Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Charles Michael Albert, Kang Chiang Liew. Recent development and challenges in enhancing fire performance on wood and wood-based composites: A 10-year review from 2012 to 2021[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 27-42. doi: 10.1016/j.jobab.2023.10.004
Citation: Charles Michael Albert, Kang Chiang Liew. Recent development and challenges in enhancing fire performance on wood and wood-based composites: A 10-year review from 2012 to 2021[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 27-42. doi: 10.1016/j.jobab.2023.10.004

Recent development and challenges in enhancing fire performance on wood and wood-based composites: A 10-year review from 2012 to 2021

doi: 10.1016/j.jobab.2023.10.004
More Information
  • Corresponding author: E-mail address: liewkc@ums.edu.my (K. Liew)
  • Available Online: 2023-10-31
  • Publish Date: 2024-02-01
  • Due to their durability, versatility, and aesthetic value, wood and wood-based composites are widely used as building materials. The fact that these materials are flammable, however, raises a major worry since they might cause fire hazards and significant loss of life and property. The article investigates the variables that affect fire performance as well as the various fire-retardant treatments and their mechanisms. The current developments and challenges in improving the fire performance of wood and wood-based composites treated with fire-retardant materials are summarized in this paper. Nanoparticles, organic chemicals, and densification are some recent developments in fire-retardant treatments that are also emphasized. Key points from the review are summarized, along with potential areas for further research and development.

     

  • Declaration of Competing Interest
    There are no conflicts to declare.
  • loading
  • Abou-Elwafa, A.M., 2014. Advances in instrumental analysis of brominated flame retardants: current status and future perspectives. Int. Sch. Res. Notices 2014, 651834. http://www.researchgate.net/profile/Mohamed_Abou-Elwafa_Abdallah/publication/285463345_Advances_in_Instrumental_Analysis_of_Brominated_Flame_Retardants_Current_Status_and_Future_Perspectives/links/56656c3508ae418a786eea81.pdf
    Abou-Okeil, A., El-Sawy, S.M., Abdel-Mohdy, F.A., 2013. Flame retardant cotton fabrics treated with organophosphorus polymer. Carbohydr. Polym. 92, 2293–2298. doi: 10.1016/j.carbpol.2012.12.008
    Adetayo, O.A., Dahunsi, B.I.O., Oyelaran, O.A., 2020. Comparisons of predicted and experimental charring rates at various moisture contents of selected Southern Nigerian structural wood species. Eng. Appl. Sci. Res. 47, 93–102. http://www.researchgate.net/publication/340446632_Comparisons_of_predicted_and_experimental_charring_rates_at_various_moisture_contents_of_selected_Southern_Nigerian_structural_wood_species
    Albert, C.M., Chiang, L.K., 2020a. Contact angles of viscoelastic-thermal compression (VTC) modified Paraserianthes falcataria (L. ) laminas. IOP Conf. Ser. Earth Environ. Sci. 549, 012029. doi: 10.1088/1755-1315/549/1/012029
    Albert, C.M., Liew, K.C., 2022b. Effect of viscoelastic thermal compression (VTC) treatment on density and moisture content of laminas from Paraserianthes falcataria. Adv. Mater. Process. Technol. 8, 194–202. doi: 10.1080/2374068x.2020.1799574
    Ali, S., Hussain, S.A., Tohir, M., Nuruddin, A., 2020. Statistical analysis of Malaysian timber's combustion data from cone calorimeter test. J. Sci. Technol. 28, 185–198. http://www.xueshufan.com/publication/3191005806
    Asim, N., Badiei, M., Samsudin, N.A., Mohammad, M., Razali, H., Soltani, S., Amin, N., 2022. Application of graphene-based materials in developing sustainable infrastructure: an overview. Compos. B 245, 110188. doi: 10.1016/j.compositesb.2022.110188
    Assis, M.R., Brancheriau, L., Napoli, A., Trugilho, P.F., 2016. Factors affecting the mechanics of carbonized wood: literature review. Wood Sci. Technol. 50, 519–536. doi: 10.1007/s00226-016-0812-6
    Bagheri, S., Alinejad, M., Ohno, K., Hasburgh, L., Arango, R., Nejad, M., 2022. Improving durability of cross laminated timber (CLT) with borate treatment. J. Wood Sci. 68, 34. doi: 10.1186/s10086-022-02041-6
    Bahrani, B., Hemmati, V., Zhou, A.X., Quarles, S., 2018. Effects of natural weathering on the fire properties of intumescent fire-retardant coatings. Fire Mater. 42, 413–423. doi: 10.1002/fam.2506
    Barber, D., 2015. Tall timber buildings: what's next in fire safety? Fire Technol. 51, 1279–1284. doi: 10.1007/s10694-015-0497-7
    Bartlett, A.I., Hadden R.M., Bisby L.A., 2019. A review of factors affecting the burning behaviour of wood for application to tall timber construction. Fire Technol. 55, 1–49. doi: 10.1007/s10694-018-0787-y
    Basak, S., Ali, S.W., 2016. Sustainable fire retardancy of textiles using bio-macromolecules. Polym. Degrad. Stab. 133, 47–64. doi: 10.1016/j.polymdegradstab.2016.07.019
    Basak, S., Samanta, K.K., Chattopadhyay S.K., 2015. Fire retardant property of cotton fabric treated with herbal extract. J. Text. Inst. 106, 1338–1347. doi: 10.1080/00405000.2014.995456
    Basnayake, A.P., Hidalgo, J.P., Heitzmann, M.T., 2021. A flammability study of aluminium hydroxide (ATH) and ammonium polyphosphate (APP) used with hemp/epoxy composites. Constr. Build. Mater. 304, 124540. doi: 10.1016/j.conbuildmat.2021.124540
    Batiot, B., Luche, J., Rogaume, T., 2014. Thermal and chemical analysis of flammability and combustibility of Fir wood in cone calorimeter coupled to FTIR apparatus. Fire Mater. 38, 418–431. doi: 10.1002/fam.2192
    Božiková, M., Kotoulek, P., Bilčík, M., Kubík, Ľ., Hlaváčová, Z., Hlaváč, P., 2021. Thermal properties of wood and wood composites made from wood waste. Int. Agrophys. 35, 251–256. doi: 10.31545/intagr/142472
    Brahmia, F.Z., Zsolt, K., Horváth, P.G., Alpár, T.L., 2020. Comparative study on fire retardancy of various wood species treated with PEG 400, phosphorus, and boron compounds for use in cement-bonded wood-based products. Surf. Interfaces 21, 100736. doi: 10.1016/j.surfin.2020.100736
    Buksans, E., Laiveniece, L., Lubinskis, V., 2021. Solid wood surface modification by charring and its impact on reaction to fire performance. Proceedings of the 20th International Scientific Conference Engineering for Rural Development Proceedings, Engineering for Rural Development. Latvia University of Life Sciences and Technologies, Faculty of Engineering, 899–905.
    Čermák, P., Rautkari, L., Horáček, P., Saake, B., Rademacher, P., Sablík, P., 2015. Analysis of dimensional stability of thermally modified wood affected by re-wetting cycles. BioResources 10, 3242–3253.
    Chen, P., Sun, J.H., He, X.C., 2007. Behavior of flame spread downward over thick wood sheets and heat transfer analysis. J. Fire Sci. 25, 5–21. doi: 10.1177/0734904107062356
    Chen, W.H., Liu, P.J., Liu, Y., Liu, Z.X., 2022. Recent advances in two-dimensional Ti3C2Tx MXene for flame retardant polymer materials. Chem. Eng. J. 446, 137239. doi: 10.1016/j.cej.2022.137239
    Cheng, X.W., Guan, J.P., Tang, R.C., Liu, K.Q., 2016. Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric. J. Clean. Prod. 124, 114–119. doi: 10.1016/j.jclepro.2016.02.113
    Chiniforush, A.A., Akbarnezhad, A., Valipour, H., Malekmohammadi, S., 2019. Moisture and temperature induced swelling/shrinkage of softwood and hardwood glulam and LVL: an experimental study. Constr. Build. Mater. 207, 70–83. doi: 10.1016/j.conbuildmat.2019.02.114
    Cortés, D., Gil, D., Azorín, J., Vandecasteele, F., Verstockt, S., 2020. A review of modelling and simulation methods for flashover prediction in confined space fires. Appl. Sci. 10, 5609. doi: 10.3390/app10165609
    Costes, L., Laoutid, F., Brohez, S., Dubois, P., 2017. Bio-based flame retardants: when nature meets fire protection. Mater. Sci. Eng. 117, 1–25. doi: 10.1016/j.mser.2017.04.001
    Dagenais, C., 2017a. Glulam and CLT innovative manufacturing processes and product development: fire performance of adhesives in CLT-Part 2-cone calorimeter test. Vancouver: FPInnovations.
    Dagenais, C., 2017b. Investigating heat release rate and fire growth contribution of cross-laminated timber-a preliminary study. Vancouver: FPInnovations.
    David, E., Niculescu, V.C., 2021. Volatile organic compounds (VOCs) as environmental pollutants: occurrence and mitigation using nanomaterials. Int. J. Environ. Res. Public Health 18, 13147. doi: 10.3390/ijerph182413147
    de Hoyos-Martínez, P.L., Issaoui, H., Herrera, R., Labidi, J., Charrier-El Bouhtoury F., 2021. Wood fireproofing coatings based on biobased phenolic resins. ACS Sustain. Chem. Eng. 9, 1729–1740. doi: 10.1021/acssuschemeng.0c07505
    de Wit, C.A., 2002. An overview of brominated flame retardants in the environment. Chemosphere 46, 583–624. doi: 10.1016/S0045-6535(01)00225-9
    Dietenberger, M., White, R.H., 2010. Fire safety of wood construction. Interface 18, 3. http://www.researchgate.net/publication/282480485_Fire_safety_of_wood_construction/download
    Ding, J.H., Zhao, H.R., Yu, H.B., 2022. Structure and performance insights in carbon dots-functionalized MXene-epoxy ultrathin anticorrosion coatings. Chem. Eng. J. 430, 132838. doi: 10.1016/j.cej.2021.132838
    Do, J.H., Kim, D.Y., Seo, K.H., 2020. Effect of eco-friendly inorganic flame retardants on mechanical and flame-retardant properties of EPDM compound. Elastomers Compos. 55, 40–45. http://www.semanticscholar.org/paper/7f367269f319624a083d372a7f47f83723cc2ca7
    Donmez Cavdar, A., Mengeloğlu, F., Karakus, K., 2015. Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement 60, 6–12. doi: 10.1016/j.measurement.2014.09.078
    Dorez, G., Ferry, L., Sonnier, R., Taguet ,A., Lopez-Cuesta, J.M., 2014. Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J. Anal. Appl. Pyrolysis 107, 323–331. doi: 10.1016/j.jaap.2014.03.017
    Dzurenda, L., Banski, A., 2019. The effect of firewood moisture content on the atmospheric thermal load by flue gases emitted by a boiler. Sustainability 11, 284. doi: 10.3390/su11010284
    Esmailpour, A., Majidi, R., Taghiyari, H.R., Ganjkhani, M., Mohseni Armaki, S.M., Papadopoulos, A.N., 2020. Improving fire retardancy of beech wood by graphene. Polymers 12, 303. doi: 10.3390/polym12020303
    Fang, F., Huo, S.Q., Shen, H.F., Ran, S.Y., Wang, H., Song, P.G., Fang, Z.P., 2020. A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins. Compos. Commun. 17, 104–108. doi: 10.1016/j.coco.2019.11.011
    Fayçal, B.A., Koucka, O.S., Augustin, Z.S., Harouna, G.I., 2022. Comparative study of thermophysical parameters of different types of upholstery wood and the influence of density on combustion parameters at microscale. Open J. Saf. Sci. Technol. 12, 1–16. doi: 10.4236/ojsst.2022.121001
    Frangi, A., Fontana, M., Hugi, E., Jübstl, R., 2009. Experimental analysis of cross-laminated timber panels in fire. Fire Saf. J. 44, 1078–1087. doi: 10.1016/j.firesaf.2009.07.007
    Friquin, K.L., 2011. Material properties and external factors influencing the charring rate of solid wood and glue-laminated timber. Fire Mater. 35, 303–327. doi: 10.1002/fam.1055
    Gaff, M., Čekovská, H., Bouček, J., Kačíková, D., Kubovský, I., Tribulová, T., Zhang, L.F., Marino, S., Kačík, F., 2021. Flammability characteristics of thermally modified meranti wood treated with natural and synthetic fire retardants. Polymers 13, 2160. doi: 10.3390/polym13132160
    Gan, W.T., Chen, C.J., Wang, Z.Y., Song, J.W., Kuang, Y.D., He, S.M., Mi, R.Y., Sunderland, P.B., Hu, L.B., 2019. Dense, self-formed char layer enables a fire-retardant wood structural material. Adv. Funct. Mater. 29, 1807444. doi: 10.1002/adfm.201807444
    Gašpercová, S., Makovická Osvaldová, L., 2015. Fire protection in various types of wooden structures. Civ. Environ. Eng. 11, 51–57. doi: 10.1515/cee-2015-0007
    Gazizov, A., Sagitova, A., Krasnov, A., 2022. Reducing the fire hazard of wooden structures. In: Materials Research Proceedings. Association of American Publishers, 56–60.
    Gibson, A.G., Feih, S., Mouritz, A.P., 2011. Developments in characterising the structural behaviour of composites in fire. Composite Materials. London: Springer, 2011: 187–218.
    Gillani, Q.F., Ahmad, F., Abdul Mutalib, M.I., Megat-Yusoff, P.S.M., Ullah, S., Messet, P.J., Zia-ul-Mustafa, M., 2018. Thermal degradation and pyrolysis analysis of zinc borate reinforced intumescent fire retardant coatings. Prog. Org. Coat. 123, 82–98. doi: 10.1016/j.porgcoat.2018.05.007
    Giri, R., Nayak, L., Rahaman, M., 2021. Flame and fire retardancy of polymer-based composites. Mater. Res. Innov. 25, 104–132. doi: 10.1080/14328917.2020.1728073
    Grześkowiak, W. Ł., Molińska-Glura, M., Przybylska, M., 2022. The influence of the accelerated aging process on the compressive strength of wood treated with components of a salt fire retardant. Materials 15, 4931. doi: 10.3390/ma15144931
    Hamciuc, C., Vlad-Bubulac, T., Serbezeanu, D., Macsim, A.M., Lisa, G., Anghel, I., Şofran, I.E., 2022. Effects of phosphorus and boron compounds on thermal stability and flame retardancy properties of epoxy composites. Polymers 14, 4005. doi: 10.3390/polym14194005
    Haurie, L., Giraldo, M.P., Lacasta, A.M., Montón, J., Sonnier, R., 2019. Influence of different parameters in the fire behaviour of seven hardwood species. Fire Saf. J. 107, 193–201. doi: 10.1016/j.firesaf.2018.08.002
    Hektor, B., Backéus S., Andersson K., 2016. Carbon balance for wood production from sustainably managed forests. Biomass Bioenergy 93, 1–5. doi: 10.1016/j.biombioe.2016.05.025
    Henry, A.G., Büdel, T., Bazin, P.L., 2018. Towards an understanding of the costs of fire. Quat. Int. 493, 96–105. doi: 10.3847/1538-4357/aab099
    Hilton, J.E., Leonard, J.E., Blanchi, R., Newnham, G.J., Opie, K., Power, A., Rucinski, C., Swedosh, W., 2020. Radiant heat flux modelling for wildfires. Math. Comput. Simul. 175, 62–80. doi: 10.1016/j.matcom.2019.07.008
    Hobbs, C.E., 2019. Recent advances in bio-based flame retardant additives for synthetic polymeric materials. Polymers 11, 224. doi: 10.3390/polym11020224
    Huang, K., Li, Z.J., Lin, J., Han, G., Huang, P., 2018. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47, 5109–5124. doi: 10.1039/c7cs00838d
    Huang, S., Wang, L., Li, Y.C., Liang, C.B., Zhang, J.L., 2021. Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 138, 50649. doi: 10.1002/app.50649
    Huang, Y.B., Jiang, S.H., Liang, R.C., Sun, P., Hai, Y., Zhang, L., 2020. Thermal-triggered insulating fireproof layers: a novel fire-extinguishing MXene composites coating. Chem. Eng. J. 391, 123621. doi: 10.1016/j.cej.2019.123621
    Ira, J., Hasalová, L., Šálek, V., Jahoda, M., Vystrčil, V., 2020. Thermal analysis and cone calorimeter study of engineered wood with an emphasis on fire modelling. Fire Technol. 56, 1099–1132. doi: 10.1007/s10694-019-00922-9
    İstek, A., Aydemİr, D., Eroğlu, H., 2013. Combustion properties of medium-density fiberboards coated by a mixture of calcite and various fire retardants. Turkish J. Agric. For. 37, 642–648. doi: 10.3906/tar-1206-37
    Jasmani, L., Rusli, R., Khadiran, T., Jalil, R., Adnan, S., 2020. Application of nanotechnology in wood-based products industry: a review. Nanoscale Res. Lett. 15, 207. doi: 10.1186/s11671-020-03438-2
    Jayasuriya, W.J., Mulky, T.C., Niemeyer, K.E., 2022. Smouldering combustion in cellulose and hemicellulose mixtures: examining the roles of density, fuel composition, oxygen concentration, and moisture content. Combust. Theory Model. 26, 831–855. doi: 10.1080/13647830.2022.2071170
    Jiang, Y.Q., Ru, X.L., Che, W.B., Jiang, Z.H., Chen, H.L., Hou, J.F., Yu, Y.M., 2022. Flexible, mechanically robust and self-extinguishing MXene/wood composite for efficient electromagnetic interference shielding. Compos. B 229, 109460. doi: 10.1016/j.compositesb.2021.109460
    Kačíková, D., Kubovský, I., Eštoková, A., Kačík, F., Kmeťová, E., Kováč, J., Ďurkovič, J., 2021. The influence of nanoparticles on fire retardancy of pedunculate oak wood. Nanomaterials 11, 3405. doi: 10.3390/nano11123405
    Kalali, E.N., Zhang, L., Shabestari, M.E., Croyal, J., Wang, D.Y., 2019. Flame-retardant wood polymer composites (WPCs) as potential fire safe bio-based materials for building products: preparation, flammability and mechanical properties. Fire Saf. J. 107, 210–216. doi: 10.1016/j.firesaf.2017.11.001
    Kallada Janardhan, R., Hostikka, S., 2019. Predictive computational fluid dynamics simulation of fire spread on wood cribs. Fire Technol. 55, 2245–2268. doi: 10.1007/s10694-019-00855-3
    Kang, S., Shin, Y.C., 2021. Experimental study on occurrence limit heat release rate of flashover in a building fire. J. Korean Soc. Hazard Mitig. 21, 65–71. doi: 10.9798/kosham.2021.21.2.65
    Kazulis, V., Muizniece, I., Zihare, L., Blumberga, D., 2017. Carbon storage in wood products. Energy Procedia 128, 558–563. doi: 10.1016/j.egypro.2017.09.009
    Khademibami, L., Barnes, H.M., Jeremic, D., Shmulsky, R., Bourne, K., Fatemi, S.A., 2020. Antifungal activity and fire resistance properties of nano-chitosan treated wood. BioResources 15, 5926–5939. doi: 10.15376/biores.15.3.5926-5939
    Khalili, P., Tshai, K.Y., Hui, D., Kong, I., 2017. Synergistic of ammonium polyphosphate and alumina trihydrate as fire retardants for natural fiber reinforced epoxy composite. Compos. B 114, 101–110. doi: 10.1016/j.compositesb.2017.01.049
    Kodur, V., Kumar, P., Rafi, M.M., 2019. Fire hazard in buildings: review, assessment and strategies for improving fire safety. PSU Res. Rev. 4, 1–23. doi: 10.1108/prr-12-2018-0033
    Kristak, L., Kubovský, I., Réh, R., 2021. New challenges in wood and wood-based materials. Polymers 13, 2538. doi: 10.3390/polym13152538
    Künniger, T., Gerecke, A.C., Ulrich, A., Huch, A., Vonbank, R., Heeb, M., Wichser, A., Haag, R., Kunz, P., Faller, M., 2014. Release and environmental impact of silver nanoparticles and conventional organic biocides from coated wooden façades. Environ. Pollut. 184, 464–471. doi: 10.1016/j.envpol.2013.09.030
    Kurzawski, A.J., Ezekoye, O.A., 2020. Inversion for fire heat-release rate using heat flux measurements. J. Heat Transf. 142, 051301. doi: 10.1115/1.4046264
    Lazar, S.T., Kolibaba, T.J., Grunlan, J.C., 2020. Flame-retardant surface treatments. Nat. Rev. Mater. 5, 259–275. doi: 10.1038/s41578-019-0164-6
    Li, F.F., 2023. Comprehensive review of recent research advances on flame-retardant coatings for building materials: chemical ingredients, micromorphology, and processing techniques. Molecules 28, 1842. doi: 10.3390/molecules28041842
    Li, L.M., Chen, Z.L., Lu, J.H., Wei, M., Huang, Y.X., Jiang, P., 2021. Combustion behavior and thermal degradation properties of wood impregnated with intumescent biomass flame retardants: phytic acid, hydrolyzed collagen, and glycerol. ACS Omega 6, 3921–3930. doi: 10.1021/acsomega.0c05778
    Liang, C.B., Du, Y.Z., Wang, Y.Y., Ma, A.J., Huang, S., Ma, Z.L., 2021. Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 4, 979–988. doi: 10.1007/s42114-021-00274-5
    Lin, C.F., Karlsson, O., Martinka, J., Rantuch, P., Garskaite, E., Mantanis, G.I., Jones, D., Sandberg, D., 2021. Approaching highly leaching-resistant fire-retardant wood by in situ polymerization with melamine formaldehyde resin. ACS Omega 6, 12733–12745. doi: 10.1021/acsomega.1c01044
    Lin, C.S., Yu, C.C., Chen, T.C., Bui, G., 2012. Smoke transport calculation during a wooden residential structure fire. Appl. Mech. Mater. 249/250, 1082–1086. doi: 10.4028/www.scientific.net/AMM.249-250.1082
    Liu, L.N., Qian, M.B., Song, P.A., Huang, G.B., Yu, Y.M., Fu, S.Y., 2016. Fabrication of green lignin-based flame retardants for enhancing the thermal and fire retardancy properties of polypropylene/wood composites. ACS Sustain. Chem. Eng. 4, 2422–2431. doi: 10.1021/acssuschemeng.6b00112
    Liu, Q.Q., Chai, Y.B., Ni, L., Lyu, W.H., 2020a. Flame retardant properties and thermal decomposition kinetics of wood treated with boric acid modified silica Sol. Materials 13, 4478. doi: 10.3390/ma13204478
    Liu, S., Wang, C., Hu, Q.H., Huo, S.Q., Zhang, Q., Liu, Z.T., 2020b. Intumescent fire retardant coating with recycled powder from industrial effluent optimized using response surface methodology. Prog. Org. Coat. 140, 105494. doi: 10.1016/j.porgcoat.2019.105494
    Liu, Y., Zhang, A.S., Cheng, Y.M., Li, M.H., Cui, Y.C., Li, Z.W., 2023. Recent advances in biomass phytic acid flame retardants. Polym. Test. 124, 108100. doi: 10.1016/j.polymertesting.2023.108100
    Log, T., 2019. Modeling indoor relative humidity and wood moisture content as a proxy for wooden home fire risk. Sensors 19, 5050. doi: 10.3390/s19225050
    Lowden, L.A., Hull, T.R., 2013. Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci. Rev. 2, 1–19. doi: 10.1186/2193-0414-2-1
    Ma, T.T., Li, L.P., Wang, Q.W., Guo, C.G., 2019. Construction of intumescent flame retardant and hydrophobic coating on wood substrates based on thiol-ene click chemistry without photoinitiators. Compos. B 177, 107357. doi: 10.1016/j.compositesb.2019.107357
    Madyaratri, E.W., Ridho, M.R., Aristri, M.A., Lubis, M.A.R., Iswanto, A.H., Nawawi, D.S., Antov, P., Kristak, L., Majlingová, A., Fatriasari, W., 2022. Recent advances in the development of fire-resistant biocomposites: a review. Polymers 14, 362. doi: 10.3390/polym14030362
    Magalhães, R., Nogueira, B., Costa, S., Paiva, N., Ferra, J.M., Magalhães, F.D., Martins, J., Carvalho, L.H., 2020. Effect of panel moisture content on internal bond strength and thickness swelling of medium density fiberboard. Polymers 13, 114. doi: 10.3390/polym13010114
    Mandlekar N., Cayla A., Rault F., Giraud S., Salaün F., Malucelli G., Guan J.P., 2018. An overview on the use of lignin and its derivatives in fire retardant polymer systems. Lignin - Trends and Applications. London: InTech, 208–231.
    Mantanis, G.I., Martinka, J., Lykidis, C., Ševčík, L., 2020. Technological properties and fire performance of medium density fibreboard (MDF) treated with selected polyphosphate-based fire retardants. Wood Mater. Sci. Eng. 15, 303–311. doi: 10.1080/17480272.2019.1596159
    Mariappan, T., 2016. Recent developments of intumescent fire protection coatings for structural steel: a review. J. Fire Sci. 34, 120–163. doi: 10.1177/0734904115626720
    Mark, F.E., Vehlow, J., Dresch, H., Dima, B., Grüttner, W., Horn, J., Grüttner W., Horn J., 2015. Destruction of the flame retardant hexabromocyclododecane in a full-scale municipal solid waste incinerator. Waste Manag. Res. 33, 165–174. doi: 10.1177/0734242X14565226
    Márquez Costa, J.P., Legrand, V., Fréour, S., 2019. Durability of composite materials under severe temperature conditions: influence of moisture content and prediction of thermo-mechanical properties during a fire. J. Compos. Sci. 3, 55. doi: 10.3390/jcs3020055
    Martinka, J., Kačíková, D., Hroncová, E., Ladomerský, J., 2012. Experimental determination of the effect of temperature and oxygen concentration on the production of birch wood main fire emissions. J. Therm. Anal. Calorim. 110, 193–198. doi: 10.1007/s10973-012-2261-2
    Martinka, J., Rantuch, P., Liner, M., 2018. Calculation of charring rate and char depth of spruce and pine wood from mass loss. J. Therm. Anal. Calorim. 132, 1105–1113. doi: 10.1007/s10973-018-7039-8
    Mauranen, A., Ovaska, M., Koivisto, J., Salminen, L.I., Alava, M., 2015. Thermal conductivity of wood: effect of fatigue treatment. Wood Sci. Technol. 49, 359–370. doi: 10.1007/s00226-015-0705-0
    Mazela, B., Batista, A., Grześkowiak, W., 2020. Expandable graphite as a fire retardant for cellulosic materials: a review. Forests 11, 755. doi: 10.3390/f11070755
    Meng, Q.X., Zhu, G.Q., Yu, M.M., Pan, R.L., 2018. The effect of thickness on plywood vertical fire spread. Procedia Eng. 211, 555–564. doi: 10.1016/j.proeng.2017.12.048
    Mensah, R.A., Jiang, L., Renner, J.S., Xu, Q., 2023. Characterisation of the fire behaviour of wood: from pyrolysis to fire retardant mechanisms. J. Therm. Anal. Calorim. 148, 1407–1422. doi: 10.1007/s10973-022-11442-0
    Mohamed, A.L., Hassabo, A.G., 2015. Flame Retardant of Cellulosic Materials and Their Composites. Flame Retardants. Cham: Springer, 247–314.
    Mohsin, M., Ahmad, S.W., Khatri, A., Zahid, B., 2013. Performance enhancement of fire retardant finish with environment friendly bio cross-linker for cotton. J. Clean. Prod. 51, 191–195. doi: 10.1016/j.jclepro.2013.01.031
    Mustafa, B.M.K.M.A.G., 2020. Wood & Fire Safety. Berlin: Springer International Publishing, 50–57.
    Nikolaeva, M., Kärki, T., 2016. Influence of fire retardants on the reaction-to-fire properties of coextruded wood–polypropylene composites. Fire Mater. 40, 535–543. doi: 10.1002/fam.2308
    Nikolic, M., Lawther, J.M., Sanadi, A.R., 2015. Use of nanofillers in wood coatings: a scientific review. J. Coat. Technol. Res. 12, 445–461. doi: 10.1007/s11998-015-9659-2
    Nine, M.J., Cole, M.A., Tran, D.N.H., Losic, D., 2015. Graphene: a multipurpose material for protective coatings. J. Mater. Chem. A 3, 12580–12602. doi: 10.1039/C5TA01010A
    Nine, M.J., Tran, D.N.H., Tung, T.T., Kabiri, S., Losic, D., 2017. Graphene-borate as an efficient fire retardant for cellulosic materials with multiple and synergetic modes of action. ACS Appl. Mater. Interfaces 9, 10160–10168. doi: 10.1021/acsami.7b00572
    Norzali, N.R.A., Badri, K.H., 2016. The role of phosphate ester as a fire retardant in the palm-based rigid polyurethane foam. Polym. Polym. Compos. 24, 711–718. doi: 10.1177/096739111602400906
    Oh, S.J., Kong, H.S., 2020. The strategies to supply efficient fire fighting force in high-rise building by NFPA 550 guide to the fire safety concepts tree: focusing on automatic fire suppression. Asia Pac. J. Converg. Res. Interchange 6, 67–80.
    Okoye, N.H., Eboatu, A.N., Arinze, R.U., Udeozo, P.I., Umedum, N.L., Ogbonna, O.A., 2014. Effect of density on flame characteristics of some tropical timbers. IOSR J. Appl. Chem. 7, 104–111. doi: 10.9790/5736-0761104111
    Olawoyin, R., 2018. Nanotechnology: the future of fire safety. Saf. Sci. 110, 214–221. doi: 10.1016/j.ssci.2018.08.016
    Östman, B., Brandon, D., Frantzich, H., 2017. Fire safety engineering in timber buildings. Fire Saf. J. 91, 11–20. doi: 10.1016/j.firesaf.2017.05.002
    Ottmar, R.D., 2014. Wildland fire emissions, carbon, and climate: modeling fuel consumption. For. Ecol. Manag. 317, 41–50. doi: 10.1016/j.foreco.2013.06.010
    Poletto, M., Zattera, A.J., Santana, R.M.C., 2012. Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J. Appl. Polym. Sci. 126, 337–344. http://www.researchgate.net/profile/Ruth_Santana/publication/262892800_Structural_differences_between_wood_species_Evidence_from_chemical_composition_FTIR_spectroscopy_and_thermogravimetric_analysis/links/54f62d220cf21d8b8a5c26ed.pdf
    Popescu, C.M., Pfriem, A., 2020. Treatments and modification to improve the reaction to fire of wood and wood based products: an overview. Fire Mater. 44, 100–111. doi: 10.1002/fam.2779
    Price-Allison, A., Mason, P.E., Jones, J.M., Barimah, E.K., Jose, G., Brown, A.E., Ross, A.B., Williams, A., 2023. The impact of fuelwood moisture content on the emission of gaseous and particulate pollutants from a wood stove. Combust. Sci. Technol. 195, 133–152. doi: 10.1080/00102202.2021.1938559
    Qu, L.J., Wang, Z.Y., Qian, J., He, Z.B., Yi, S.L., 2018. Effect of combined aluminum-silicon synergistic impregnation and heat treatment on the thermal stability, chemical components, and morphology of wood. BioResources 14, 349–362. doi: 10.15376/biores.14.1.349-362
    Ratnasingam, J., Latib, H.A., Ng, W.C., Cellathurai, M., Chin, K.A., Senin, A.L., Lim, C.L., 2018. Preference of using wood and wood products in the construction industry in peninsular Malaysia. BioResources 13, 5289–5302. doi: 10.15376/biores.13.3.5289-5302
    Realinho, V., Haurie, L., Formosa, J., Velasco, J.I., 2018. Flame retardancy effect of combined ammonium polyphosphate and aluminium diethyl phosphinate in acrylonitrile-butadiene-styrene. Polym. Degrad. Stab. 155, 208–219. doi: 10.1016/j.polymdegradstab.2018.07.022
    Renner, J.S., Mensah, R.A., Jiang, L., Xu, Q., Das, O., Berto, F., 2021. Fire behavior of wood-based composite materials. Polymers 13, 4352. doi: 10.3390/polym13244352
    Rinta-Paavola, A., Hostikka, S., 2022. A model for the pyrolysis of two Nordic structural timbers. Fire Mater. 46, 55–68. doi: 10.1002/fam.2947
    Riyazuddin, Nageswara, Rao, T., Hussain, I., Heun Koo, B., 2020. Effect of aluminum tri-hydroxide/zinc borate and aluminium tri-hydroxide/melamine flame retardant systems synergies on epoxy resin. Mater. Today 27, 2269–2272. http://www.xueshufan.com/publication/2980635769
    Sala, C.M., Robles, E., Gumowska, A., Wronka, A., Kowaluk, G., 2020. Influence of moisture content on the mechanical properties of selected wood-based composites. BioResources 15, 5503–5513. doi: 10.15376/biores.15.3.5503-5513
    Sang, B., Li, Z.W., Li, X.H., Yu, L.G., Zhang, Z.J., 2016. Graphene-based flame retardants: a review. J. Mater. Sci. 51, 8271–8295. doi: 10.1007/s10853-016-0124-0
    Seefeldt, H., Braun, U., 2012. A new flame retardant for wood materials tested in wood-plastic composites. Macromol. Mater. Eng. 297, 814–820. doi: 10.1002/mame.201100382
    Segev, O., Kushmaro, A., Brenner, A., 2009. Environmental impact of flame retardants (persistence and biodegradability). Int. J. Environ. Res. Public Health 6, 478–491. doi: 10.3390/ijerph6020478
    Shah, A.U.R., Prabhakar, M.N., Song, J.I., 2017. Current advances in the fire retardancy of natural fiber and bio-based composites: a review. Int. J. Precis. Eng. Manuf. Green Technol. 4, 247–262. doi: 10.1007/s40684-017-0030-1
    Sjöström, J., Kozłowski, M., Honfi, D., Lange, D., Albrektsson, J., Lenk, P., Eriksson, J., 2020. Fire resistance testing of a timber-glass composite beam. Int. J. Struct. Glass Adv. Mater. Res. 4, 24–40. doi: 10.3844/sgamrsp.2020.24.40
    Song, F.X., Liu, T., Fan, Q., Li, D.X., Ou, R.X., Liu, Z.Z., Wang, Q.W., 2022. Sustainable, high-performance, flame-retardant waterborne wood coatings via phytic acid based green curing agent for melamine-urea-formaldehyde resin. Prog. Org. Coat. 162, 106597. doi: 10.1016/j.porgcoat.2021.106597
    Špilák, D., Majlingová, A., 2022. Progressive methods in studying the charred layer parameters change in relation to wood moisture content. Polymers 14, 4997. doi: 10.3390/polym14224997
    Subyakto Kajimoto, T., Hata, T., Ishihara, S., Kawai, S.C., Getto, H., 1998. Improving fire retardancy of fast growing wood by coating with fire retardant and surface densification. Fire Mater. 22, 207–212. doi: 10.1002/(SICI)1099-1018(199809/10)22:5<207::AID-FAM654>3.0.CO;2-S
    Sun, N., Zhang, Q.P., Sun, H.R., Yang, W.B., Zhou, Y.L., Song, J.F., Luo, D.L., 2018. Enhanced thermal conductivity of 5A molecular sieve with BNs segregated structures. Adv. Eng. Mater. 20, 1700745. doi: 10.1002/adem.201700745
    Suwondo, R., Cunningham, L., Gillie, M., Suangga, M., Hidayat, I., 2021. Model parameter sensitivity for structural analysis of composite slab structures in fire. Int. J. Technol. 12, 339. doi: 10.14716/ijtech.v12i2.3919
    Tanui, J.K., Kioni, P.N., Mirre, T., Nowitzki, M., Karuri, N.W., 2020. The influence of particle packing density on wood combustion in a fixed bed under oxy-fuel conditions. Energy 194, 116863. doi: 10.1016/j.energy.2019.116863
    Tanui, J.K., Kioni, P.N., Mirre, T., Nowitzki, M., Karuri, N.W., 2019. Experimental tools applied to ignition study of spruce wood under cone calorimeter. Fire Saf. J. 108, 102845. doi: 10.1016/j.firesaf.2019.102845
    Torvela, T., Uski, O., Karhunen, T., Lähde, A., Jalava, P., Sippula, O., Tissari, J., Hirvonen, M.R., Jokiniemi, J., 2014. Reference particles for toxicological studies of wood combustion: formation, characteristics, and toxicity compared to those of real wood combustion particulate mass. Chem. Res. Toxicol. 27, 1516–1527. doi: 10.1021/tx500142f
    Trochonowicz, M., Galas, M., 2019. Influence of air humidity and temperature on thermal conductivity of wood-based materials. Bud. Archit. 17, 77–86. doi: 10.24358/Bud-Arch_18_174_08
    Tsapko, Y., Tsapko, А., Bondarenko, O., Chudovska, V., 2021. Thermophysical characteristics of the formed layer of foam coke when protecting fabric from fire by a formulation based on modified phosphorus-ammonium compounds. East. Eur. J. Enterp. Technol. 3, 34–41. doi: 10.15587/1729-4061.2021.233479
    Uddin, M., Kiviranta, K., Suvanto, S., Alvila, L., Leskinen, J., Lappalainen, R., Haapala, A., 2020. Casein-magnesium composite as an intumescent fire retardant coating for wood. Fire Saf. J. 112, 102943. doi: 10.1016/j.firesaf.2019.102943
    Uner, I.H., Deveci, I., Baysal, E., Turkoglu, T., Toker, H., Peker, H., 2016. Thermal analysis of oriental beech wood treated with some borates as fire retardants. Maderas Cienc. Tecnol. 18, 293–304. http://revistamaderas.cl/ojs/index.php/remaderas/article/download/1238/602
    Vakhitova, L.N., 2019. Fire retardant nanocoating for wood protection. Nanotechnology in Eco-Efficient Construction. Amsterdam: Elsevier, 361–391.
    Vicente, E.D., Vicente, A.M., Evtyugina, M., Oduber, F.I., Amato, F., Querol, X., Alves, C., 2020. Impact of wood combustion on indoor air quality. Sci. Total Environ. 705, 135769. doi: 10.1016/j.scitotenv.2019.135769
    Vojta, Š., Bečanová, J., Melymuk, L., Komprdová, K., Kohoutek, J., Kukučka, P., Klánová, J., 2017. Screening for halogenated flame retardants in European consumer products, building materials and wastes. Chemosphere 168, 457–466. doi: 10.1016/j.chemosphere.2016.11.032
    Walls, R., Cicione, A., Pharoah, R., 2020. Fire Safety Engineering Guideline for Informal Settlements: Towards Practical Solutions for a Complex Problem in South Africa. Matieland: FireSUN Publications.
    Walls, R., Olivier, G., Eksteen, R., 2017. Informal settlement fires in South Africa: fire engineering overview and full-scale tests on "shacks". Fire Saf. J. 91, 997–1006. doi: 10.1016/j.firesaf.2017.03.061
    Wang, F., Liu, J.L., Lv, W.H., 2017a. Thermal degradation and fire performance of wood treated with PMUF resin and boron compounds. Fire Mater. 41, 1051–1057. doi: 10.1002/fam.2445
    Wang, K.H., Meng, D., Wang, S.H., Sun, J., Li, H.F., Gu, X.Y., Zhang, S., 2022. Impregnation of phytic acid into the delignified wood to realize excellent flame retardant. Ind. Crops Prod. 176, 114364. doi: 10.1016/j.indcrop.2021.114364
    Wang, S.P., Huang, X.Y., Chen, H.X., Liu, N.A., 2017b. Interaction between flaming and smouldering in hot-particle ignition of forest fuels and effects of moisture and wind. Int. J. Wildland Fire 26, 71. doi: 10.1071/WF16096
    Wang, W., Zammarano, M., Shields, J.R., Knowlton, E.D., Kim, I., Gales, J.A., Hoehler, M.S., Li, J.Z., 2018. A novel application of silicone-based flame-retardant adhesive in plywood. Mater. Des. 189, 448–459. http://www.onacademic.com/detail/journal_1000040847259910_1d98.html
    Wang, X.Q., Wang, F., Yu, Z.M., Zhang, Y., Qi, C.S., Du, L.X., 2017c. Surface free energy and dynamic wettability of wood simultaneously treated with acidic dye and flame retardant. J. Wood Sci. 63, 271–280. doi: 10.1007/s10086-017-1621-8
    White, R.H., 1987. Effect of lignin content and extractives on the higher heating value. Wood Fiber Sci. 19, 446–452. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=A6FE86A1A44CE660C6299246CD680872?doi=10.1.1.482.7970&rep=rep1&type=pdf
    White, R.H., 2016. Analytical Methods for Determining Fire Resistance of Timber Members. SFPE Handbook of Fire Protection Engineering. New York: Springer, 346–365.
    Wu, J., Wang, M.Z., Guo, H.W., 2017. Synergistic flame retardant effects of different zeolites on intumescent fire retardant coating for wood. BioResources 12, 5369–5382. http://www.xueshufan.com/publication/2626965116
    Wu, Y., Li, X.M., Zhao, H., Yao, F.B., Cao, J., Chen, Z., Huang, X.D., Wang, D.B., Yang, Q., 2021. Recent advances in transition metal carbides and nitrides (MXenes): characteristics, environmental remediation and challenges. Chem. Eng. J. 418, 129296. doi: 10.1016/j.cej.2021.129296
    Xu, C., Gao, L.R., Zheng, M.H., Qiao, L., Cui, L.L., Wang, K.R., Huang, D., 2019. Short- and medium-chain chlorinated paraffins in commercial rubber track products and raw materials. J. Hazard. Mater. 380, 120854. doi: 10.1016/j.jhazmat.2019.120854
    Xu, M.J., Xia, S.Y., Liu, C., Li, B., 2018. Preparation of Poly(phosphoric acid piperazine) and its application as an effective flame retardant for epoxy resin. Chin. J. Polym. Sci. 36, 655–664. doi: 10.1007/s10118-018-2036-8
    Xu, Q.F., Chen, L.Z., Harries, K.A., Zhang, F.W., Liu, Q., Feng, J.H., 2015. Combustion and charring properties of five common constructional wood species from cone calorimeter tests. Constr. Build. Mater. 96, 416–427. doi: 10.1016/j.conbuildmat.2015.08.062
    Xu, S., Zhang, M., Li, S.Y., Zeng, H.Y., Du, J.Z., Chen, C.R., Wu, K., Tian, X.Y., Pan, Y., 2020. The effect of ammonium polyphosphate on the mechanism of phosphorous-containing hydrotalcite synergism of flame retardation of polypropylene. Appl. Clay Sci. 185, 105348. doi: 10.1016/j.clay.2019.105348
    Yang, G.C., Cai, J.R., Geng, Y.R., Xu, B.B., Zhang, Q.H., 2020. Cu-modified ZSM zeolite has synergistic flame retardance, smoke suppression, and catalytic conversion effects on pulp fiber after ammonium polyphosphate flame-retardant treatment. ACS Sustain. Chem. Eng. 8, 14365–14376. doi: 10.1021/acssuschemeng.0c03920
    Yapici, F., Ozcifci, A., Esen, R., Kurt, S., 2011. The effect of grain angle and species on thermal conductivity of some selected wood species. BioResources 6, 2757–2762. doi: 10.15376/biores.6.3.2757-2762
    Yu, B., Tawiah, B., Wang, L.Q., Yin Yuen, A.C., Zhang, Z.C., Shen, L.L., Lin, B., Fei, B., Yang, W., Li, A., Zhu, S.E., Hu, E.Z., Lu, H.D., Yeoh, G.H., 2019. Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. J. Hazard. Mater. 374, 110–119. doi: 10.1016/j.jhazmat.2019.04.026
    Yu, D.F., Duan, H.B., Song, Q.B., Liu, Y.C., Li, Y., Li, J.H., Shen, W.J., Luo, J.H., Wang, J.B., 2017. Characterization of brominated flame retardants from e-waste components in China. Waste Manag. 68, 498–507. doi: 10.1016/j.wasman.2017.07.033
    Yue, K., Wu, J.H., Xu, L.Q., Tang, Z.Q., Chen, Z.J., Liu, W.Q., Wang, L., 2020. Use impregnation and densification to improve mechanical properties and combustion performance of Chinese fir. Constr. Build. Mater. 241, 118101. doi: 10.1016/j.conbuildmat.2020.118101
    Zhang, H., Zhang, X., Wang, Y., Bai, P.C., Hayakawa, K., Zhang, L.L., Tang, N., 2022. Characteristics and influencing factors of polycyclic aromatic hydrocarbons emitted from open burning and stove burning of biomass: a brief review. Int. J. Environ. Res. Public Health 19, 3944. doi: 10.3390/ijerph19073944
    Zhang, L.C., Yi, D.Q., Hao, J.W., Gao, M., 2021. One-step treated wood by using natural source phytic acid and uracil for enhanced mechanical properties and flame retardancy. Polym. Adv. Technol. 32, 1176–1186. doi: 10.1002/pat.5165
    Zhang, Y., Huang, Y.P., Li, M.C., Zhang, S., Zhou, W.M., Mei, C.T., Pan, M.Z., 2023. Bioinspired, stable adhesive Ti3C2Tx MXene-based coatings towards fire warning, smoke suppression and VOCs removal smart wood. Chem. Eng. J. 452, 139360. doi: 10.1016/j.cej.2022.139360
    Zhang, Y., Ji, J., Li, J., Sun, J.H., Wang, Q.S., Huang, X.J., 2012a. Effects of altitude and sample width on the characteristics of horizontal flame spread over wood sheets. Fire Saf. J. 51, 120–125. doi: 10.1016/j.firesaf.2012.02.006
    Zhang, Y., Sun, J.H., Huang, X.J., Chen, X.F., 2013. Heat transfer mechanisms in horizontal flame spread over wood and extruded polystyrene surfaces. Int. J. Heat Mass Transf. 61, 28–34. doi: 10.1016/j.ijheatmasstransfer.2013.01.069
    Zhang, Z.X., Zhang, J., Lu, B.X., Xin, Z.X., Kang, C.K., Kim, J.K., 2012b. Effect of flame retardants on mechanical properties, flammability and foamability of PP/wood-fiber composites. Compos. B 43, 150–158. doi: 10.1016/j.compositesb.2011.06.020
    Zhao, F.Y., Tang, T.L., Hou, S.J., Fu, Y.C., 2020. Preparation and synergistic effect of chitosan/sodium phytate/MgO nanoparticle fire-retardant coatings on wood substrate through layer-by-layer self-assembly. Coatings 10, 848. doi: 10.3390/coatings10090848
    Zhao, W.W., Blauw, L., van Logtestijn, R., Cornwell, W., Cornelissen, J., 2014. Interactions between fine wood decomposition and flammability. Forests 5, 827–846. doi: 10.3390/f5040827
    Zhao, X.J., Liang, Z.W., Huang, Y.B., Hai, Y., Zhong, X.D., Xiao, S., Jiang, S.H., 2021. Influence of phytic acid on flame retardancy and adhesion performance enhancement of poly (vinyl alcohol) hydrogel coating to wood substrate. Prog. Org. Coat. 161, 106453. doi: 10.1016/j.porgcoat.2021.106453
    Zhou, B., Wang, K., Yang, W.Y., Wang, W., Sun, B., Xu, M., Wang, X., Ke, W., 2021. Influence of woodgrain orientation on the upward flame spread over discrete wood chips. Case Stud. Therm. Eng. 28, 101616. http://www.sciencedirect.com/science/article/pii/S2214157X21007796
    Zhou, K.Q., Gui, Z., Hu, Y., 2016. The influence of graphene based smoke suppression agents on reduced fire hazards of polystyrene composites. Compos. A 80, 217–227. doi: 10.1016/j.compositesa.2015.10.029
    Zirnstein, B., Schulze, D., Schartel, B., 2019. Mechanical and fire properties of multicomponent flame retardant EPDM rubbers using aluminum trihydroxide, ammonium polyphosphate, and polyaniline. Materials 12, 1932. doi: 10.3390/ma12121932
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(6)

    Article Metrics

    Article views (457) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return