Citation: | Eva Pasquier, Robert Skunde, Jost Ruwoldt. Influence of temperature and pressure during thermoforming of softwood pulp[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 408-420. doi: 10.1016/j.jobab.2023.10.001 |
Back, E.L., Salmen, N.L., 1982. Glass transitions of wood components hold implications for molding and pulping processes. Tappi 65, 107–110.
|
Ball, R., McIntosh, A.C., Brindley, J., 2004. Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments. Combust. Theory Model. 8, 281–291. doi: 10.1088/1364-7830/8/2/005
|
Bjork, E., Bouveng, M., Vomhoff, H., Engstrand, P., 2021. Use of fines-enriched chemical pulp to increase CTMP strength. Tappi J. 20, 255–263. doi: 10.32964/tj20.4.255
|
Bouajila, J., Dole, P., Joly, C., Limare, A., 2006. Some laws of a lignin plasticization. J. Appl. Polym. Sci. 102, 1445–1451. doi: 10.1002/app.24299
|
Burhenne, L., Messmer, J., Aicher, T., Laborie, M.P., 2013. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J. Anal. Appl. Pyrolysis 101, 177–184. doi: 10.1016/j.jaap.2013.01.012
|
Chinga-Carrasco, G., 2009. Exploring the multi-scale structure of printing paper: a review of modern technology. J. Microsc. 234, 211–242. doi: 10.1111/j.1365-2818.2009.03164.x
|
Curling, S.F., Laflin, N., Davies, G.M., Ormondroyd, G.A., Elias, R.M., 2017. Feasibility of using straw in a strong, thin, pulp moulded packaging material. Ind. Crops Prod. 97, 395–400. doi: 10.1016/j.indcrop.2016.12.042
|
Debnath, M., Sarder, R., Pal, L., Hubbe, M.A., 2022. Molded pulp products for sustainable packaging: production rate challenges and product opportunities. BioResources 17, 3810–3870. doi: 10.15376/biores.17.2.debnath
|
Dislaire, C., Seantier, B., Muzy, M., Grohens, Y., 2021. Mechanical and hygroscopic properties of molded pulp products using different wood-based cellulose fibers. Polymers 13, 3225. doi: 10.3390/polym13193225
|
Funaoka, M., Kako, T., Abe, I., 1990. Condensation of lignin during heating of wood. Wood Sci. Technol. 24, 277–288. doi: 10.1007/BF01153560
|
Hatakeyama, H., Tsujimoto, Y., Zarubin, M.J., Krutov, S.M., Hatakeyama, T., 2010. Thermal decomposition and glass transition of industrial hydrolysis lignin. J. Therm. Anal. Calorim. 101, 289–295. doi: 10.1007/s10973-010-0698-8
|
Joelsson, T., Pettersson, G., Norgren, S., Svedberg, A., Höglund, H., Engstrand, P., 2020. High strength paper from high yield pulps by means of hot-pressing. Nord. Pulp Pap. Res. J. 35, 195–204. doi: 10.1515/npprj-2019-0087
|
Joseleau, J.P., Chevalier-Billosta, V., Ruel, K., 2012. Interaction between microfibrillar cellulose fines and fibers: influence on pulp qualities and paper sheet properties. Cellulose 19, 769–777. doi: 10.1007/s10570-012-9693-5
|
Joseph, P., Opedal, M.T., Moe, S.T., 2023. The O-factor: using the H-factor concept to predict the outcome of organosolv pretreatment. Biomass Convers. Biorefin. 13, 6727–6736. doi: 10.1007/s13399-021-01667-8
|
Laukala, T., Ovaska, S.S., Tanninen, P., Pesonen, A., Jordan, J., Backfolk, K., 2019. Influence of pulp type on the three-dimensional thermomechanical convertibility of paperboard. Cellulose 26, 3455–3471. doi: 10.1007/s10570-019-02294-3
|
Lindström, T., Ström, G., 2022. Bulking of cellulose fibres–a review. Nord. Pulp Pap. Res. J. 37, 192–204. doi: 10.1515/npprj-2021-0062
|
Liu, C., Luan, P.C., Li, Q., Cheng, Z., Sun, X., Cao, D.X., Zhu, H.L., 2020. Biodegradable, hygienic, and compostable tableware from hybrid sugarcane and bamboo fibers as plastic alternative. Matter 3, 2066–2079. doi: 10.1016/j.matt.2020.10.004
|
Liu, T.H., Wang, Y., Zhou, J., Li, M.Y., Yue, J.Q., 2021. Preparation of molded fiber products from hydroxylated lignin compounded with lewis acid-modified fibers its analysis. Polymers 13, 1349. doi: 10.3390/polym13091349
|
Mboowa, D., 2021. A review of the traditional pulping methods and the recent improvements in the pulping processes. Biomass Convers. Bioref. 1–12.
|
Nilsson, H., Galland, S., Larsson, P.T., Gamstedt, E.K., Nishino, T., Berglund, L.A., Iversen, T., 2010. A non-solvent approach for high-stiffness all-cellulose biocomposites based on pure wood cellulose. Compos. Sci. Technol. 70, 1704–1712. doi: 10.1016/j.compscitech.2010.06.016
|
Nimz, H.H., 1984. Wood-chemistry, ultrastructure, reactions. Holz Roh Werkst. 42, 314. doi: 10.1007/BF02608943
|
Norgren, S., Pettersson, G., Höglund, H., 2018. Strong paper from spruce CTMP-Part Ⅱ: effect of pressing at nip press temperatures above the lignin softening temperature. Nord. Pulp Pap. Res. J. 33, 142–149. doi: 10.1515/npprj-2018-3009
|
Oliaei, E., Berthold, F., Berglund, L.A., Lindström, T., 2021a. Eco-friendly high-strength composites based on hot-pressed lignocellulose microfibrils or fibers. ACS Sustainable Chem. Eng. 9, 1899–1910. doi: 10.1021/acssuschemeng.0c08498
|
Oliaei, E., Lindström, T., Berglund, L.A., 2021b. Sustainable development of hot-pressed all-lignocellulose composites-comparing wood fibers and nanofibers. Polymers 13, 2747. doi: 10.3390/polym13162747
|
Pettersson, G., Norgren, S., Engstrand, P., Rundlöf, M., Höglund, H., 2021. Aspects on bond strength in sheet structures from TMP and CTMP–a review. Nord. Pulp Pap. Res. J. 36, 177–213. doi: 10.1515/npprj-2021-0009
|
Ruwoldt, J., Tanase Opedal, M., 2022. Green materials from added-lignin thermoformed pulps. Ind. Crops Prod. 185, 115102. doi: 10.1016/j.indcrop.2022.115102
|
Salmén, L., 1993. Response of paper properties to changes in moisture content and temperature. Products Papermak. 1, 369.
|
Schenker, U., Chardot, J., Missoum, K., Vishtal, A., Bras, J., 2021. Short communication on the role of cellulosic fiber-based packaging in reduction of climate change impacts. Carbohydr. Polym. 254, 117248. doi: 10.1016/j.carbpol.2020.117248
|
Semple, K.E., Zhou, C.L., Rojas, O.J., Nkeuwa, W.N., Dai, C.P., 2022. Moulded pulp fibers for disposable food packaging: a state-of-the-art review. Food Packag. Shelf Life 33, 100908. doi: 10.1016/j.fpsl.2022.100908
|
Shen, D.K., Gu, S., 2009. The mechanism for thermal decomposition of cellulose and its main products. Bioresour. Technol. 100, 6496–6504. doi: 10.1016/j.biortech.2009.06.095
|
Sixta, H., 2006. Handbook of Pulp. Wiley, Germany.
|
Sluiter, A., Ruiz, B.H.R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D., 2008. Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory, Denver.
|
Tanase-Opedal, M., Ruwoldt, J., 2022. Organosolv lignin as a green sizing agent for thermoformed pulp products. ACS Omega 7, 46583–46593. doi: 10.1021/acsomega.2c05416
|
Wang, H.Q., Wang, J.L., Si, S.R., Wang, Q., Li, X.S., Wang, S.F., 2021. Residual-lignin-endowed molded pulp lunchbox with a sustained wet support strength. Ind. Crops Prod. 170, 113756. doi: 10.1016/j.indcrop.2021.113756
|
Wang, Q.L., Xiao, S.L., Shi, S.Q., Cai, L.P., 2018. Effect of light-delignification on mechanical, hydrophobic, and thermal properties of high-strength molded fiber materials. Sci. Rep. 8, 955. doi: 10.1038/s41598-018-19623-4
|
Winter, A., Gindl-Altmutter, W., Mandlez, D., Bauer, W., Eckhart, R., Leitner, J., Veigel, S., 2021. Reinforcement effect of pulp fines and microfibrillated cellulose in highly densified binderless paperboards. J. Clean. Prod. 281, 125258. doi: 10.1016/j.jclepro.2020.125258
|
Yang, H.P., Yan, R., Chen, H.P., Lee, D.H., Zheng, C.G., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788. doi: 10.1016/j.fuel.2006.12.013
|
Zhang, Y.L., Duan, C., Bokka, S.K., He, Z.B., Ni, Y.H., 2022. Molded fiber and pulp products as green and sustainable alternatives to plastics: a mini review. J. Bioresour. Bioprod. 7, 14–25. doi: 10.1016/j.jobab.2021.10.003
|