Citation: | Korbinian Sinzinger, Ulrike Obst, Samed Güner, Manuel Döring, Magdalena Haslbeck, Doris Schieder, Volker Sieber. The Pichia pastoris enzyme production platform: From combinatorial library screening to bench-top fermentation on residual cyanobacterial biomass[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 43-57. doi: 10.1016/j.jobab.2023.12.005 |
Akbarzadeh, A., Dehnavi, E., Aghaeepoor, M., Amani, J., 2015. Optimization of recombinant expression of synthetic bacterial phytase in Pichia pastoris using response surface methodology. Jundishapur J. Microbiol. 8, e27553.
|
Bae, H.D., Yanke, L.J., Cheng, K.J., Selinger, L.B., 1999. A novel staining method for detecting phytase activity. J. Microbiol. Methods 39, 17–22. doi: 10.1016/S0167-7012(99)00096-2
|
Bai, Y.G., Yang, P.L., Wang, Y.R., Shi, P.J., Luo, H.Y., Meng, K., Wu, B., Yao, B., 2009. Phytase production by fermentation of recombinant Pichia pastoris in monosodium glutamate wastewater. World J. Microbiol. Biotechnol. 25, 1643–1649. doi: 10.1007/s11274-009-0058-7
|
Briones-Nagata, M.P., Martinez-Goss, M.R., Hori, K., 2007. A comparison of the morpho-cytology and chemical composition of the two forms of the cyanobacterium, Nostoc commune Vauch., from the Philippines and Japan. J. Appl. Phycol. 19, 675–683. doi: 10.1007/s10811-007-9240-1
|
Canton, B., Labno, A., Endy, D., 2008. Refinement and standardization of synthetic biological parts and devices. Nat. Biotechnol. 26, 787–793. doi: 10.1038/nbt1413
|
Celińska, E., Borkowska, M., Białas, W., Korpys, P., Nicaud, J.M., 2018. Robust signal peptides for protein secretion in Yarrowia lipolytica: identification and characterization of novel secretory tags. Appl. Microbiol. Biotechnol. 102, 5221–5233. doi: 10.1007/s00253-018-8966-9
|
Chandra, R., Iqbal, H.M.N., Vishal, G., Lee, H.S., Nagra, S., 2019. Algal biorefinery: a sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresour. Technol. 278, 346–359. doi: 10.1016/j.biortech.2019.01.104
|
Chen, C.C., Cheng, K.J., Ko, T.P., Guo, R.T., 2015. Current progresses in phytase research: three-dimensional structure and protein engineering. ChemBioEng Rev. 2, 76–86. doi: 10.1002/cben.201400026
|
Chen, C.C., Wu, P.H., Huang, C.T., Cheng, K.J., 2004. A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase. Enzyme Microb. Technol. 35, 315–320. doi: 10.1016/j.enzmictec.2004.05.007
|
Choi, S.P., Nguyen, M.T., Sim, S.J., 2010. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour. Technol. 101, 5330–5336. doi: 10.1016/j.biortech.2010.02.026
|
Curran, K.A., Karim, A.S., Gupta, A., Alper, H.S., 2013. Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications. Metab. Eng. 19, 88–97. doi: 10.1016/j.ymben.2013.07.001
|
David G., 2018. Chapter 26—economics of food and feed enzymes: status and prospectives. In: Carlos S. N., Vikas K. (Eds. ). Enzymes in Human and Animal Nutrition. USA: Academic Press, 487–514.
|
de Farias Silva, C.E., Barbera, E., Bertucco, A., 2019. Biorefinery as a promising approach to promote ethanol industry from microalgae and Cyanobacteria. Bioethanol Production from Food Crops. Amsterdam: Elsevier, 343–359.
|
Delic, M., Valli, M., Graf, A.B., Pfeffer, M., Mattanovich, D., Gasser, B., 2013. The secretory pathway: exploring yeast diversity. FEMS Microbiol. Rev. 37, 872–914. doi: 10.1111/1574-6976.12020
|
Engler, C., Gruetzner, R., Kandzia, R., Marillonnet, S., 2009. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4, e5553. doi: 10.1371/journal.pone.0005553
|
Fasahati, P., Wu, W.Z., Maravelias, C.T., 2019. Process synthesis and economic analysis of cyanobacteria biorefineries: a superstructure-based approach. Appl. Energy 253, 113625. doi: 10.1016/j.apenergy.2019.113625
|
Han, Y.M., Lei, X.G., 1999. Role of glycosylation in the functional expression of anAspergillus nigerPhytase (phyA) inPichia pastoris. Arch. Biochem. Biophys. 364, 83–90. doi: 10.1006/abbi.1999.1115
|
Helian, Y.K., Gai, Y.M., Fang, H., Sun, Y.M., Zhang, D.W., 2020. A multistrategy approach for improving the expression of E. coli phytase in Pichia pastoris. J. Ind. Microbiol. Biotechnol. 47, 1161–1172. doi: 10.1007/s10295-020-02311-6
|
Herrmann, K.R., Ruff, A.J., Infanzón, B., Schwaneberg, U., 2019. Engineered phytases for emerging biotechnological applications beyond animal feeding. Appl. Microbiol. Biotechnol. 103, 6435–6448. doi: 10.1007/s00253-019-09962-1
|
Hesampour, A., Siadat, S.E.R., Malboobi, M.A., Mohandesi, N., Arab, S.S., Ghahremanpour, M.M., 2015. Enhancement of thermostability and kinetic efficiency of Aspergillus niger PhyA phytase by site-directed mutagenesis. Appl. Biochem. Biotechnol. 175, 2528–2541. doi: 10.1007/s12010-014-1440-y
|
Karbalaei, M., Rezaee, S.A., Farsiani, H., 2020. Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins. J. Cell. Physiol. 235, 5867–5881. doi: 10.1002/jcp.29583
|
Lee, M.E., DeLoache, W.C., Cervantes, B., Dueber, J.E., 2015. A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth. Biol. 4, 975–986. doi: 10.1021/sb500366v
|
Liang, S.L., Li, C., Ye, Y.R., Lin, Y., 2013. Endogenous signal peptides efficiently mediate the secretion of recombinant proteins in Pichia pastoris. Biotechnol. Lett. 35, 97–105. doi: 10.1007/s10529-012-1055-8
|
Liu, W.C., Inwood, S., Gong, T., Sharma, A., Yu, L.Y., Zhu, P., 2019. Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production. Crit. Rev. Biotechnol. 39, 258–271. doi: 10.1080/07388551.2018.1554620
|
Looser, V., Bruhlmann, B., Bumbak, F., Stenger, C., Costa, M., Camattari, A., Fotiadis, D., Kovar, K., 2015. Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol. Adv. 33, 1177–1193. doi: 10.1016/j.biotechadv.2015.05.008
|
Madden, K., Tolstorukov, I., Cregg, J., 2015. Electroporation of Pichia pastoris. Genetic Transformation Systems in Fungi, Volume 1. Cham: Springer, 2015: 87–91. doi: 10.1007/978-3-319-10142-2_8
|
Massahi, A., Çalık, P., 2015. In-silico determination of Pichia pastoris signal peptides for extracellular recombinant protein production. J. Theor. Biol. 364, 179–188. doi: 10.1016/j.jtbi.2014.08.048
|
Mitra, M., Mishra, S., 2019. Multiproduct biorefinery from Arthrospira spp. towards zero waste: current status and future trends. Bioresour. Technol. 291, 121928. doi: 10.1016/j.biortech.2019.121928
|
Möllers, K.B., Cannella, D., Jørgensen, H., Frigaard, N.U., 2014. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol. Biofuels 7, 64. doi: 10.1186/1754-6834-7-64
|
Morse, N.J., Gopal, M.R., Wagner, J.M., Alper, H.S., 2017. Yeast Terminator function can be modulated and designed on the basis of predictions of nucleosome occupancy. ACS Synth. Biol. 6, 2086–2095. doi: 10.1021/acssynbio.7b00138
|
Navone, L., Vogl, T., Luangthongkam, P., Blinco, J.A., Luna-Flores, C., Chen, X.J., von Hellens, J., Speight, R., 2021. Synergistic optimisation of expression, folding, and secretion improves E. coli AppA phytase production in Pichia pastoris. Microb. Cell Fact. 20, 8. doi: 10.1186/s12934-020-01499-7
|
Obst, U., Lu, T.K., Sieber, V., 2017. A modular toolkit for generating Pichia pastoris secretion libraries. ACS Synth. Biol. 6, 1016–1025. doi: 10.1021/acssynbio.6b00337
|
Perez-Pinera, P., Han, N.R., Cleto, S., Cao, J.C., Purcell, O., Shah, K.A., Lee, K., Ram, R., Lu, T.K., 2016. Synthetic biology and microbioreactor platforms for programmable production of biologics at the point-of-care. Nat. Commun. 7, 12211. doi: 10.1038/ncomms12211
|
Prielhofer, R., Barrero, J.J., Steuer, S., Gassler, T., Zahrl, R., Baumann, K., Sauer, M., Mattanovich, D., Gasser, B., Marx, H., 2017. GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris. BMC Syst. Biol. 11, 123. doi: 10.1186/s12918-017-0492-3
|
Prielhofer, R., Maurer, M., Klein, J., Wenger, J., Kiziak, C., Gasser, B., Mattanovich, D., 2013. Induction without methanol: novel regulated promoters enable high-level expression in Pichia pastoris. Microb. Cell Fact. 12, 5. doi: 10.1186/1475-2859-12-5
|
Qin, X., Qian, J., Xiao, C., Zhuang, Y., Zhang, S., Chu, J., 2011. Reliable high-throughput approach for screening of engineered constitutive promoters in the yeast Pichia pastoris. Lett. Appl. Microbiol. 52, 634–641. doi: 10.1111/j.1472-765X.2011.03051.x
|
Rajkumar, A.S., Varela, J.A., Juergens, H., Daran, J. MG., Morrissey, J.P., 2019. Biological parts for Kluyveromyces marxianus synthetic biology. Front. Bioeng. Biotechnol. 7, 97. doi: 10.3389/fbioe.2019.00097
|
Ranjan, B., Satyanarayana, T., 2016. Recombinant HAP phytase of the thermophilic mold Sporotrichum thermophile: expression of the Codon-optimized phytase gene in Pichia pastoris and applications. Mol. Biotechnol. 58, 137–147. doi: 10.1007/s12033-015-9909-7
|
Shen, W., Xue, Y., Liu, Y.Q., Kong, C.X., Wang, X.L., Huang, M.M., Cai, M.H., Zhou, X.S., Zhang, Y.X., Zhou, M., 2016. A novel methanol-free Pichia pastoris system for recombinant protein expression. Microb. Cell Fact. 15, 178. doi: 10.1002/asjc.1200
|
Sinzinger, K., Schieder, D., Rühmann, B., Sieber, V., 2022. Towards a cyanobacterial biorefinery: carbohydrate fingerprint, biocomposition and enzymatic hydrolysis of Nostoc biomass. Algal Res. 65, 102744. doi: 10.1016/j.algal.2022.102744
|
Stadlmayr, G., Mecklenbräuker, A., Rothmüller, M., Maurer, M., Sauer, M., Mattanovich, D., Gasser, B., 2010. Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production. J. Biotechnol. 150, 519–529.
|
Tai, H.M., Yin, L.J., Chen, W.C., Jiang, S.T., 2013. Overexpression of Escherichia coli phytase in Pichia pastoris and its biochemical properties. J. Agric. Food Chem. 61, 6007–6015. doi: 10.1021/jf401853b
|
Vogl, T., Sturmberger, L., Kickenweiz, T., Wasmayer, R., Schmid, C., Hatzl, A.M., Gerstmann, M.A., Pitzer, J., Wagner, M., Thallinger, G.G., Geier, M., Glieder, A., 2016. A toolbox of diverse promoters related to methanol utilization: functionally verified parts for heterologous pathway expression in Pichia pastoris. ACS Synth. Biol. 5, 172–186. doi: 10.1021/acssynbio.5b00199
|
Weis, R., Luiten, R., Skranc, W., Schwab, H., Wubbolts, M., Glieder, A., 2004. Reliable high-throughput screening with Pichia pastoris by limiting yeast cell death phenomena. FEMS Yeast Res. 5, 179–189. doi: 10.1016/j.femsyr.2004.06.016
|
Xiong, A.S., Yao, Q.H., Peng, R.H., Han, P.L., Cheng, Z.M., Li, Y., 2005. High level expression of a recombinant acid phytase gene in Pichia pastoris. J. Appl. Microbiol. 98, 418–428. doi: 10.1111/j.1365-2672.2004.02476.x
|
Yarimizu, T., Nakamura, M., Hoshida, H., Akada, R., 2015. Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus. Microb. Cell Fact. 14, 20. doi: 10.1186/s12934-015-0203-y
|
Zang, J.K., Zhu, Y.F., Zhou, Y., Gu, C.J., Yi, Y.F., Wang, S.X., Xu, S.Q., Hu, G.W., Du, S.J., Yin, Y.N., Wang, Y.L., Yang, Y., Zhang, X.Y., Wang, H.K., Yin, F.F., Zhang, C., Deng, Q., Xie, Y.H., Huang, Z., 2021. Yeast-produced RBD-based recombinant protein vaccines elicit broadly neutralizing antibodies and durable protective immunity against SARS-CoV-2 infection. Cell Discov. 7, 71.
|