clean. Prod. 414, 137749. doi: 10.1016/j.jclepro.2023.137749
    Schmidt Rivera, X.C., Gallego-Schmid, A., Najdanovic-Visak, V., Azapagic, A., 2020. Life cycle environmental sustainability of valorisation routes for spent coffee grounds: from waste to resources. Resour. Conserv. Recycl. 157, 104751. doi: 10.1016/j.resconrec.2020.104751
    Schwerz, F., Neto, D.D., Caron, B.O., Nardini, C., Sgarbossa, J., Eloy, E., Behling, A., Elli, E.F., Reichardt, K., 2020. Biomass and potential energy yield of perennial woody energy crops under reduced planting spacing. Renew. Energy 153, 1238–1250. doi: 10.1016/j.renene.2020.02.074
    Sermyagina, E., Mendoza Martinez, C., Lahti, J., Nikku, M., Mänttäri, M., Kallioinen-Mänttäri, M., Vakkilainen, E., 2022. Characterization of pellets produced from extracted sawdust: effect of cooling conditions and binder addition on composition, mechanical and thermochemical properties. Biomass Bioenergy 164, 106562. doi: 10.1016/j.biombioe.2022.106562
    Setter, C., Borges, F.A., Cardoso, C.R., Mendes, R.F., Oliveira, T.J.P., 2020. Energy quality of pellets produced from coffee residue: characterization of the products obtained via slow pyrolysis. Ind. Crops Prod. 154, 112731. doi: 10.1016/j.indcrop.2020.112731
    Shangdiar, S., Lin, Y.C., Cheng, P.C., Chou, F.C., Wu, W.D., 2021. Development of biochar from the refuse derived fuel (RDF) through organic/inorganic sludge mixed with rice straw and coconut shell. Energy 215, 119151. doi: 10.1016/j.energy.2020.119151
    Sharma, H.B., Dubey, B.K., 2020. Binderless fuel pellets from hydrothermal carbonization of municipal yard waste: effect of severity factor on the hydrochar pellets properties. J. Clean. Prod. 277, 124295. doi: 10.1016/j.jclepro.2020.124295
    Shirzad, M., Kazemi Shariat Panahi, H., Dashti, B.B., Ali Rajaeifar, M., Aghbashlo, M., Tabatabaei, M., 2019. A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran. Renew. Sustain. Energy Rev. 111, 571–594. doi: 10.1016/j.rser.2019.05.011
    Shui, T., Khatri, V., Chae, M., Sokhansanj, S., Choi, P., Bressler, D.C., 2020. Development of a torrefied wood pellet binder from the cross-linking between specified risk materials-derived peptides and epoxidized poly (vinyl alcohol). Renew. Energy 162, 71–80. doi: 10.1016/j.renene.2020.08.008
    Siaw, M.N.K., Oduro-Koranteng, E.A., Dartey, Y.O.O., 2022. Food-energy-water nexus: food waste recycling system for energy. Energy Nexus 5, 100053. doi: 10.1016/j.nexus.2022.100053
    Silva-Martínez, R.D., Sanches-Pereira, A., Ortiz, W., Gómez Galindo, M.F., Coelho, S.T., 2020. The state-of-the-art of organic waste to energy in Latin America and the Caribbean: challenges and opportunities. Renew. Energy 156, 509–525. doi: 10.1016/j.renene.2020.04.056
    Singh, R.K., Jena, K., Chakraborty, J.P., Sarkar, A., 2020. Energy and exergy analysis for torrefaction of pigeon pea stalk (Cajanus cajan) and eucalyptus (Eucalyptus tereticornis). Int. J. Hydrogen Energy 45, 18922–18936. doi: 10.1016/j.ijhydene.2020.05.045
    Sitek, T., Pospíšil, J., Poláčik, J., Chýlek, R., 2021. Thermogravimetric analysis of solid biomass fuels and corresponding emission of fine particles. Energy 237, 121609. doi: 10.1016/j.energy.2021.121609
    Sobieraj, J., Gądek, W., Jagodzińska, K., Kalisz, S., 2021. Investigations of optimal additive dose for Cl-rich biomasses. Renew. Energy 163, 2008–2017. doi: 10.1016/j.renene.2020.10.061
    Somorin, T., Parker, A., McAdam, E., Williams, L., Tyrrel, S., Kolios, A., Jiang, Y., 2020. Pyrolysis characteristics and kinetics of human faeces, simulant faeces and wood biomass by thermogravimetry-gas chromatography-mass spectrometry methods. Energy Rep. 6, 3230–3239. doi: 10.1016/j.egyr.2020.11.164
    Soria-Verdugo, A., Cano-Pleite, E., Panahi, A., Ghoniem, A.F., 2022. Kinetics mechanism of inert and oxidative torrefaction of biomass. Energy Convers. Manag. 267, 115892. doi: 10.1016/j.enconman.2022.115892
    Stafford, W., De Lange, W., Nahman, A., Chunilall, V., Lekha, P., Andrew, J., Johakimu, J., Sithole, B., Trotter, D., 2020. Forestry biorefineries. Renew. Energy 154, 461–475. doi: 10.1016/j.renene.2020.02.002
    Stevens, K.A., Tang, T., Hittinger, E., 2023. Innovation in complementary energy technologies from renewable energy policies. Renew. Energy 209, 431–441. doi: 10.1016/j.renene.2023.03.115
    Surup, G.R., Nielsen, H.K., Großarth, M., Deike, R., Van den Bulcke, J., Kibleur, P., Müller, M., Ziegner, M., Yazhenskikh, E., Beloshapkin, S., Leahy, J.J., Trubetskaya, A., 2020. Effect of operating conditions and feedstock composition on the properties of manganese oxide or quartz charcoal pellets for the use in ferroalloy industries. Energy 193, 116736. doi: 10.1016/j.energy.2019.116736
    Syed, Q.R., Apergis, N., Goh, S.K., 2023. The dynamic relationship between climate policy uncertainty and renewable energy in the US: applying the novel Fourier augmented autoregressive distributed lags approach. Energy 275, 127383. doi: 10.1016/j.energy.2023.127383
    Szufa, S., Piersa, P., Junga, R., Błaszczuk, A., Modliński, N., Sobek, S., Marczak-Grzesik, M., Adrian, Ł., Dzikuć, M., 2023. Numerical modeling of the co-firing process of an in situ steam-torrefied biomass with coal in a 230 MW industrial-scale boiler. Energy 263, 125918. doi: 10.1016/j.energy.2022.125918
    Tabakaev, R., Kahn, V., Dubinin, Y., Rudmin, M., Yazykov, N., Skugarov, A., Alekseenko, E., Zavorin, A., Preis, S., 2022. High-strength fuel pellets made of flour milling and coal slack wastes. Energy 243, 123071. doi: 10.1016/j.energy.2021.123071
    Tagami-Kanada, N., Yoshikuni, K., Mizuno, S., Sawai, T., Fuchihata, M., Ida, T., 2022. Combustion characteristics of densified solid biofuel with different aspect ratios. Renew. Energy 197, 1174–1182. doi: 10.1016/j.renene.2022.08.027
    The Intergovernmental Panel on Climate Change, 2022. Climate Change 2022: Mitigation of Climate Change. Intergovernmental Panel on Climate Change, 1–2042. Available at: https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf.
    Tilahun, F.B., Bhandari, R., Mamo, M., 2021. Design optimization of a hybrid solar-biomass plant to sustainably supply energy to industry: methodology and case study. Energy 220, 119736. doi: 10.1016/j.energy.2020.119736
    Trubetskaya, A., Grams, J., Leahy, J.J., Johnson, R., Gallagher, P., Monaghan, R.F.D., Kwapinska, M., 2020. The effect of particle size, temperature and residence time on the yields and reactivity of olive stones from torrefaction. Renew. Energy 160, 998–1011. doi: 10.1016/j.renene.2020.06.136
    Tumuluru, J.S., Fillerup, E., Kane, J.J., Murray, D., 2020. Advanced imaging techniques to understand the impact of process variables on the particle morphology in a corn stover pellet. Chem. Eng. Res. Des. 161, 130–145. doi: 10.1016/j.cherd.2020.07.002
    Uddin, M.N., Taweekun, J., Techato, K., Rahman, M.A., Mofijur, M., Rasul, M.G., 2019. Sustainable biomass as an alternative energy source: Bangladesh perspective. Energy Procedia 160, 648–654. doi: 10.1016/j.egypro.2019.02.217
    Vamvuka, D., Tzilivakos, P., Afthentopoulos, E., Ilias Chatzifotiadis, H., 2023. Comparative study on the gasification performance of two energy crops by steam or carbon dioxide. Bioresour. Technol. Rep. 21, 101320. doi: 10.1016/j.biteb.2022.101320
    Varma, A.K., Thakur, L.S., Shankar, R., Mondal, P., 2019. Pyrolysis of wood sawdust: effects of process parameters on products yield and characterization of products. Waste Manag. 89, 224–235. doi: 10.1016/j.wasman.2019.04.016
    Vershinina, K.Y., Shlegel, N.E., Strizhak, P.A., 2019. Relative combustion efficiency of composite fuels based on of wood processing and oil production wastes. Energy 169, 18–28. doi: 10.1016/j.energy.2018.12.027
    Vitale, I., Dondo, R.G., González, M., Cóccola, M.E., 2022. Modelling and optimization of material flows in the wood pellet supply chain. Appl. Energy 313, 118776. doi: 10.1016/j.apenergy.2022.118776
    Vlachokostas, C., Michailidou, A.V., Achillas, C., 2021. Multi-criteria decision analysis towards promoting waste-to-energy management strategies: a critical review. Renew. Sustain. Energy Rev. 138, 110563. doi: 10.1016/j.rser.2020.110563
    Wang, C.W., Zhang, S.Y., Wu, S.Y., Sun, M.Y., Lyu, J.F., 2020. Multi-purpose production with valorization of wood vinegar and briquette fuels from wood sawdust by hydrothermal process. Fuel 282, 118775. doi: 10.1016/j.fuel.2020.118775
    Wang, M.Y., Chang, Z.W., Liu, Y.H., Shangguan, J., Du, W.G., Ma, R., Wang, Q., Liu, J.J., Liu, S.J., Yang, S., 2022. Bonding mechanism of binder and low-rank coal during carbonization. J. Fuel Chem. Technol. 50, 1564–1572. doi: 10.1016/S1872-5813(22)60062-8
    Weyand, J., Habermeyer, F., Dietrich, R.U., 2023. Process design analysis of a hybrid power-and-biomass-to-liquid process - an approach combining life cycle and techno-economic assessment. Fuel 342, 127763. doi: 10.1016/j.fuel.2023.127763
    Wiredu, J., Yang, Q., Inuwa, U.L., Sampene, A.K., 2023. Energy transition in Africa: the role of human capital, financial development, economic development, and carbon emissions. Environ. Sci. Policy 146, 24–36. doi: 10.1016/j.envsci.2023.04.021
    Xing, J.K., Luo, K., Wang, H.O., Gao, Z.W., Fan, J.R., 2019. A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches. Energy 188, 116077. doi: 10.1016/j.energy.2019.116077
    Yang, Y., Sun, M.M., Zhang, M., Zhang, K., Wang, D.H., Lei, C., 2019. A fundamental research on synchronized torrefaction and pelleting of biomass. Renew. Energy 142, 668–676. doi: 10.3390/polym11040668
    Yeletsky, P.M., Dubinin, Y.V., Yazykov, N.A., Tabakaev, R.B., Okotrub, K.A., Yakovlev, V.A., 2022. Conversion of natural feedstocks to porous carbons via carbonization in fluidized catalyst bed followed by leaching the feedstock mineral template phase: a comparison of biomass and sedimentary raw materials. Fuel Process. Technol. 226, 107076. doi: 10.1016/j.fuproc.2021.107076
    Yoo, H.M., Park, S.W., Seo, Y.C., Kim, K.H., 2019. Applicability assessment of empty fruit bunches from palm oil mills for use as bio-solid refuse fuels. J. Environ. Manag. 234, 1–7. doi: 10.1016/j.jenvman.2018.11.035
    Yu, D.M., Hu, J.J., Wang, W.D., Gu, B., 2023. Comprehensive techno-economic investigation of biomass gasification and nanomaterial based SOFC/SOEC hydrogen production system. Fuel 333, 126442. doi: 10.1016/j.fuel.2022.126442
    Yu, S.J., Yang, X.X., Zhao, P., Li, Q.H., Zhou, H., Zhang, Y.G., 2022a. From biomass to hydrochar: evolution on elemental composition, morphology, and chemical structure. J. Energy Inst. 101, 194–200. doi: 10.1016/j.joei.2022.01.013
    Yu, Y., Guo, Y., Wang, G.B., El-Kassaby, Y.A., Sokhansanj, S., 2022b. Hydrothermal carbonization of waste ginkgo leaf residues for solid biofuel production: hydrochar characterization and its pelletization. Fuel 324, 124341. doi: 10.1016/j.fuel.2022.124341
    Zaini, I.N., Wen, Y.M., Mousa, E., Jönsson, P.G., Yang, W.H., 2021. Primary fragmentation behavior of refuse derived fuel pellets during rapid pyrolysis. Fuel Process. Technol. 216, 106796. doi: 10.1016/j.fuproc.2021.106796
    Zawiślak, K., Sobczak, P., Kraszkiewicz, A., Niedziółka, I., Parafiniuk, S., Kuna-Broniowska, I., Tanaś, W., Żukiewicz-Sobczak, W., Obidziński, S., 2020. The use of lignocellulosic waste in the production of pellets for energy purposes. Renew. Energy 145, 997–1003. doi: 10.1016/j.renene.2019.06.051
    Zha, Z.T., Wang, K., Ge, Z.F., Zhou, J.H., Zhang, H.Y., 2022. Morphological and heat transfer characteristics of biomass briquette during steam gasification process. Bioresour. Technol. 356, 127334. doi: 10.1016/j.biortech.2022.127334
    Zhai, Y.B., Wang, T.F., Zhu, Y., Peng, C., Wang, B., Li, X., Li, C.T., Zeng, G.M., 2018. Production of fuel pellets via hydrothermal carbonization of food waste using molasses as a binder. Waste Manag. 77, 185–194. doi: 10.1016/j.wasman.2018.05.02221.125980
    Zhang, B.Q., Xu, J.L., Lin, Z.X., Lin, T., Faaij, A.P.C., 2021a. Spatially explicit analyses of sustainable agricultural residue potential for bioenergy in China under various soil and land management scenarios. Renew. Sustain. Energy Rev. 137, 110614. doi: 10.1016/j.rser.2020.110614
    Zhang, H., Li, J.G., Yang, X., Song, S.S., Wang, Z.Q., Huang, J.J., Zhang, Y.Q., Fang, Y.T., 2020a. Influence of coal ash on CO2 gasification reactivity of corn stalk char. Renew. Energy 147, 2056–2063. doi: 10.1016/j.renene.2019.10.009
    Zhang, J.T., Li, G.M., Borrion, A., 2021b. Life cycle assessment of electricity generation from sugarcane bagasse hydrochar produced by microwave assisted hydrothermal carbonization. J. Clean. Prod. 291, 125980. doi: 10.1016/j.jclepro.2021.125980
    Zhang, S., Ban, Y.P., Wen, Y.X., Zhu, J.L., Wang, Y.M., Hu, H.Q., Jin, L.J., 2023a. Removal of ash in biochar from carbonization by CO2-enhanced water leaching and its mechanism. J. Fuel Chem. Technol. 51, 544–551. doi: 10.1016/S1872-5813(22)60059-8
    Zhang, X.F., Li, Y.L., Zhang, X.W., Ma, P.Y., Xing, X.J., 2023b. Co-combustion of municipal solid waste and hydrochars under non-isothermal conditions: thermal behaviors, gaseous emissions and kinetic analyses by TGA-FTIR. Energy 265, 126373. doi: 10.1016/j.energy.2022.126373
    Zhang, X.Y., Gao, B., Zhao, S.N., Wu, P.F., Han, L.J., Liu, X., 2020b. Optimization of a "coal-like" pelletization technique based on the sustainable biomass fuel of hydrothermal carbonization of wheat straw. J. Clean. Prod. 242, 118426. doi: 10.1016/j.jclepro.2019.118426
    Zheng, C., Iqbal, Y., Labonte, N., Sun, G.R., Feng, H., Yi, Z.L., Xiao, L., 2019. Performance of switchgrass and Miscanthus genotypes on marginal land in the Yellow River Delta. Ind. Crops Prod. 141, 111773. doi: 10.1016/j.indcrop.2019.111773
    Zhong, Y., Chen, R., Rojas-Sossa, J.P., Isaguirre, C., Mashburn, A., Marsh, T., Liu, Y., Liao, W., 2020. Anaerobic co-digestion of energy crop and agricultural wastes to prepare uniform-format cellulosic feedstock for biorefining. Renew. Energy 147, 1358–1370. doi: 10.1016/j.renene.2019.09.106
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (260) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return