Citation: | Labeeb Ali, Toyin Shittu, Mohamed Shafi Kuttiyathil, Ayesha Alam, Muhammad Z. Iqbal, Abbas Khaleel, Kaushik Sivaramakrishnan, Mohammednoor Altarawneh. Catalytic upgrading of bio-oil from halophyte seeds into transportation fuels[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 444-460. doi: 10.1016/j.jobab.2023.10.002 |
Abideen, Z., Ansari, R., Gul, B., Khan, M.A., 2012. The place of halophytes in Pakistan's biofuel industry. Biofuels 3, 211–220. doi: 10.4155/bfs.11.158
|
Ali, L., Kuttiyathil, M.S., Altarawneh, M., 2022a. Catalytic upgrading of the polymeric constituents in Covid-19 masks. J. Environ. Chem. Eng. 10, 106978. doi: 10.1016/j.jece.2021.106978
|
Ali, L., Kuttiyathil, M.S., Altarawneh, M., 2022b. Oxidative and pyrolytic decomposition of an evaporated stream of 2, 4, 6-tribromophenol over hematite: a prevailing scenario during thermal recycling of e-waste. Waste Manag. 154, 283–292. doi: 10.1016/j.wasman.2022.10.017
|
Ali, L., Mousa, H.A., Al-Harahsheh, M., Al-Zuhair, S., Abu-Jdayil, B., Al-Marzouqi, M., Altarawneh, M., 2022c. Removal of Bromine from the non-metallic fraction in printed circuit board via its Co-pyrolysis with alumina. Waste Manag. 137, 283–293. doi: 10.1016/j.wasman.2021.11.025
|
Aljaziri, J., Gautam, R., Alturkistani, S., Fiene, G.M., Tester, M., Sarathy, S.M., 2022. On the effects of CO2 atmosphere in the pyrolysis of Salicornia bigelovii. Bioresour. Technol. Rep. 17, 100950. doi: 10.1016/j.biteb.2022.100950
|
Aljaziri, J., Gautam, R., Sarathy, S.M., 2023. Interactions in co-pyrolysis of Salicornia bigelovii and heavy fuel oil. Sustain. Energy Fuels 7, 4213–4228. doi: 10.1039/d3se00063j
|
Arabiourrutia, M., Bensidhom, G., Bolaños, M., Ben Hassen Trabelsi, A., Olazar, M., 2022. Catalytic pyrolysis of date palm seeds on HZSM-5 and dolomite in a pyroprobe reactor in line with GC/MS. Biomass Convers. Biorefin., 1–20.
|
Arhin, S.G., Cesaro, A., Di Capua, F., Esposito, G., 2023. Recent progress and challenges in biotechnological valorization of lignocellulosic materials: towards sustainable biofuels and platform chemicals synthesis. Sci. Total Environ. 857, 159333. doi: 10.1016/j.scitotenv.2022.159333
|
Bañuelos, J.A., Velázquez-Hernández, I., Guerra-Balcázar, M., Arjona, N., 2018. Production, characterization and evaluation of the energetic capability of bioethanol from Salicornia Bigelovii as a renewable energy source. Renew. Energy 123, 125–134. doi: 10.1016/j.renene.2018.02.031
|
Bi, H.B., Wang, C.X., Lin, Q.Z., Jiang, X.D., Jiang, C.L., Bao, L., 2021. Pyrolysis characteristics, artificial neural network modeling and environmental impact of coal gangue and biomass by TG-FT-IR. Sci. Total Environ. 751, 142293. doi: 10.1016/j.scitotenv.2020.142293
|
Cárdenas-Pérez, S., Piernik, A., Chanona-Pérez, J.J., Grigore, M.N., Perea-Flores, M.J., 2021. An overview of the emerging trends of the Salicornia L. genus as a sustainable crop. Environ. Exp. Bot. 191, 104606. doi: 10.1016/j.envexpbot.2021.104606
|
Centi, G., 2020. Smart catalytic materials for energy transition. Smart Mat. 1, e1005.
|
Chang, K., Zhang, H.C., Cheng, M.J., Lu, Q., 2020. Application of ceria in CO2 conversion catalysis. ACS Catal. 10, 613–631. doi: 10.1021/acscatal.9b03935
|
Chen, D.D., Ma, Q.H., Wei, L.F., Li, N.X., Shen, Q.H., Tian, W., Zhou, J.C., Long, J.Y., 2018. Catalytic hydroliquefaction of rice straw for bio-oil production using Ni/CeO2 catalysts. J. Anal. Appl. Pyrolysis 130, 169–180. doi: 10.1016/j.jaap.2018.01.012
|
Christiansen, A.H.C., Lyra, D.A., Jørgensen, H., 2021. Increasing the value of Salicornia bigelovii green biomass grown in a desert environment through biorefining. Ind. Crops Prod. 160, 113105. doi: 10.1016/j.indcrop.2020.113105
|
Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K., Payne, M.C., 2005. First principles methods using CASTEP. Z. Für Kristallogr. Cryst. Mater. 220, 567–570. doi: 10.1524/zkri.220.5.567.65075
|
Cybulska, I., Chaturvedi, T., Alassali, A., Brudecki, G.P., Brown, J.J., Sgouridis, S., Thomsen, M.H., 2014. Characterization of the chemical composition of the halophyte Salicornia bigelovii under cultivation. Energy Fuels 28, 3873–3883. doi: 10.1021/ef500478b
|
Dandamudi, K.P.R., Muhammed Luboowa, K., Laideson, M., Murdock, T., Seger, M., McGowen, J., Lammers, P.J., Deng, S.G., 2020. Hydrothermal liquefaction of Cyanidioschyzon merolae and Salicornia bigelovii Torr. : the interaction effect on product distribution and chemistry. Fuel 277, 118146. doi: 10.1016/j.fuel.2020.118146
|
Ding, Y.M., Ezekoye, O.A., Lu, S.X., Wang, C.J., 2016. Thermal degradation of beech wood with thermogravimetry/Fourier transform infrared analysis. Energy Convers. Manage. 120, 370–377. doi: 10.1016/j.enconman.2016.05.007
|
Dzidzienyo, P., Bastidas-Oyanedel, J.R., Schmidt, J., 2018. Pyrolysis kinetics of the arid land biomass halophyte Salicornia bigelovii and Phoenix dactylifera using thermogravimetric analysis. Energies 11, 2283. doi: 10.3390/en11092283
|
Folayan, A.J., Anawe, P.A.L., Ayeni, A.O., 2019. Synthesis and characterization of Salicornia bigelovii and Salicornia brachiata halophytic plants oil extracted by supercritical CO2 modified with ethanol for biodiesel production via enzymatic transesterification reaction using immobilized Candida antarctica lipase catalyst in tert-butyl alcohol (TBA) solvent. Cogent Eng. 6: 1625847. doi: 10.1080/23311916.2019.1625847
|
Gao, X.Y., Wang, Z.Y., Huang, Q.Y., Jiang, M.L., Askari, S., Dewangan, N., Kawi, S., 2022. State-of-art modifications of heterogeneous catalysts for CO2 methanation - Active sites, surface basicity and oxygen defects. Catal. Today 402, 88–103. doi: 10.1016/j.cattod.2022.03.017
|
Garcia, J.J., Brunkan, N.M., Jones, W.D., 2002. Cleavage of carbon-carbon bonds in aromatic nitriles using nickel(0). J. Am. Chem. Soc. 124, 9547–9555. doi: 10.1021/ja0204933
|
Gerward, L., Staun Olsen, J., Petit, L., Vaitheeswaran, G., Kanchana, V., Svane, A., 2005. Bulk modulus of CeO2 and PrO2—An experimental and theoretical study. J. Alloys Compd. 400, 56–61. doi: 10.1016/j.jallcom.2005.04.008
|
Govind, N., Petersen, M., Fitzgerald, G., King-Smith, D., Andzelm, J., 2003. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 28, 250–258. doi: 10.1016/S0927-0256(03)00111-3
|
Guo, D.G., Zhang, X.Y., Shao, H.B., Bai, Z.K., Chu, L.Y., Shangguan, T.L., Yan, K., Zhang, L.H., Xu, G., Sun, J.N., 2011. Energy plants in the coastal zone of China: category, distribution and development. Renew. Sustain. Energy Rev. 15, 2014–2020. doi: 10.1016/j.rser.2010.09.034
|
Holl, E., Steinbrenner, J., Merkle, W., Krümpel, J., Lansing, S., Baier, U., Oechsner, H., Lemmer, A., 2022. Two-stage anaerobic digestion: state of technology and perspective roles in future energy systems. Bioresour. Technol. 360, 127633. doi: 10.1016/j.biortech.2022.127633
|
Iaccarino, A., Gautam, R., Sarathy, S.M., 2021. Bio-oil and biochar production from halophyte biomass: effects of pre-treatment and temperature on Salicornia bigelovii pyrolysis. Sustain. Energy Fuels 5, 2234–2248. doi: 10.1039/d0se01664k
|
Iisa, K., Kim, Y., Orton, K.A., Robichaud, D.J., Katahira, R., Watson, M.J., Wegener, E.C., Nimlos, M.R., Schaidle, J.A., Mukarakate, C., Kim, S., 2020. Ga/ZSM-5 catalyst improves hydrocarbon yields and increases alkene selectivity during catalytic fast pyrolysis of biomass with co-fed hydrogen. Green Chem. 22, 2403–2418. doi: 10.1039/c9gc03408k
|
Ismail, O., Ali, L., Shafi Kuttiyathil, M., Iqbal, M.Z., Khaleel, A., Altarawneh, M., 2023. Formation of value-added products from the pyrolysis of date pits: a combined experimental-DFT approach. Biomass Bioenergy 174, 106822. doi: 10.1016/j.biombioe.2023.106822
|
Izadi, Y., Nabipour, M., Ranjbar, G.H., 2022. Growth, development, and flowering responses of Salicornia genotypes to photoperiod. Int. J. Veg. Sci. 28, 40–58. doi: 10.1080/19315260.2020.1825149
|
Jabeen, S., Zeng, Z., Altarawneh, M., Gao, X.P., Saeed, A., Dlugogorski, B.Z., 2019. Thermal decomposition of model compound of algal biomass. Int. J. Chem. Kinet. 51, 696–710. doi: 10.1002/kin.21301
|
Jin, W., Pastor-Pérez, L., Villora-Picó, J.J., Sepúlveda-Escribano, A., Gu, S., Reina, T.R., 2019. Investigating new routes for biomass upgrading: "H2-free" hydrodeoxygenation using Ni-based catalysts. ACS Sustain. Chem. Eng. 7, 16041–16049. doi: 10.1021/acssuschemeng.9b02712
|
Kim, S., Kwon, E.E., Kim, Y.T., Jung, S., Kim, H.J., Huber, G.W., Lee, J., 2019. Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chem. 21, 3715–3743. doi: 10.1039/c9gc01210a
|
Kim, S.B., Eissa, A.A.S., Kim, M.J., Goda, E.S., Youn, J.R., Lee, K., 2022. Sustainable synthesis of a highly stable and coke-free Ni@CeO2 catalyst for the efficient carbon dioxide reforming of methane. Catalysts 12, 423. doi: 10.3390/catal12040423
|
Kirkok, S.K., Kibet, J.K., Okanga, F., Kinyanjui, T., Nyamori, V., 2019. Mechanistic formation of hazardous molecular heterocyclic amines from high temperature pyrolysis of model biomass materials: cellulose and tyrosine. BMC Chem. 13, 126. doi: 10.1186/s13065-019-0644-1
|
Kumar, G., Shekh, A., Jakhu, S., Sharma, Y., Kapoor, R., Sharma, T.R., 2020. Bioengineering of microalgae: recent advances, perspectives, and regulatory challenges for industrial application. Front. Bioeng. Biotechnol. 8, 914. doi: 10.3389/fbioe.2020.00914
|
Lang, M., Li, H., 2022. Toward value-added arenes from lignin-derived phenolic compounds via catalytic hydrodeoxygenation. ACS Sustain. Chem. Eng. 10, 13208–13243. doi: 10.1021/acssuschemeng.2c04266
|
Lee, S.M., Lee, Y.H., Moon, D.H., Ahn, J.Y., Nguyen, D.D., Chang, S.W., Kim, S.S., 2019. Reaction mechanism and catalytic impact of Ni/CeO2– catalyst for low-temperature CO2 methanation. Ind. Eng. Chem. Res. 58, 8656–8662. doi: 10.1021/acs.iecr.9b00983
|
Li, G., Ma, S.H., Ye, F., Luo, Y.W., Fan, S.S., Lang, X.M., Wang, Y.H., Zhou, L., 2021. Permeation characteristics of a T-type zeolite membrane for bio-oil pervaporation dehydration. Microporous Mesoporous Mater. 315, 110884. doi: 10.1016/j.micromeso.2021.110884
|
Lin, B.W., Zhou, J.S., Qin, Q.W., Song, X., Luo, Z.Y., 2019. Thermal behavior and gas evolution characteristics during co-pyrolysis of lignocellulosic biomass and coal: a TG-FT-IR investigation. J. Anal. Appl. Pyrolysis 144, 104718. doi: 10.1016/j.jaap.2019.104718
|
Lin, S.X., Hao, Z.W., Shen, J.D., Chang, X., Huang, S.Y., Li, M.S., Ma, X.B., 2021. Enhancing the CO2 methanation activity of Ni/CeO2 via activation treatment-determined metal-support interaction. J. Energy Chem. 59, 334–342. doi: 10.1016/j.jechem.2020.11.011
|
Liu, W.J., Li, W.W., Jiang, H., Yu, H.Q., 2017. Fates of chemical elements in biomass during its pyrolysis. Chem. Rev. 117, 6367–6398. doi: 10.1021/acs.chemrev.6b00647
|
Lustemberg, P.G., Mao, Z.T., Salcedo, A., Irigoyen, B., Ganduglia-Pirovano, M.V., Campbell, C.T., 2021. Nature of the active sites on Ni/CeO2 catalysts for methane conversions. ACS Catal. 11, 10604–10613. doi: 10.1021/acscatal.1c02154
|
Lyra, D.A., Raman, A., Hozayen, A., Zaaboul, R., Abou-Zaid, F.O., El-Naggar, A., Mansoor, S., Mahmoudi, H., Ammar, K., 2022. Evaluation of Salicornia bigelovii germplasm for food use in Egypt and the United Arab Emirates based on agronomic traits and nutritional composition. Plants 11, 2653. doi: 10.3390/plants11192653
|
Ma, J.B., Zhang, M.R., Xiao, X.L., You, J.J., Wang, J.R., Wang, T., Yao, Y.N., Tian, C.Y., 2013. Global transcriptome profiling of Salicornia europaea L. shoots under NaCl treatment. PLoS ONE 8, e65877. doi: 10.1371/journal.pone.0065877
|
Mäki-Arvela, P., Martínez-Klimov, M., Murzin, D.Y., 2021. Hydroconversion of fatty acids and vegetable oils for production of jet fuels. Fuel 306, 121673. doi: 10.1016/j.fuel.2021.121673
|
Makkar, P., Ghosh, N.N., 2021. A review on the use of DFT for the prediction of the properties of nanomaterials. RSC Adv. 11, 27897–27924. doi: 10.1039/d1ra04876g
|
Makkawi, Y., El Sayed, Y., Lyra, D.A., Pour, F.H., Khan, M., Badrelzaman, M., 2021. Assessment of the pyrolysis products from halophyte Salicornia bigelovii cultivated in a desert environment. Fuel 290, 119518. doi: 10.1016/j.fuel.2020.119518
|
Makkawi, Y., El Sayed, Y., Salih, M., Nancarrow, P., Banks, S., Bridgwater, T., 2019. Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor. Renew. Energy 143, 719–730. doi: 10.1016/j.renene.2019.05.028
|
Meng, A.H., Zhou, H., Qin, L., Zhang, Y.G., Li, Q.H., 2013. Quantitative and kinetic TG-FT-IR investigation on three kinds of biomass pyrolysis. J. Anal. Appl. Pyrolysis 104, 28–37. doi: 10.1016/j.jaap.2013.09.013
|
Miran, H.A., Jiang, Z.T., Altarawneh, M., Veder, J.P., Zhou, Z.F., Rahman, M.M., Jaf, Z.N., Dlugogorski, B.Z., 2018. Influence of DC magnetron sputtering reaction gas on structural and optical characteristics of Ce-oxide thin films. Ceram. Int. 44, 16450–16458. doi: 10.1016/j.ceramint.2018.06.059
|
Mishra, K., Singh Siwal, S., Kumar Saini, A., Thakur, V.K., 2023. Recent update on gasification and pyrolysis processes of lignocellulosic and algal biomass for hydrogen production. Fuel 332, 126169. doi: 10.1016/j.fuel.2022.126169
|
Monção, M., Wretborn, T., Rova, U., Matsakas, L., Christakopoulos, P., 2022. Salicornia dolichostachya organosolv fractionation: towards establishing a halophyte biorefinery. RSC Adv. 12, 28599–28607. doi: 10.1039/d2ra04432c
|
Mondal, T., Pant, K.K., Dalai, A.K., 2015. Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst. Int. J. Hydrog. Energy 40, 2529–2544. doi: 10.1016/j.ijhydene.2014.12.070
|
Mousa, N.A., Ali, L., Kuttiyathil, M.S., Mousa, H.A., Altarawneh, M., 2022. Exploring the potential of hematite as a debromination agent for 2, 4, 6-tribromophenol. Chem. Eng. J. Adv. 11, 100334. doi: 10.1016/j.ceja.2022.100334
|
Mukarakate, C., Iisa, K., Habas, S.E., Orton, K.A., Xu, M.Z., Nash, C., Wu, Q.Y., Happs, R.M., French, R.J., Kumar, A., Miller, E.M., Nimlos, M.R., Schaidle, J.A., 2022. Accelerating catalyst development for biofuel production through multiscale catalytic fast pyrolysis of biomass over Mo2C. Chem. Catal. 2, 1819–1831. doi: 10.1016/j.checat.2022.06.004
|
Murugan, R., Vijayaprasath, G., Mahalingam, T., Ravi, G., 2016. Enhancement of room temperature ferromagnetic behavior of rf sputtered Ni–CeO2 thin films. Appl. Surf. Sci. 390, 583–590. doi: 10.1016/j.apsusc.2016.08.166
|
Nan, H.Y., Xiao, Z.Y., Zhao, L., Yang, F., Xu, H.C., Xu, X.Y., Qiu, H., 2020. Nitrogen transformation during pyrolysis of various N-containing biowastes with participation of mineral calcium. ACS Sustain. Chem. Eng. 8, 12197–12207. doi: 10.1021/acssuschemeng.0c03773
|
Ni, Z.N., Djitcheu, X., Gao, X.X., Wang, J., Liu, H.M., Zhang, Q.J., 2022. Effect of preparation methods of CeO2 on the properties and performance of Ni/CeO2 in CO2 reforming of CH4. Sci. Rep. 12, 5344. doi: 10.1038/s41598-022-09291-w
|
Nolte, M.W., Shanks, B.H., 2017. A perspective on catalytic strategies for deoxygenation in biomass pyrolysis. Energy Technol. 5, 7–18. doi: 10.1002/ente.201600096
|
Ojha, D.K., Viju, D., Vinu, R., 2021. Fast pyrolysis kinetics of lignocellulosic biomass of varying compositions. Energy Convers. Manag. X 10, 100071.
|
Oluwoye, I., Altarawneh, M., Gore, J., Dlugogorski, B.Z., 2015. Oxidation of crystalline polyethylene. Combust. Flame 162, 3681–3690. doi: 10.1016/j.combustflame.2015.07.007
|
Özsin, G., Pütün, A.E., 2019. TGA/MS/FT-IR study for kinetic evaluation and evolved gas analysis of a biomass/PVC co-pyrolysis process. Energy Convers. Manag. 182, 143–153. doi: 10.1016/j.enconman.2018.12.060
|
Panahi-Kalamuei, M., Alizadeh, S., Mousavi-Kamazani, M., Salavati-Niasari, M., 2015. Synthesis and characterization of CeO2 nanoparticles via hydrothermal route. J. Ind. Eng. Chem. 21, 1301–1305. doi: 10.1016/j.jiec.2014.05.046
|
Perdew, J.P., Wang, Y., 1992. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B Condens. Matter 45, 13244–13249. doi: 10.1103/PhysRevB.45.13244
|
Resende, K.A., Braga, A.H., Noronha, F.B., Hori, C.E., 2019. Hydrodeoxygenation of phenol over Ni/Ce1-xNbxO2 catalysts. Appl. Catal. B 245, 100–113. doi: 10.1016/j.apcatb.2018.12.040
|
Riley, C., Zhou, S.L., Kunwar, D., De La Riva, A., Peterson, E., Payne, R., Gao, L.Y., Lin, S., Guo, H., Datye, A., 2018. Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a single-atom promotor. J. Am. Chem. Soc. 140, 12964–12973. doi: 10.1021/jacs.8b07789
|
Ruddy, D.A., Schaidle, J.A., Wang, J., Moens, L., Hensley, J.E., 2014. Recent advances in heterogeneous catalysts for bio-oil upgrading via "ex situ catalytic fast pyrolysis": catalyst development through the study of model compounds. Green Chem. 16, 454–490. doi: 10.1039/C3GC41354C
|
Safdari, M.S., Rahmati, M., Amini, E., Howarth, J.E., Berryhill, J.P., Dietenberger, M., Weise, D.R., Fletcher, T.H., 2018. Characterization of pyrolysis products from fast pyrolysis of live and dead vegetation native to the Southern United States. Fuel 229, 151–166. doi: 10.1016/j.fuel.2018.04.166
|
Santoyo-Castelazo, E., Santoyo, E., Zurita-García, L., Camacho Luengas, D.A., Solano-Olivares, K., 2023. Life cycle assessment of bioethanol production from sugarcane bagasse using a gasification conversion process: bibliometric analysis, systematic literature review and a case study. Appl. Therm. Eng. 219, 119414. doi: 10.1016/j.applthermaleng.2022.119414
|
Seber, G., Escobar, N., Valin, H., Malina, R., 2022. Uncertainty in life cycle greenhouse gas emissions of sustainable aviation fuels from vegetable oils. Renew. Sustain. Energy Rev. 170, 112945. doi: 10.1016/j.rser.2022.112945
|
Shittu, T., Khaleel, A., Polychronopoulou, K., Altarawneh, M., 2022. Functionalized ceria–niobium supported nickel catalysts for gas phase semi-hydrogenation of phenylacetylene to styrene. Catal. Sci. Technol. 12, 7133–7150. doi: 10.1039/d2cy01193j
|
Singha, R.K., Shukla, A., Yadav, A., Sivakumar Konathala, L.N., Bal, R., 2017. Effect of metal-support interaction on activity and stability of Ni–CeO2 catalyst for partial oxidation of methane. Appl. Catal. B 202, 473–488. doi: 10.1016/j.apcatb.2016.09.060
|
Tada, S., Nagase, H., Fujiwara, N., Kikuchi, R., 2021. What are the best active sites for CO2 methanation over Ni/CeO2? Energy Fuels 35, 5241–5251. doi: 10.1021/acs.energyfuels.0c04238
|
Wang, C., Kant Bhatia, S., Manigandan, S., Yang, R., Ali Alharbi, S., Nasif, O., Brindhadevi, K., Zhou, B., 2022. Comparative assessment of waste cooking, chicken waste and waste tire biodiesel blends on performance and emission characteristics. Fuel 320, 123859. doi: 10.1016/j.fuel.2022.123859
|
Wang, Y., Chung, S.H., 2019. Soot formation in laminar counterflow flames. Prog. Energy Combust. Sci. 74, 152–238. doi: 10.1016/j.pecs.2019.05.003
|
Wang, Y.Q., Puggioni, D., Rondinelli, J.M., 2019. Assessing exchange-correlation functional performance in the chalcogenide lacunar spinels GaM4Q8 (M=Mo, V, Nb, Ta; Q=S, Se). Phys. Rev. B 100, 115149. doi: 10.1103/PhysRevB.100.115149
|
Wang, Y.Y., Zeng, Y., Fan, L.L., Wu, Q.H., Zhang, L.T., Xiong, J.Y., Zhang, J.H., Liao, R., Cobb, K., Liu, Y.H., Ruan, R., Wang, Y.P., 2023. Pyrolysis of different types of waste cooking oil in the presence/absence HZSM-5 catalyst: influence of feedstock characteristics on aromatic formation. Fuel 351, 128937. doi: 10.1016/j.fuel.2023.128937
|
Xu, S.Y., Chen, J.F., Peng, H.Y., Leng, S.Q., Li, H., Qu, W.Q., Hu, Y.C., Li, H.L., Jiang, S.J., Zhou, W.G., Leng, L.J., 2021. Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar. Fuel 291, 120128. doi: 10.1016/j.fuel.2021.120128
|
Yu, Y., Chan, Y.M., Bian, Z.F., Song, F.J., Wang, J., Zhong, Q., Kawi, S., 2018. Enhanced performance and selectivity of CO2 methanation over g-C3N4 assisted synthesis of NiCeO2 catalyst: kinetics and DRIFTS studies. Int. J. Hydrog. Energy 43, 15191–15204. doi: 10.1016/j.ijhydene.2018.06.090
|
Zamin, M., Fahad, S., Khattak, A.M., Adnan, M., Wahid, F., Raza, A., Wang, D.P., Saud, S., Noor, M., Bakhat, H.F., Mubeen, M., Hammad, H.M., Soliman, M.H., Elkelish, A.A., Riaz, M., Nasim, W., 2020. Developing the first halophytic turfgrasses for the urban landscape from native Arabian desert grass. Environ. Sci. Pollut. Res. Int. 27, 39702–39716. doi: 10.1007/s11356-019-06218-3
|