Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Di Xie, Zhulan Liu, Yunfeng Cao, Sheng-I Yang, Chen Su, Mi Li. Improving antioxidant activities of water-soluble lignin-carbohydrate complex isolated from wheat stalk through prolonging ball-milling pretreatment and homogeneous extraction[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 113-125. doi: 10.1016/j.jobab.2023.11.002
Citation: Di Xie, Zhulan Liu, Yunfeng Cao, Sheng-I Yang, Chen Su, Mi Li. Improving antioxidant activities of water-soluble lignin-carbohydrate complex isolated from wheat stalk through prolonging ball-milling pretreatment and homogeneous extraction[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 113-125. doi: 10.1016/j.jobab.2023.11.002

Improving antioxidant activities of water-soluble lignin-carbohydrate complex isolated from wheat stalk through prolonging ball-milling pretreatment and homogeneous extraction

doi: 10.1016/j.jobab.2023.11.002
More Information
  • Water-soluble lignin-carbohydrate complex (LCC) rich in polysaccharides exhibits benign in vitro antioxidant activities and distinguishes high biocompatibility from lignin-rich LCC and lignin. However, the antioxidant activity of water-soluble LCCs remains to be improved and its structure-antioxidant relationship is still uncertain. Herein, structurally diversified water-soluble LCCs were isolated under different ball-milling pretreatment durations (4, 6, 8 h), extraction pathways (homogeneous and heterogeneous), and isolation routines (water extracts and residues after water extraction). Their structures were characterized by wet chemistry, chromatography and spectroscopies. Antioxidant activities were evaluated by ferric reducing antioxidant power and 1,1-diphenyl-2-picrylhydrazyl radicals scavenging rate (RDPPH). Results show that altering ball-milling duration and isolation procedures cause varied structures and antioxidant activities of the water-soluble LCCs. Specifically, prolonging ball-milling duration to 8 hours and homogeneous extraction can enhance their antioxidant activity through releasing more phenolic structures and promoting the extraction of high-molecular-weight LCCs via reducing mass-transfer resistance, respectively. As a result, the RDPPH of water-soluble LCCs reaches up to 97.35%, which is associated with the arabinan content with statistical significance (P < 0.05). This study provides new insights into the structure-antioxidation relationship of herbaceous LCC as potential antioxidants.

     

  • Conflicts of interest
    The authors declare no conflict of interest.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2023.11.002
  • loading
  • Abang, S., Wong, F., Sarbatly, R., Sariau, J., Baini, R., Besar, N.A., 2023. Bioplastic classifications and innovations in antibacterial, antifungal, and antioxidant applications. J. Bioresour. Bioprod. 8, 361–387.
    Al-Saeghi, S.S., Hossain, M.A., Al-Touby, S.S.J., 2022. Characterization of antioxidant and antibacterial compounds from aerial parts of Haplophyllum tuberculatum. J. Bioresour. Bioprod. 7, 52–62.
    Balakshin, M., Capanema, E., Gracz, H., Chang, H.M., Jameel, H., 2011. Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233, 1097–1110. doi: 10.1007/s00425-011-1359-2
    Bhanja, S.K., Maity, P., Rout, D., Sen, I.K., Patra, S., 2022. A xylan from the fresh leaves of Piper betle: structural characterization and studies of bioactive properties. Carbohydr. Polym. 291, 119570. doi: 10.1016/j.carbpol.2022.119570
    Cai, C., Hirth, K., Gleisner, R., Lou, H.M., Qiu, X.Q., Zhu, J.Y., 2020. Maleic acid as a dicarboxylic acid hydrotrope for sustainable fractionation of wood at atmospheric pressure and ≤100°C: mode and utility of lignin esterification. Green Chem. 22, 1605–1617. doi: 10.1039/c9gc04267a
    Chen, M., Malaret, F., Firth, A.E.J., Verdía, P., Abouelela, A.R., Chen, Y.Y., Hallett, J.P., 2020. Design of a combined ionosolv-organosolv biomass fractionation process for biofuel production and high value-added lignin valorisation. Green Chem. 22, 5161–5178. doi: 10.1039/d0gc01143f
    Chen, W., Dong, T.T., Bai, F.T., Wang, J.L., Li, X.S., 2022. Lignin-carbohydrate complexes, their fractionation, and application to healthcare materials: a review. Int. J. Biol. Macromol. 203, 29–39. doi: 10.1016/j.ijbiomac.2022.01.132
    del Río, J.C., Rencoret, J., Prinsen, P., Martínez, Á.T., Ralph, J., Gutiérrez, A., 2012. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J. Agric. Food Chem. 60, 5922–5935. doi: 10.1021/jf301002n
    Du, X.Y., Gellerstedt, G., Li, J.B., 2013. Universal fractionation of lignin-carbohydrate complexes (LCCs) from lignocellulosic biomass: an example using spruce wood. Plant J. 74, 328–338. doi: 10.1111/tpj.12124
    Fujimoto, A., Matsumoto, Y., Chang, H.M., Meshitsuka, G., 2005. Quantitative evaluation of milling effects on lignin structure during the isolation process of milled wood lignin. J. Wood Sci. 51, 89–91. doi: 10.1007/s10086-004-0682-7
    Gan, T., Zhou, Q., Su, C., Xia, J.Y., Xie, D., Liu, Z.L., Cao, Y.F., 2021. Efficient isolation of organosolv lignin-carbohydrate complexes (LCC) with high antioxidative activity via introducing LiCl/DMSO dissolving. Int. J. Biol. Macromol. 181, 752–761. doi: 10.1016/j.ijbiomac.2021.03.167
    Giummarella, N., Lawoko, M., 2016. Structural basis for the formation and regulation of lignin-xylan bonds in birch. ACS Sustainable Chem. Eng. 4, 5319–5326. doi: 10.1021/acssuschemeng.6b00911
    Giummarella, N., Pu, Y.Q., Ragauskas, A.J., Lawoko, M., 2019. A critical review on the analysis of lignin carbohydrate bonds. Green Chem. 21, 1573–1595. doi: 10.1039/c8gc03606c
    Gu, F., Wu, W.J., Wang, Z.G., Yokoyama, T., Jin, Y.C., Matsumoto, Y., 2015. Effect of complete dissolution in LiCl/DMSO on the isolation and characteristics of lignin from wheat straw internode. Ind. Crops Prod. 74, 703–711. doi: 10.1016/j.indcrop.2015.06.002
    Gu, J.Y., Zhang, H.H., Yao, H., Zhou, J., Duan, Y.Q., Ma, H.L., 2020. Comparison of characterization, antioxidant and immunological activities of three polysaccharides from Sagittaria sagittifolia L. Carbohydr. Polym. 235, 115939. doi: 10.1016/j.carbpol.2020.115939
    Jiang, B., Zhang, Y., Gu, L.H., Wu, W.J., Zhao, H.F., Jin, Y.C., 2018a. Structural elucidation and antioxidant activity of lignin isolated from rice straw and alkali‑oxygen black liquor. Int. J. Biol. Macromol. 116, 513–519. doi: 10.1016/j.ijbiomac.2018.05.063
    Jiang, B., Zhang, Y., Guo, T.Y., Zhao, H.F., Jin, Y.C., 2018b. Structural characterization of lignin and lignin-carbohydrate complex (LCC) from Ginkgo shells (Ginkgo biloba L.) by comprehensive NMR spectroscopy. Polymers 10, 736. doi: 10.3390/polym10070736
    Jiang, B., Zhang, Y., Zhao, H.F., Guo, T.Y., Wu, W.J., Jin, Y.C., 2019. Structure-antioxidant activity relationship of active oxygen catalytic lignin and lignin-carbohydrate complex. Int. J. Biol. Macromol. 139, 21–29. doi: 10.1016/j.ijbiomac.2019.07.134
    Kim, K.H., Tsao, R., Yang, R., Cui, S.W., 2006. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 95, 466–473. doi: 10.1016/j.foodchem.2005.01.032
    Lancefield, C.S., Panovic, I., Deuss, P.J., Barta, K., Westwood, N.J., 2017. Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: towards complete biomass valorisation. Green Chem. 19, 202–214. doi: 10.1039/C6GC02739C
    Li, J.B., Martin-Sampedro, R., Pedrazzi, C., Gellerstedt, G., 2011. Fractionation and characterization of lignin-carbohydrate complexes (LCCs) from eucalyptus fibers. Holzforschung 65, 43–50. doi: 10.1515/hf.2011.013
    Liu, Q., Cao, X.J., Zhuang, X.H., Han, W., Guo, W.Q., Xiong, J., Zhang, X.L., 2017. Rice bran polysaccharides and oligosaccharides modified by Grifola frondosa fermentation: antioxidant activities and effects on the production of NO. Food Chem. 223, 49–53. doi: 10.1016/j.foodchem.2016.12.018
    Liu, Z.L., Cao, Y.F., Wang, Z.G., Ren, H., Amidon, T.E., Lai, Y.Z., 2015. The utilization of soybean straw. Ⅰ. fiber morphology and chemical characteristics. BioResources 10, 2266–2280.
    Liu, Z.L., Meng, L.K., Chen, J.Q., Cao, Y.F., Wang, Z.G., Ren, H., 2016. The utilization of soybean straw Ⅲ: isolation and characterization of lignin from soybean straw. Biomass Bioenergy 94, 12–20. doi: 10.1016/j.biombioe.2016.07.021
    Lo, T.C.T., Chang, C.A., Chiu, K.H., Tsay, P.K., Jen, J.F., 2011. Correlation evaluation of antioxidant properties on the monosaccharide components and glycosyl linkages of polysaccharide with different measuring methods. Carbohydr. Polym. 86, 320–327. doi: 10.1016/j.carbpol.2011.04.056
    Lourenço, A., Gominho, J., Marques, A.V., Pereira, H., 2012. Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC-MS/FID. Bioresour. Technol. 123, 296–302. doi: 10.1016/j.biortech.2012.07.092
    Luo, J., Liu, T.L., 2023. Electrochemical valorization of lignin: status, challenges, and prospects. J. Bioresour. Bioprod. 8, 1–14.
    Maitz, S., Schlemmer, W., Hobisch, M.A., Hobisch, J., Kienberger, M., 2020. Preparation and characterization of a water-soluble kraft lignin. Adv. Sustain. Syst. 4, 2000052. doi: 10.1002/adsu.202000052
    Mirpoor, S.F., Restaino, O.F., Schiraldi, C., Giosafatto, C.V.L., Ruffo, F., Porta, R., 2021. Lignin/carbohydrate complex isolated from Posidonia oceanica sea balls (egagropili): characterization and antioxidant reinforcement of protein-based films. Int. J. Mol. Sci. 22, 9147. doi: 10.3390/ijms22179147
    Niu, H., Song, D., Mu, H.B., Zhang, W.X., Sun, F.F., Duan, J.Y., 2016. Investigation of three lignin complexes with antioxidant and immunological capacities from Inonotus obliquus. Int. J. Biol. Macromol. 86, 587–593. doi: 10.1016/j.ijbiomac.2016.01.111
    Oliveira, L., Evtuguin, D., Cordeiro, N., Silvestre, A.J.D., 2009. Structural characterization of stalk lignin from banana plant. Ind. Crops Prod. 29, 86–95. doi: 10.1016/j.indcrop.2008.04.012
    Renault, E., Barbat-Rogeon, A., Chaleix, V., Calliste, C.A., Colas, C., Gloaguen, V., 2014. Partial structural characterization and antioxidant activity of a phenolic-xylan from Castanea sativa hardwood. Int. J. Biol. Macromol. 70, 373–380. doi: 10.1016/j.ijbiomac.2014.07.005
    Scalbert, A., Monties, B., Lallemand, J.Y., Guittet, E., Rolando, C., 1985. Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry 24, 1359–1362. doi: 10.1016/S0031-9422(00)81133-4
    Singh, R., Singh, S., Trimukhe, K.D., Pandare, K.V., Bastawade, K.B., Gokhale, D.V., Varma, A.J., 2005. Lignin-carbohydrate complexes from sugarcane bagasse: preparation, purification, and characterization. Carbohydr. Polym. 62, 57–66. doi: 10.1016/j.carbpol.2005.07.011
    Sluiter, A., 2008. Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP) Golden, Colo: National Renewable Energy Laboratory.
    Su, C., Gan, T., Liu, Z.L., Chen, Y., Zhou, Q., Xia, J.Y., Cao, Y.F., 2021. Enhancement of the antioxidant abilities of lignin and lignin-carbohydrate complex from wheat straw by moderate depolymerization via LiCl/DMSO solvent catalysis. Int. J. Biol. Macromol. 184, 369–379. doi: 10.1016/j.ijbiomac.2021.06.063
    Sun, R.C., Fang, J., Goodwin, A., Lawther, J., Bolton, A., 1999. Fractionation and characterization of ball-milled and enzyme lignins from abaca fibre. J. Sci. Food Agric. 79, 1091–1098. doi: 10.1002/(SICI)1097-0010(199906)79:8<1091::AID-JSFA331>3.0.CO;2-A
    Sun, R.C., Lu, Q., Sun, X.F., 2001. Physico-chemical and thermal characterization of lignins from Caligonum monogoliacum and Tamarix spp. Polym. Degrad. Stab. 72, 229–238. doi: 10.1016/S0141-3910(01)00023-4
    Tarasov, D., Leitch, M., Fatehi, P., 2018. Lignin-carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnol. Biofuels 11, 269. doi: 10.1186/s13068-018-1262-1
    Thilakaratne, R., Tessonnier, J.P., Brown, R.C., 2016. Conversion of methoxy and hydroxyl functionalities of phenolic monomers over zeolites. Green Chem. 18, 2231–2239. doi: 10.1039/C5GC02548F
    Villaverde, J.J., Li, J.B., Ek, M., Ligero, P., de Vega, A., 2009. Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation. J. Agric. Food Chem. 57, 6262–6270. doi: 10.1021/jf900483t
    Vinardell, M.P., Mitjans, M., 2017. Lignins and their derivatives with beneficial effects on human health. Int. J. Mol. Sci. 18, 1219. doi: 10.3390/ijms18061219
    Wang, J.Q., Hu, S.Z., Nie, S.P., Yu, Q., Xie, M.Y., 2016. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxid. Med. Cell. Longev. 2016, 5692852. doi: 10.1155/2016/5692852
    Wang, R., Zheng, L.M., Xu, Q.M., Xu, L., Wang, D.J., Li, J.Y., Lu, G., Huang, C.X., Wang, Y., 2021. Unveiling the structural properties of water-soluble lignin from gramineous biomass by autohydrolysis and its functionality as a bioactivator (anti-inflammatory and antioxidative). Int. J. Biol. Macromol. 191, 1087–1095. doi: 10.1016/j.ijbiomac.2021.09.124
    Wang, Y.L., Wu, J., Shen, R.H., Li, Y.B., Ma, G.F., Qi, S., Wu, W.J., Jin, Y.C., Jiang, B., 2023. A mild iodocyclohexane demethylation for highly enhancing antioxidant activity of lignin. J. Bioresour. Bioprod. 8, 306–317. doi: 10.3390/brainsci13020306
    Wu, F.F., Jia, X., Yin, L.J., Cheng, Y.Q., Miao, Y.X., Zhang, X.Q., 2019. The effect of hemicellulose and lignin on properties of polysaccharides in Lentinus edodes and their antioxidant evaluation. Molecules 24, 1834. doi: 10.3390/molecules24091834
    Xie, D., Gan, T., Su, C., Han, Y., Liu, Z.L., Cao, Y.F., 2020. Structural characterization and antioxidant activity of water-soluble lignin-carbohydrate complexes (LCCs) isolated from wheat straw. Int. J. Biol. Macromol. 161, 315–324. doi: 10.1016/j.ijbiomac.2020.06.049
    Yang, X.H., Li, Z., Li, L., Li, N., Jing, F., Hu, L.H., Shang, Q.Q., Zhang, X., Zhou, Y.H., Pan, X.J., 2021. Depolymerization and demethylation of kraft lignin in molten salt hydrate and applications as an antioxidant and metal ion scavenger. J. Agric. Food Chem. 69, 13568–13577. doi: 10.1021/acs.jafc.1c05759
    Yilmaz-Turan, S., Jiménez-Quero, A., Menzel, C., de Carvalho, D.M., Lindström, M.E., Sevastyanova, O., Moriana, R., Vilaplana, F., 2020. Bio-based films from wheat bran feruloylated Arabinoxylan: effect of extraction technique, acetylation and feruloylation. Carbohydr. Polym. 250, 116916. doi: 10.1016/j.carbpol.2020.116916
    You, T.T., Zhang, L.M., Zhou, S.K., Xu, F., 2015. Structural elucidation of lignin-carbohydrate complex (LCC) preparations and lignin from Arundo donax Linn. Ind. Crops Prod. 71, 65–74. doi: 10.1016/j.indcrop.2015.03.070
    Zhang, H.N., Ren, H., Zhai, H.M., 2021. Analysis of phenolation potential of spruce kraft lignin and construction of its molecular structure model. Ind. Crops Prod. 167, 113506. doi: 10.1016/j.indcrop.2021.113506
    Zhang, J.C., Wu, C.J., Yu, D.M., Zhu, Y.C., 2019a. Structural characterization of soluble lignin in the pre-hydrolysis liquor of bamboo-willow dissolving pulp. BioResources 15, 825–839. doi: 10.15376/biores.15.1.825-839
    Zhang, Y.C., Wang, S., Xu, W.Y., Cheng, F., Pranovich, A., Smeds, A., Willför, S., Xu, C.L., 2019b. Valorization of lignin–carbohydrate complexes from hydrolysates of Norway spruce: efficient separation, structural characterization, and antioxidant activity. ACS Sustainable Chem. Eng. 7, 1447–1456. doi: 10.1021/acssuschemeng.8b05142
    Zhao, B.C., Xu, J.D., Chen, B.Y., Cao, X.F., Yuan, T.Q., Wang, S.F., Charlton, A., Sun, R.C., 2018. Selective precipitation and characterization of lignin-carbohydrate complexes (LCCs) from Eucalyptus. Planta 247, 1077–1087. doi: 10.1007/s00425-018-2842-9
    Zhao, B.T., Zhang, J., Yao, J., Song, S., Yin, Z.X., Gao, Q.Y., 2013. Selenylation modification can enhance antioxidant activity of Potentilla anserina L. polysaccharide. Int. J. Biol. Macromol. 58, 320–328. doi: 10.1016/j.ijbiomac.2013.04.059
    Zhao, X.B., Liu, D.H., 2010. Chemical and thermal characteristics of lignins isolated from Siam weed stem by acetic acid and formic acid delignification. Ind. Crops Prod. 32, 284–291. doi: 10.1016/j.indcrop.2010.05.003
    Zheng, L.M., Yu, P.J., Zhang, Y.B., Wang, P., Yan, W.J., Guo, B.S., Huang, C.X., Jiang, Q., 2021. Evaluating the bio-application of biomacromolecule of lignin-carbohydrate complexes (LCC) from wheat straw in bone metabolism via ROS scavenging. Int. J. Biol. Macromol. 176, 13–25. doi: 10.1016/j.ijbiomac.2021.01.103
    Zhou, Q., Ou, Z.Q., Rao, X., Liu, Y., Liang, C., Zhang, L.M., Huo, C.Q., Du, X.Y., 2020. Lignin-carbohydrate complexes from coconut (Cocos nucifera) coir: fractionation, structural elucidation, and potential applications. BioResources 15, 7100–7117. doi: 10.15376/biores.15.3.7100-7117
    Zijlstra, D.S., Lahive, C.W., Analbers, C.A., Figueirêdo, M.B., Wang, Z.W., Lancefield, C.S., Deuss, P.J., 2020. Mild organosolv lignin extraction with alcohols: the importance of benzylic alkoxylation. ACS Sustainable Chem. Eng. 8, 5119–5131. doi: 10.1021/acssuschemeng.9b07222
    Zikeli, F., Ters, T., Fackler, K., Srebotnik, E., Li, J.B., 2016. Wheat straw lignin fractionation and characterization as lignin-carbohydrate complexes. Ind. Crops Prod. 85, 309–317. doi: 10.1016/j.indcrop.2016.03.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (211) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return