Citation: | Bianjing Sun, Ping Wang, Jingang Zhang, Jianbin Lin, Lingling Sun, Xiaokun Wang, Chuntao Chen, Dongping Sun. In situ biosynthesis of bacterial cellulose hydrogel spheroids with tunable dimensions[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 90-101. doi: 10.1016/j.jobab.2023.12.003 |
Argel, S., Castaño, M., Jimenez, D.E., Rodríguez, S., Vallejo, M.J., Castro, C.I., Osorio, M.A., 2022. Assessment of bacterial nanocellulose loaded with acetylsalicylic acid or povidone-iodine as bioactive dressings for skin and soft tissue infections. Pharmaceutics 14, 1661. doi: 10.3390/pharmaceutics14081661
|
Atila, D., Karataş, A., Keskin, D., Tezcaner, A., 2022. Pullulan hydrogel-immobilized bacterial cellulose membranes with dual-release of vitamin C and E for wound dressing applications. Int. J. Biol. Macromol. 218, 760–774. doi: 10.1016/j.ijbiomac.2022.07.160
|
Badshah, M., Ullah, H., He, F., Wahid, F., Farooq, U., Andersson, M., Khan, T., 2020. Development and evaluation of drug loaded regenerated bacterial cellulose-based matrices as a potential dosage form. Front. Bioeng. Biotechnol. 8, 579404. doi: 10.3389/fbioe.2020.579404
|
Bitterman, L.A., Martinez, A., Mulholland, C., Somerville, T., Prieto-Centurion, D., Zodrow, K.R., 2021. Bacterial cellulose spheres that encapsulate solid materials. J. Vis. Exp., (168). e62286.
|
Caro-Astorga, J., Walker, K.T., Herrera, N., Lee, K.Y., Ellis, T., 2021. Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration. Nat. Commun. 12, 5027. doi: 10.1038/s41467-021-25350-8
|
Chen, C.T., Ding, W.X., Zhang, H., Zhang, L., Huang, Y., Fan, M.M., Yang, J.Z., Sun, D.P., 2022. Bacterial cellulose-based biomaterials: from fabrication to application. Carbohydr. Polym. 278, 118995. doi: 10.1016/j.carbpol.2021.118995
|
Chen, C.T., Qian, J.S., Chen, H.W., Zhang, H., Yang, L., Jiang, X.H., Zhang, X., Li, X.Y., Ma, J., Sun, D.P., 2021. Molecular origin of the biologically accelerated mineralization of hydroxyapatite on bacterial cellulose for more robust nanocomposites. Nano Lett. 21, 10292–10300. doi: 10.1021/acs.nanolett.1c03411
|
Ciecholewska-Juśko, D., Junka, A., Fijałkowski, K., 2022. The cross-linked bacterial cellulose impregnated with octenidine dihydrochloride-based antiseptic as an antibacterial dressing material for highly-exuding, infected wounds. Microbiol. Res. 263, 127125. doi: 10.1016/j.micres.2022.127125
|
Diaz-Ramirez, J., Urbina, L., Eceiza, A., Retegi, A., Gabilondo, N., 2021. Superabsorbent bacterial cellulose spheres biosynthesized from winery by-products as natural carriers for fertilizers. Int. J. Biol. Macromol. 191, 1212–1220. doi: 10.1016/j.ijbiomac.2021.09.203
|
Droguet, B.E., Liang, H.L., Frka-Petesic, B., Parker, R.M., De Volder, M.F.L., Baumberg, J.J., Vignolini, S., 2022. Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments. Nat. Mater. 21, 352–358. doi: 10.1038/s41563-021-01135-8
|
Drozd, R., Szymańska, M., Rakoczy, R., Junka, A., Szymczyk, P., Fijałkowski, K., 2019. Functionalized magnetic bacterial cellulose beads as carrier for lecitase® ultra immobilization. Appl. Biochem. Biotechnol. 187, 176–193. doi: 10.1007/s12010-018-2816-1
|
Du, K.F., Li, S.K., Zhao, L.S., Qiao, L.Z., Ai, H., Liu, X.H., 2018. One-step growth of porous cellulose beads directly on bamboo fibers via oxidation-derived method in aqueous phase and their potential for heavy metal ions adsorption. ACS Sustainable Chem. Eng. 6, 17068–17075. doi: 10.1021/acssuschemeng.8b04433
|
Du, K.F., Yan, M., Wang, Q.Y., Song, H., 2010. Preparation and characterization of novel macroporous cellulose beads regenerated from ionic liquid for fast chromatography. J. Chromatogr. A 1217, 1298–1304. doi: 10.1016/j.chroma.2009.12.037
|
Fucina, G., Cesca, K., Berti, F.V., Biavatti, M.W., Porto, L.M., 2022. Melanoma growth in non-chemically modified translucid bacterial nanocellulose hollow and compartimentalized spheres. Biochim. Biophys. Acta Gen. Subj. 1866, 130183. doi: 10.1016/j.bbagen.2022.130183
|
Gebeyehu, E.K., Sui, X.F., Adamu, B.F., Beyene, K.A., Tadesse, M.G., 2022. Cellulosic-based conductive hydrogels for electro-active tissues: a review summary. Gels 8, 140. doi: 10.3390/gels8030140
|
Gilbert, C., Tang, T.C., Ott, W., Dorr, B.A., Shaw, W.M., Sun, G.L., Lu, T.K., Ellis, T., 2021. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat. Mater. 20, 691–700. doi: 10.1038/s41563-020-00857-5
|
Haghighi, H., Gullo, M., La China, S., Pfeifer, F., Siesler, H.W., Licciardello, F., Pulvirenti, A., 2021. Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocoll. 113, 106454. doi: 10.1016/j.foodhyd.2020.106454
|
Hu, Y., Catchmark, J.M., Vogler, E.A., 2013. Factors impacting the formation of sphere-like bacterial cellulose particles and their biocompatibility for human osteoblast growth. Biomacromolecules 14, 3444–3452. doi: 10.1021/bm400744a
|
Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonçalves-Miśkiewicz, M., Turkiewicz, M., Bielecki, S., 2002. Factors affecting the yield and properties of bacterial cellulose. J. Ind. Microbiol. Biotechnol. 29, 189–195. doi: 10.1038/sj.jim.7000303
|
Lazarini, S.C., Yamada, C., da Nóbrega, T.R., Lustri, W.R., 2022. Production of sphere-like bacterial cellulose in cultivation media with different carbon sources: a promising sustained release system of rifampicin. Cellulose 29, 6077–6092. doi: 10.1007/s10570-022-04644-0
|
Lin, W.C., Lien, C.C., Yeh, H.J., Yu, C.M., Hsu, S.H., 2013. Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr. Polym. 94, 603–611. doi: 10.1016/j.carbpol.2013.01.076
|
Meng, C.R., Hu, J.G., Gourlay, K., Yu, C.W., Saddler, J.N., 2019. Controllable synthesis uniform spherical bacterial cellulose and their potential applications. Cellulose 26, 8325–8336. doi: 10.1007/s10570-019-02446-5
|
Munir, M., Muhammad, N., Uroos, M., Mustafa, W., Sharif, F., 2023. Ionic liquid based treatment: a potential strategy to modify bacterial cellulose. ChemBioEng Rev. 10, 529–540. doi: 10.1002/cben.202200064
|
Naserian, F., Mesgar, A.S., 2022. Development of antibacterial and superabsorbent wound composite sponges containing carboxymethyl cellulose/gelatin/Cu-doped ZnO nanoparticles. Colloids Surf. B Biointerfaces 218, 112729. doi: 10.1016/j.colsurfb.2022.112729
|
Ng, H.M., Sin, L.T., Tee, T.T., Bee, S.T., Hui, D., Low, C.Y., Rahmat, A.R., 2015. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos. Part B Eng. 75, 176–200. doi: 10.1016/j.compositesb.2015.01.008
|
Portal, O., Clark, W.A., Levinson, D.J., 2009. Microbial cellulose wound dressing in the treatment of nonhealing lower extremity ulcers. Wounds 21, 1–3.
|
Ross, P., Mayer, R., Benziman, M., 1991. Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55, 35–58. doi: 10.1128/mr.55.1.35-58.1991
|
Shi, L., Lv, H.J., Chen, C.T., Cui, F.M., Zhang, L., Cao, J.P., Proietti Zaccaria, R., Zhang, Q., Sun, D.P., 2022a. Regulation of gut microbiome with redox responsible bacterial cellulose hydrogel for precision chemo-radiotherapy of intestinal cancer. Chem. Eng. J. 446, 137340. doi: 10.1016/j.cej.2022.137340
|
Shi, L., Wang, T., Yang, L., Chen, C.T., Dou, R., Yang, X.L., Sun, B.J., Zhou, B.J., Zhang, L., Sun, D.P., 2022b. Enhanced mechanical properties and biocompatibility on BC/HAp composite through calcium gluconate fortified bacterial. Carbohydr. Polym. 281, 119085. doi: 10.1016/j.carbpol.2021.119085
|
Shibazaki, H., Saito, M., Kuga, S., Okano, T., 1998. Native cellulose Ⅱ production by Acetobacter xylinum under physical constraints. Cellulose 5, 165–173. doi: 10.1023/A:1009277122329
|
Singhania R.R., Patel A.K., Tseng Y.S., Kumar V., Chen C.W., Haldar D., Saini J.K., Dong C.D., 2022. Developments in bioprocess for bacterial cellulose production. Bioresour. Technol. 344, 126343. doi: 10.1016/j.biortech.2021.126343
|
Sun, B.J., Lin, J.B., Liu, M.D., Li, W.P., Yang, L., Zhang, L., Chen, C.T., Sun, D.P., 2022. In situ biosynthesis of biodegradable functional bacterial cellulose for high-efficiency particulate air filtration. ACS Sustainable Chem. Eng. 10, 1644–1652. doi: 10.1021/acssuschemeng.1c07532
|
Urbina, L., Eceiza, A., Gabilondo, N., Corcuera, M.Á., Retegi, A., 2020. Tailoring the in situ conformation of bacterial cellulose-graphene oxide spherical nanocarriers. Int. J. Biol. Macromol. 163, 1249–1260. doi: 10.1016/j.ijbiomac.2020.07.077
|
Wang, J., Tavakoli, J., Tang, Y.H., 2019. Bacterial cellulose production, properties and applications with different culture methods: a review. Carbohydr. Polym. 219, 63–76. doi: 10.1016/j.carbpol.2019.05.008
|
Watanabe, K., Tabuchi, M., Morinaga, Y., Yoshinaga, F., 1998. Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5, 187–200. doi: 10.1023/A:1009272904582
|
Xiong, X.P., Zhang, L.N., Wang, Y.F., 2005. Polymer fractionation using chromatographic column packed with novel regenerated cellulose beads modified with silane. J. Chromatogr. A 1063, 71–77. doi: 10.1016/j.chroma.2004.12.002
|
Zhang, H., Ye, C., Xu, N., Chen, C.T., Chen, X., Yuan, F.S., Xu, Y.H., Yang, J.Z., Sun, D.P., 2017. Reconstruction of a genome-scale metabolic network of Komagataeibacter nataicola RZS01 for cellulose production. Sci. Rep. 7, 7911. doi: 10.1038/s41598-017-06918-1
|
Zhou, L.L., Sun, D.P., Wu, Q.H., Yang, J.Z., Yang, S.L., 2007. Influence of culture mode on bacterial cellulose production and its structure and property. Acta Microbiol. Sin. 47, 914–917.
|