Volume 9 Issue 2
May  2024
Turn off MathJax
Article Contents
Ryen M. Frazier, Keren A. Vivas, Ivana Azuaje, Ramon Vera, Alonzo Pifano, Naycari Forfora, Hasan Jameel, Ericka Ford, Joel J. Pawlak, Richard Venditti, Ronalds Gonzalez. Beyond cotton and polyester: An evaluation of emerging feedstocks and conversion methods for the future of fashion industry[J]. Journal of Bioresources and Bioproducts, 2024, 9(2): 130-159. doi: 10.1016/j.jobab.2024.01.001
Citation: Ryen M. Frazier, Keren A. Vivas, Ivana Azuaje, Ramon Vera, Alonzo Pifano, Naycari Forfora, Hasan Jameel, Ericka Ford, Joel J. Pawlak, Richard Venditti, Ronalds Gonzalez. Beyond cotton and polyester: An evaluation of emerging feedstocks and conversion methods for the future of fashion industry[J]. Journal of Bioresources and Bioproducts, 2024, 9(2): 130-159. doi: 10.1016/j.jobab.2024.01.001

Beyond cotton and polyester: An evaluation of emerging feedstocks and conversion methods for the future of fashion industry

doi: 10.1016/j.jobab.2024.01.001
More Information
  • Corresponding author: E-mail address: rwgonzal@ncsu.edu (R. Gonzalez)
  • Available Online: 2024-01-04
  • Publish Date: 2024-05-01
  • As the global population grows, the demand for textiles is increasing rapidly. However, this puts immense pressure on manufacturers to produce more fiber. While synthetic fibers can be produced cheaply, they have a negative impact on the environment. On the other hand, fibers from wool, sisal, fique, wood pulp (viscose), and man-made cellulose fibers (MMCFs) from cotton cannot alone meet the growing fiber demand without major stresses on land, water, and existing markets using these materials. With a greater emphasis on transparency and circular economy practices, there is a need to consider natural non-wood alternative sources for MMCFs to supplement other fiber types. However, introducing new feedstocks with different compositions may require different biomass conversion methods. Therefore, based on existing work, this review addresses the technical feasibility of various alternative feedstocks for conversion to textile-grade fibers. First, alternative feedstocks are introduced, and then conventional (dissolving pulp) and emerging (fibrillated cellulose and recycled material) conversion technologies are evaluated to help select the most suitable and promising processes for these emerging alternative sources of cellulose. It is important to note that for alternative feedstocks to be adopted on a meaningful scale, high biomass availability and proximity of conversion facilities are critical factors. In North America, soybean, wheat, rice, sorghum, and sugarcane residues are widely available and most suitable for conventional conversion through various dissolving pulp production methods (pre-hydrolysis kraft, acid sulfite, soda, SO2-ethanol-water, and potassium hydroxide) or by emerging cellulose fibrillation methods. While dissolving pulp conversion is well-established, fibrillated cellulose methods could be beneficial from cost, efficiency, and environmental perspectives. Thus, the authors strongly encourage more work in this growing research area. However, conducting thorough cost and sustainability assessments is important to determine the best feedstock and technology combinations.

     

  • Declaration of Competing Interest
    The authors have no financial or personal competing interests to declare which could have influenced this manuscript.
  • loading
  • Abbati de Assis, C., Gonzalez, R.W., Stonebraker, J., 2019. Early-Stage Assessment and Risk Analysis for Investments in the Bio-Based Industry. North Carolina State University, Raleigh.
    Abd El-Sayed, E., El-Sakhawy, M., El-Sakhawy, M.A.M., 2020. Non-wood fibers as raw material for pulp and paper industry. Nord. Pulp Pap. Res. J. 35, 215–230. doi: 10.1515/npprj-2019-0064
    Abd El-Ghany, N.A., 2010. Highly reactive cotton linters from refining of prehydrolysed aq-soda pulp. Cellul. Chem. Technol. 44, 99601874.
    Abdul-Karim, L.A., Rab, A., Polyanzky, E., Rsuznak, I., 1994. Optimization of process variables for production of dissolving pulps from wheat straw and hemp. TAPPI J. 77, 141–150.
    Abou-State, M., Hasan, N.M., Helmy, S.A., 1979. Dissolving pulps from Egyptian bagasse. Holzforschung 33, 87–89. doi: 10.1515/hfsg.1979.33.3.87
    Abou-State, M.A., El-Masry, A.M., Mostafa, N.Y.S., 1988. Dissolving pulps from wheat straw by soda-anthraquinone pulping. Ind. Eng. Chem. Res. 27, 153–156. doi: 10.1021/ie00073a028
    Adel, A.M., El-Gendy, A.A., Diab, M.A., Abou-Zeid, R.E., El-Zawawy, W.K., Dufresne, A., 2016. Microfibrillated cellulose from agricultural residues. Part Ⅰ: papermaking application. Ind. Crops Prod. 93, 161–174. doi: 10.1016/j.indcrop.2016.04.043
    Adhia, V., Mishra, A., Banerjee, D., Appadurai, A.N., Preethan, P., Khan, Y., de Wagenaar, D., Harmsen, P., Elbersen, B., van Eupen, M., Staritsky, I., Elbersen, W., Keijsers, E., 2021. Spinning future threads. Available at: https://www.laudesfoundation.org/learning/research/2021-07-01-spinning-future-threads.
    AFRY, 2022. Textile recycling: drivers & challenges. Available at: https://afry.com/en/insight/textile-recycling-drivers-challenges#:~:text=The/20main/20challenges/20of/20textile,is/20at/20its/20inception/20stage.
    Alhassan, E.A., Olaoye, J.O., Olayanju, T.A., Okonkwo, C.E., 2019. An investigation into some crop residues generation from farming activities and inherent energy potentials in Kwara State, Nigeria. IOP Conf. Ser. Mater. Sci. Eng. 640, 012093. doi: 10.1088/1757-899x/640/1/012093
    Alila, S., Besbes, I., Vilar, M.R., Mutjé, P., Boufi, S., 2013. Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind. Crops Prod. 41, 250–259. doi: 10.1016/j.indcrop.2012.04.028
    Andrade Alves, J.A., Lisboa Dos Santos, M.D., Morais, C.C., Ramirez Ascheri, J.L., Signini, R., Dos Santos, D.M., Cavalcante Bastos, S.M., Ramirez Ascheri, D.P., 2019. Sorghum straw: pulping and bleaching process optimization and synthesis of cellulose acetate. Int. J. Biol. Macromol. 135, 877–886. doi: 10.1016/j.ijbiomac.2019.05.014
    Andrade, M.F., Colodette, J.L., 2014. Dissolving pulp production from sugar cane bagasse. Ind. Crops Prod. 52, 58–64. doi: 10.1016/j.indcrop.2013.09.041
    Anuchi, S.O., Campbell, K.L.S., Hallett, J.P., 2022. Effective pretreatment of lignin-rich coconut wastes using a low-cost ionic liquid. Sci. Rep. 12, 6108. doi: 10.1038/s41598-022-09629-4
    Asikainen, S., Maattanen, M., Harlin, A., Valta, K., Sivonen, E., 2014. Method of producing dissolving pulp, dissolving pulp and use of method. WO2014041251A1. Available at: https://patents.google.com/patent/WO2014041251A1/en.
    Azeta, O., Ayeni, A.O., Agboola, O., Elehinafe, F.B., 2021. A review on the sustainable energy generation from the pyrolysis of coconut biomass. Sci. Afr. 13, e00909.
    Bai, J., Luo, L.C., Li, A.X., Lai, X.Q., Zhang, X., Yu, Y.D., Wang, H., Wu, N.S., Zhang, L., 2022. Effects of biofuel crop switchgrass (Panicum virgatum) cultivation on soil carbon sequestration and greenhouse gas emissions: a review. Life 12, 2105. doi: 10.3390/life12122105
    Balea, A., Merayo, N., Fuente, E., Delgado-Aguilar, M., Mutje, P., Blanco, A., Negro, C., 2016. Corn stalk CNF production. BioResources 11, 3416–3431.
    Batalha, L.A.R., Colodette, J.L., Gomide, J.L., Barbosa, L.C.A., Maltha, C.R.A., Gomes, F.J.B., 2011. Dissolving pulp production from bamboo. BioResources 7, 640–651. doi: 10.15376/biores.7.1.640-651
    Bean, B., 2018. Sorghum test weight and its meaning. Available at: https://www.sorghumcheckoff.com/agronomy-insights/sorghum-test-weight-and-its-meaning/#:~:text=Test/20weight/20is/20influenced/20by,big/20role/20in/20test/20weight.
    Behin, J., Mikaniki, F., Fadaei, Z., 2008. Dissolving pulp (alpha-cellulose) from corn stalk by kraft process. Iran. J. Chem. Chem. Eng. 5, 101012423.
    Behin, J., Zeyghami, M., 2009. Dissolving pulp from corn stalk residue and waste water of Merox unit. Chem. Eng. J. 152, 26–35. doi: 10.1016/j.cej.2009.03.024
    Bekalo, S.A., Reinhardt, H.W., 2010. Fibers of coffee husk and hulls for the production of particleboard. Mater. Struct. 43, 1049–1060. doi: 10.1617/s11527-009-9565-0
    Berbeć, A.K., Matyka, M., 2020. Biomass characteristics and energy yields of tobacco (Nicotiana tabacum L.) cultivated in eastern Poland. Agriculture 10, 551. doi: 10.3390/agriculture10110551
    Besbes, I., Vilar, M.R., Boufi, S., 2011. Nanofibrillated cellulose from Alfa, Eucalyptus and Pine fibres: preparation, characteristics and reinforcing potential. Carbohydr. Polym. 86, 1198–1206. doi: 10.1016/j.carbpol.2011.06.015
    Bettenhausen, C., Halford, B., Patel, P., Scott, A., Vitale, G., 2022. The future of sustainable textiles. Available at: https://www.acs.org/content/dam/acsorg/membership/acs/benefits/discovery-reports/sustainabletextiles.pdf.
    Bisht, N., Gope, P.C., Rani, N., 2020. Rice husk as a fibre in composites: a review. J. Mech. Behav. Mater. 29, 147–162. doi: 10.1515/jmbm-2020-0015
    Biswas, M.C., Bush, B., Ford, E., 2020. Glucaric acid additives for the antiplasticization of fibers wet spun from cellulose acetate/acetic acid/water. Carbohydr. Polym. 245, 116510. doi: 10.1016/j.carbpol.2020.116510
    Biswas, M.C., Dwyer, R., Jimenez, J., Su, H.C., Ford, E., 2021. Strengthening regenerated cellulose fibers sourced from recycled cotton T-shirt using glucaric acid for antiplasticization. Polysaccharides 2, 138–153. doi: 10.3390/polysaccharides2010010
    Buchheit, K., 2022. Alternative Fibers in the Tissue and Towel Industry: non-wood fibers as a sustainable option for papermaking. Available at: https://www.solenis.com/en/resources/blog/alternative-fibers-in-the-tissue-and-towel-industry/.
    Cavanagh, P., 2021. Global dissolving pulp outlook. Available for purchase at: https://www.fastmarkets.com/forest-products/special-studies/global-dissolving-pulp-market/?utm_ss=global+dissolving+pulp+market+outlook.
    CBI Ministry of Foreign Affairs, 2020. Entering the European Market for Leather Fashion Accessories Available at:. https://www.cbi.eu/market-information/apparel/leather-fashion-accessories-0/market-entry#:~:text=Any.
    Chaker, A., Mutje, P., Vilaseca, F., Boufi, S., 2013. Reinforcing potential of nanofibrillated cellulose from nonwoody plants. Polym. Compos. 34, 1999–2007. doi: 10.1002/pc.22607
    Chen, C.X., Duan, C., Li, J.G., Liu, Y.S., Ma, X.J., Zheng, L.Q., Stavik, J., Ni, Y.H., 2016. Cellulose (dissolving pulp) manufacturing processes and properties: a mini-review. BioResources 11, 5553–5564. doi: 10.15376/biores.11.2.chen
    Chen, W.S., Yu, H.P., Liu, Y.X., Hai, Y.F., Zhang, M.X., Chen, P., 2011. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18, 433–442. doi: 10.1007/s10570-011-9497-z
    Chen, X.M., Burger, C., Wan, F., Zhang, J., Rong, L.X., Hsiao, B.S., Chu, B., Cai, J., Zhang, L.N., 2007. Structure study of cellulose fibers wet-spun from environmentally friendly NaOH/urea aqueous solutions. Biomacromolecules 8, 1918–1926. doi: 10.1021/bm061186i
    Cho, E., Lee, Y.G., Song, Y., Kim, H.Y., Nguyen, D.T., Bae, H., 2023. A novel integrated approach to conversion of textile waste into value-added materials. Environ. Sci. Ecotechnol. 1, 255718206.
    CNBM, 2021. The function and prospect of dissolving pulp. Available at: https://www.aymachinery.com/news/function-and-prospect-of-dissolving-pulp.html.
    Costa, S.M., Aguiar, A., Luz, S.M., Pessoa, A., Costa, S.A., 2016. Sugarcane straw and its cellulosic fraction as raw materials for obtainment of textile fibers and other bioproducts. In: Polysaccharides. Springer, Cham, pp. 1–17.
    Dalle Vacche, S., Karunakaran, V., Patrucco, A., Zoccola, M., Douard, L., Ronchetti, S., Gallo, M., Schreier, A., Leterrier, Y., Bras, J., Beneventi, D., Bongiovanni, R., 2021. Valorization of byproducts of hemp multipurpose crop: short non-aligned bast fibers as a source of nanocellulose. Molecules 26, 4723. doi: 10.3390/molecules26164723
    de Assis, C.A., Gonzalez, R., Kelley, S., Jameel, H., Bilek, T., Daystar, J., Handfield, R., Golden, J., Prestemon, J., Singh, D., 2017. Risk management consideration in the bioeconomy. Biofuels Bioprod. Biorefin. 11, 549–566. doi: 10.1002/bbb.1765
    de Morais Teixeira, E., Bondancia, T.J., Teodoro, K.B.R., Corrêa, A.C., Marconcini, J.M., Mattoso, L.H.C., 2011. Sugarcane bagasse whiskers: extraction and characterizations. Ind. Crops Prod. 33, 63–66. doi: 10.1016/j.indcrop.2010.08.009
    de Souza Fonseca, A., Panthapulakkal, S., Konar, S.K., Sain, M., Bufalinof, L., Raabe, J., de Andrade Miranda, I.P., Martins, M.A., Tonoli, G.H.D., 2019. Improving cellulose nanofibrillation of non-wood fiber using alkaline and bleaching pre-treatments. Ind. Crops Prod. 131, 203–212. doi: 10.1016/j.indcrop.2019.01.046
    Delucis, R., Cademartori, P.H.G., Fajardo, A.R., Amico, S., 2021. Cellulose and its derivatives: properties and applications. Polysaccharides 5, 236586206.
    Djafari Petroudy, S.R., Ranjbar, J., Rasooly Garmaroody, E., 2018. Eco-friendly superabsorbent polymers based on carboxymethyl cellulose strengthened by TEMPO-mediated oxidation wheat straw cellulose nanofiber. Carbohydr. Polym. 197, 565–575. doi: 10.1016/j.carbpol.2018.06.008
    Down to Earth, 1999. Bamboo for biomass. Available at: https://www.downtoearth.org.in/news/bamboo-for-biomass-19881.
    Drown, D.C., Edwards, L.L., Mays, J., Miller, M.W., Van Patten, M.D., 1997. Fertilizer production from wheat straw pulping: spent ammonium sulfite liquor. In: Proceedings of the Pulping Conference. US: TAPPI.
    Duan, C., Li, J.G., Ma, X.J., Chen, C.X., Liu, Y.S., Stavik, J., Ni, Y.H., 2015. Comparison of acid sulfite (AS)- and prehydrolysis kraft (PHK)-based dissolving pulps. Cellulose 22, 4017–4026. doi: 10.1007/s10570-015-0781-1
    Elauria, J.C., Castro, M.L.Y., Elauria, M.M., Bhattacharya, S.C., Abdul Salam, P., 2005. Assessment of sustainable energy potential of non-plantation biomass resources in the Philippines. Biomass Bioenergy 29, 191–198. doi: 10.1016/j.biombioe.2005.03.007
    Ellen MacArthur Foundation, 2017. A New Textiles Economy: Redesigning Fashion's Future. Ellen MacArthur Foundation Available at:. https://www.ellenmacarthurfoundation.org/a-new-textiles-economy.
    Espinosa, E., Rol, F., Bras, J., Rodríguez, A., 2019. Production of lignocellulose nanofibers from wheat straw by different fibrillation methods. Comparison of its viability in cardboard recycling process. J. Clean. Prod. 239, 118083. doi: 10.1016/j.jclepro.2019.118083
    Espinosa, E., Rol, F., Bras, J., Rodríguez, A., 2020. Use of multi-factorial analysis to determine the quality of cellulose nanofibers: effect of nanofibrillation treatment and residual lignin content. Cellulose 27, 10689–10705. doi: 10.1007/s10570-020-03136-3
    Essity, 2021. Essity begins tissue production from alternative fibers. Available at: https://www.essity.com/media/press-release/essity-begins-tissue-production-from-alternative-fibers/281bcb2a616bfa8d/#:~:text=Hygiene/20and/20health/20company/20Essity,tissue/20production/20in/20the/20world.
    Farahbakhsh, N., Roodposhti, P.S., Ayoub, A., Venditti, R.A., Jur, J.S., 2015. Melt extrusion of polyethylene nanocomposites reinforced with nanofibrillated cellulose from cotton and wood sources. J. Appl. Polym. Sci. 132, 41857. doi: 10.1002/app.41857
    Farahbakhsh, N., Venditti, R.A., Jur, J.S., 2014. Mechanical and thermal investigation of thermoplastic nanocomposite films fabricated using micro- and nano-sized fillers from recycled cotton T-shirts. Cellulose 21, 2743–2755. doi: 10.1007/s10570-014-0285-4
    Feng, Y.H., Cheng, T.Y., Yang, W.G., Ma, P.T., He, H.Z., Yin, X.C., Yu, X.X., 2018. Characteristics and environmentally friendly extraction of cellulose nanofibrils from sugarcane bagasse. Ind. Crops Prod. 111, 285–291. doi: 10.1016/j.indcrop.2017.10.041
    Ferdous, T., Ni, Y.H., Quaiyyum, M.A., Uddin, M.N., Jahan, M.S., 2021. Non-wood fibers: relationships of fiber properties with pulp properties. ACS Omega 6, 21613–21622. doi: 10.1021/acsomega.1c02933
    Fu, F.Y., Zhang, W.L., Zhang, R.H., Liu, L., Chen, S.C., Zhang, Y.P., Yang, B.B., Touhid, S., Liu, X.D., Zhou, J.P., Yao, J.M., 2018. NaOH/urea solution spinning of cellulose hybrid fibers embedded with Ag nanoparticles: influence of stretching on structure and properties. Cellulose 25, 7211–7224. doi: 10.1007/s10570-018-2082-y
    Gaspar, F., Bakatovich, A., Davydenko, N., Joshi, A., 2020. Building Insulation Materials Based on Agricultural Wastes. Bio-Based Materials and Biotechnologies for Eco-Efficient Construction. Elsevier, Amsterdam, pp. 149–170.
    Ghahrani, N., Ramezani, O., Kermanian, H., Vatankhah, E., Koosha, M., 2022. Valorization of old corrugated container to dissolving pulp. BioResources 18, 960–979. doi: 10.15376/biores.18.1.960-979
    Gröndahl, J., Karisalmi, K., Vapaavuori, J., 2021. Micro- and nanocelluloses from non-wood waste sources; processes and use in industrial applications. Soft Matter 17, 9842–9858. doi: 10.1039/d1sm00958c
    Gschwandtner, C., 2022. Outlook on global fiber demand and supply 2030. Available at: https://www.lenzing.com/fileadmin/content/PDF/03_Forschung_u_Entwicklung/EN/Lenzinger_Berichte_97_2022_02.pdf.
    Haisong, Q., 2017. Novel functional materials based on cellulose. Available at: https://link.springer.com/book/10.1007/978-3-319-49592-7.
    Halliday, S.S., Stern, A.L., Gruver, K.K., Waxman, N.J., 2023. Ten tips for sustainability professionals in the fashion & textiles industry. Available at: https://www.natlawreview.com.
    Han, Q., Jin, Y.B., Jameel, H., Chang, H.M., Phillips, R., Park, S., 2015. Autohydrolysis pretreatment of waste wheat straw for cellulosic ethanol production in a co-located straw pulp mill. Appl. Biochem. Biotechnol. 175, 1193–1210. doi: 10.1007/s12010-014-1349-5
    Han, Q.Q., Gao, X., Zhang, H., Chen, K.L., Peng, L.C., Jia, Q.M., 2019. Preparation and comparative assessment of regenerated cellulose films from corn (Zea mays) stalk pulp fines in DMAc/LiCl solution. Carbohydr. Polym. 218, 315–323. doi: 10.1016/j.carbpol.2019.04.083
    Harsono, H., Putra, A.S., Maryana, R., Rizaluddin, A.T., H'ng, Y.Y., Nakagawa-izumi, A., Ohi, H., 2016. Preparation of dissolving pulp from oil palm empty fruit bunch by prehydrolysis soda-anthraquinone cooking method. J. Wood Sci. 62, 65–73. doi: 10.1007/s10086-015-1526-3
    Haslinger, S., Hummel, M., Anghelescu-Hakala, A., Määttänen, M., Sixta, H., 2019. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Manag. 97, 88–96. doi: 10.1016/j.wasman.2019.07.040
    Hassan, M.L., Mathew, A.P., Hassan, E.A., El-Wakil, N.A., Oksman, K., 2012. Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci. Technol. 46, 193–205. doi: 10.1007/s00226-010-0373-z
    He, G.J., Liu, T., Zhou, M.G., 2020. Straw burning, PM2.5, and death: evidence from China. J. Dev. Econ. 145, 102468. doi: 10.1016/j.jdeveco.2020.102468
    Heinze, T., Liebert, T., 2012. Celluloses and polyoses/hemicelluloses. In: Polymer Science: A Comprehensive Reference. Elsevier, Amsterdam, pp. 83–152.
    Hertzberg, R., 2019. Cellulose Acetate Production from Finnish Hardwood and Softwood Dissolving Pulp. Aalto University, Helsinki.
    Huang, C.X., Sun, R.K., Chang, H.M., Yong, Q., Jameel, H., Phillips, R., 2019. Production of dissolving grade pulp from tobacco stalk through SO2-ethanol-water fractionation, alkaline extraction, and bleaching processes. BioResources 14, 5544–5558. doi: 10.15376/biores.14.3.5544-5558
    Hugill, R., Ley, K., Rademan, K., 2020. Coming full circle: innovating towards sustainable man-made cellulosic fibers. Available at: https://fashionforgood.com/wp-content/uploads/2020/09/Coming-Full-Circle-Innovating-Towards-More-Sustainable-MMCFs.pdf.
    Ibrahim, A.A., Nada, A.M.A., Hagemann, U., El Seoud, O.A., 1996. Preparation of dissolving pulp from sugar cane bagasse, and its acetylation under homogeneous solution condition. Holzforschung 50, 221–225. doi: 10.1515/hfsg.1996.50.3.221
    Igini, M., 2022. 10 Stunning Fast Fashion Waste Statistics. Available at: https://earth.org/statistics-about-fast-fashion-waste/ (accessed 1.19.23).
    International Sustainability & Carbon Certification, 2023. ISCC's Four Feedstock Categories. Available at: https://www.iscc-system.org/markets/feedstocks/.
    Iqbal, S., Ahmad, Z., 2011. Impact of degree or polymerization of fiber on viscose fiber strength. Mater. Sci. 10, 134532467.
    Jackson, L.S., Joyce, T.W., Heitmann, J.A., 2001. Method for making dissolving pulp form paper products containing hardwood fibers. Available at: https://patents.google.com/patent/US6254722B1/en.
    Jahan, M.S., Rahman, M.M., 2012. A biorefinery initiative in producing dissolving pulp from dhaincha (Sesbania aculeata): a short-rotation crop. Cellul. Chem. Technol. 46, 375–380.
    Jahan, M.S., Rahman, M.M., Ni, Y.H., 2021. Alternative initiatives for non-wood chemical pulping and integration with the biorefinery concept: a review. Biofuels Bioprod. Biorefin. 15, 100–118. doi: 10.1002/bbb.2143
    Jahan, M.S., Rahman, M.M., Sarkar, A.M., 2016. Upgrading old corrugated cardboard (OCC) to dissolving pulp. Cellulose 23, 2039–2047. doi: 10.1007/s10570-016-0894-1
    Jahan, M.S., Rahman, M.M., Sutradhar, S., Quaiyyum, M.A., 2015. Fractionation of rice straw for producing dissolving pulp in biorefinery concept. Nord. Pulp Pap. Res. J. 30, 562–567. doi: 10.3183/npprj-2015-30-04-p562-567
    Ji, H., Xiang, Z.Y., Qi, H.S., Han, T.T., Pranovich, A., Song, T., 2019. Strategy towards one-step preparation of carboxylic cellulose nanocrystals and nanofibrils with high yield, carboxylation and highly stable dispersibility using innocuous citric acid. Green Chem. 21, 1956–1964. doi: 10.1039/c8gc03493a
    Jiang, W., Sun, L.F., Hao, A.Y., Yan Chen, J., 2011. Regenerated cellulose fibers from waste bagasse using ionic liquid. Text. Res. J. 81, 1949–1958. doi: 10.1177/0040517511414974
    Jiang, X.Y., Bai, Y.Y., Chen, X.F., Liu, W., 2020. A review on raw materials, commercial production and properties of lyocell fiber. J. Bioresour. Bioprod. 5, 16–25. doi: 10.1016/j.jobab.2020.03.002
    Juanga-Labayen, J.P., Labayen, I.V., Yuan, Q.Y., 2022. A review on textile recycling practices and challenges. Textiles 2, 174–188. doi: 10.3390/textiles2010010
    Kajanto, I., Nuopponen, M., Pere, J., Jokila, T., 2015. A method for producing fibrillated cellulose. WO 2015/150620 A1. Available at: https://patents.google.com/patent/WO2015150620A1/en
    Kamble, Z., Behera, B.K., 2021. Upcycling textile wastes: challenges and innovations. Text. Prog. 53, 65–122. doi: 10.1080/00405167.2021.1986965
    Kansas Wheat, 2015. What does a bushel of wheat mean to me? Available at: https://kswheat.com/news/what-does-a-bushel-of-wheat-mean-to-me.
    Kim, P., Hamilton, C., Elder, T., Labbé, N., 2018. Effect of non-structural organics and inorganics constituents of switchgrass during pyrolysis. Front. Energy Res. 6, 96. doi: 10.3389/fenrg.2018.00096
    Köpcke, V., 2010. Conversion of Wood and Non-Wood Paper- Grade Pulps to Dissolving-Grade Pulps. Royal Institute of Technology, Stockholm.
    Li, D.F., Ibarra, D., Köpcke, V., Ek, M., 2012. Production of dissolving grade pulps from wood and non-wood paper-grade pulps by enzymatic and chemical pretreatments. In: Functional Materials from Renewable Sources. American Chemical Society, Washington, DC, pp. 167–189.
    Li, H.L., Legere, S., He, Z.B., Zhang, H.J., Li, J.G., Yang, B., Zhang, S.K., Zhang, L.L., Zheng, L.Q., Ni, Y.H., 2018. Methods to increase the reactivity of dissolving pulp in the viscose rayon production process: a review. Cellulose 25, 3733–3753. doi: 10.1007/s10570-018-1840-1
    Li, Z., 2003. Rheology of Lyocell Solutions from Different Cellulosic Sources and Development of Regenerated Cellulosic Microfibers. University of Tennessee, Knoxville.
    Lim, S.K., Son, T.W., Lee, D.W., Park, B.K., Cho, K.M., 2001. Novel regenerated cellulose fibers from rice straw. J. Appl. Polym. Sci. 82, 1705–1708. doi: 10.1002/app.2010
    Linero, A., 1977. Background document: acid sulfite pulping. Available at: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100BG3I.TXT.
    Liu, Y.S., Shi, L.X., Cheng, D., He, Z.B., 2016. Dissolving pulp market and technologies: Chinese prospective–a mini-review. BioResources 11, 7902–7916. doi: 10.15376/biores.11.3.liu
    Liu, Z., Cao, Y., Wang, Z., Ren, H., Amidon, T.E., Lai, Y., 2015. Soy straw. Pt. 1, characterization. BioResources 10, 2266–2280.
    Lundahl, M.J., Klar, V., Wang, L., Ago, M., Rojas, O.J., 2017. Spinning of cellulose nanofibrils into filaments: a review. Ind. Eng. Chem. Res. 56, 8–19. doi: 10.1021/acs.iecr.6b04010
    Ma, Y., Hummel, M., Kontro, I., Sixta, H., 2018. High performance man-made cellulosic fibres from recycled newsprint. Green Chem. 20, 160–169. doi: 10.1039/C7GC02896B
    Ma, Y., Hummel, M., Määttänen, M., Särkilahti, A., Harlin, A., Sixta, H., 2016. Upcycling of waste paper and cardboard to textiles. Green Chem. 18, 858–866. doi: 10.1039/C5GC01679G
    Mahmud, M.A., Anannya, F.R., 2021. Sugarcane bagasse - A source of cellulosic fiber for diverse applications. Heliyon 7, e07771. doi: 10.1016/j.heliyon.2021.e07771
    Mamon Sarkar, A., Nayeem, J., Rahaman, M.M., Jahan, M.S., 2021. Dissolving pulp from non-wood plants by prehydrolysispotassium hydroxide process. Cellul. Chem. Technol. 55, 117–124. doi: 10.35812/cellulosechemtechnol.2021.55.12
    Matassa, S., Esposito, G., Pirozzi, F., Papirio, S., 2020. Exploring the biomethane potential of different industrial hemp (Cannabis sativa L.) biomass residues. Energies 13, 3361. doi: 10.3390/en13133361
    Meister, F., 2021. TITK: first lyocell fibre made from non- wood-based pulp. Text. Netw. . Available at: https://textile-network.com/en/Technical-Textiles/Fasern-Garne/TITK-First-lyocell-fibre-made-from-non-wood-based-pulp.
    Melati, R.B., Schmatz, A., Pagnocca, F.C., Contiero, J., Brienzo, M., 2017. Sugarcane bagasse: production, composition, properties, and feedstock potential. Sugarcane: Production Systems, Uses and Economic Importance„ 1–38.
    Moazzem, S., Crossin, E., Daver, F., Wang, L.J., 2018. Baseline scenario of carbon footprint of polyester T-shirt. J. Fiber Bioeng. Inform. 11, 1–14. doi: 10.3993/jfbim00262
    Mohammadi, P., Toivonen, M.S., Ikkala, O., Wagermaier, W., Linder, M.B., 2017. Aligning cellulose nanofibril dispersions for tougher fibers. Sci. Rep. 7, 11860. doi: 10.1038/s41598-017-12107-x
    Mongkhonsiri, G., Gani, R., Malakul, P., Assabumrungrat, S., 2018. Integration of the biorefinery concept for the development of sustainable processes for pulp and paper industry. Comput. Chem. Eng. 119, 70–84. doi: 10.1016/j.compchemeng.2018.07.019
    Moriam, K., Sawada, D., Nieminen, K., Hummel, M., Ma, Y.B., Rissanen, M., Sixta, H., 2021. Towards regenerated cellulose fibers with high toughness. Cellulose 28, 9547–9566. doi: 10.1007/s10570-021-04134-9
    Naithani, V., Tyagi, P., Jameel, H., Lucia, L.A., Pal, L., 2019. Ecofriendly and innovative processing of hemp hurds fibers for tissue and towel paper. BioResources 15, 706–720. doi: 10.15376/biores.15.1.706-720
    Nascimento, P., Marim, R., Carvalho, G., Mali, S., 2016. Nanocellulose produced from rice hulls and its effect on the properties of biodegradable starch films. Mater. Res. 19, 167–174. doi: 10.1590/1980-5373-MR-2015-0423
    Navone, L., Moffitt, K., Hansen, K.A., Blinco, J., Payne, A., Speight, R., 2020. Closing the textile loop: enzymatic fibre separation and recycling of wool/polyester fabric blends. Waste Manag. 102, 149–160. doi: 10.1016/j.wasman.2019.10.026
    Nguyen, N.A., Kim, K., Bowland, C.C., Keum, J.K., Kearney, L.T., André, N., Labbé, N., Naskar, A.K., 2019. A fundamental understanding of whole biomass dissolution in ionic liquid for regeneration of fiber by solution-spinning. Green Chem. 21, 4354–4367. doi: 10.1039/c9gc00774a
    Nie, S.X., Zhang, C.Y., Zhang, Q., Zhang, K., Zhang, Y.H., Tao, P., Wang, S.F., 2018. Enzymatic and cold alkaline pretreatments of sugarcane bagasse pulp to produce cellulose nanofibrils using a mechanical method. Ind. Crops Prod. 124, 435–441. doi: 10.1016/j.indcrop.2018.08.033
    Ochica Larrota, A.F., Vera-Graziano, R., López-Córdoba, A., Gómez-Pachón, E.Y., 2021. Electrospun ultrafine cationic cellulose fibers produced from sugarcane bagasse for potential textile applications. Polymers 13, 3927. doi: 10.3390/polym13223927
    Opperskalski, S., Ridler, S., Siew, S., Tan, E., 2021. Preferred Fiber & Materials Market Report 2021. Available at: https://textileexchange.org/app/uploads/2021/08/Textile-Exchange_Preferred-Fiber-and-Materials-Market-Report_2021.pdf
    Oun, A.A., Rhim, J.W., 2018. Isolation of oxidized nanocellulose from rice straw using the ammonium persulfate method. Cellulose 25, 2143–2149. doi: 10.1007/s10570-018-1730-6
    Owonubi, S.J., Agwuncha, S.C., Malima, N.M., Shombe, G.B., Makhatha, E.M., Revaprasadu, N., 2021. Non-woody biomass as sources of nanocellulose particles: a review of extraction procedures. Front. Energy Res. 9, 608825. doi: 10.3389/fenrg.2021.608825
    Park, H.J., Han, J.S., Son, H.N., Seo, Y.B., 2013. Study of cotton linter pre-treatment process for producing high quality regenerated fibers for fabrics. J. Korea TAPPI 45, 27–35.
    Paulitz, J., Sigmund, I., Kosan, B., Meister, F., 2017. Lyocell fibers for textile processing derived from organically grown hemp. Procedia Eng. 200, 260–268. doi: 10.1016/j.proeng.2017.07.037
    Pennells, J., Cruickshank, A., Chaléat, C., Godwin, I.D., Martin, D.J., 2021. Sorghum as a novel biomass for the sustainable production of cellulose nanofibers. Ind. Crops Prod. 171, 113917. doi: 10.1016/j.indcrop.2021.113917
    Pennells, J., Godwin, I.D., Amiralian, N., Martin, D.J., 2020. Trends in the production of cellulose nanofibers from non-wood sources. Cellulose 27, 575–593. doi: 10.1007/s10570-019-02828-9
    Periyasamy, S., Karthik, V., Senthil Kumar, P., Isabel, J.B., Temesgen, T., Hunegnaw, B.M., Melese, B.B., Mohamed, B.A., Vo, D. V N., 2022. Chemical, physical and biological methods to convert lignocellulosic waste into value-added products. A review. Environ. Chem. Lett. 20, 1129–1152. doi: 10.1007/s10311-021-01374-w
    Pirraglia, A., Gonzalez, R., Denig, J., Saloni, D., 2013. Technical and economic modeling for the production of torrefied lignocellulosic biomass for the U.S. densified fuel industry. BioEnergy Res. 6, 263–275. doi: 10.1007/s12155-012-9255-6
    Plakantonaki, S., Stergiou, M., Panagiotatos, G., Kiskira, K., Priniotakis, G., 2022. Regenerated cellulosic fibers from agricultural waste. In: Proceedings of the AIP Conference doi: 10.1063/5.0077088, Available at:.
    Qi, G.X., Xiong, L., Wang, B., Lin, X.Q., Zhang, H.R., Li, H.L., Huang, C., Chen, X.F., Wang, C., Chen, X.D., 2017. Improvement and characterization in enzymatic hydrolysis of regenerated wheat straw dissolved by LiCl/DMAc solvent system. Appl. Biochem. Biotechnol. 181, 177–191. doi: 10.1007/s12010-016-2206-5
    Rainey, T.J., Covey, G., 2016. Pulp and paper production from sugarcane bagasse. In: Sugarcane-Based Biofuels and Bioproducts. New Jersey: John Wiley & Sons, Inc., Hoboken, pp. 259–280.
    Rasooly-Garmaroody, E., Ebadi, S., Ramezani, O., Behrooz, R., 2022. Insights into activation of dissolving pulp preceding cellulose acetylation. BioResources 17, 2157–2175. doi: 10.15376/biores.17.2.2157-2175
    Reddy, N., Yang, Y.Q., 2005. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 23, 22–27. doi: 10.1016/j.tibtech.2004.11.002
    Reddy, N., Yang, Y.Q., 2007. Preparation and characterization of long natural cellulose fibers from wheat straw. J. Agric. Food Chem. 55, 8570–8575. doi: 10.1021/jf071470g
    Reddy, N., Yang, Y.Q., 2014. Innovative biofibers from renewable resources. Innov. Biofibers Renew. Resour. 12, 114283724.
    Rehman, M., Fahad, S., Du, G.H., Cheng, X., Yang, Y., Tang, K.L., Liu, L.J., Liu, F.H., Deng, G., 2021. Evaluation of hemp (Cannabis sativa L.) as an industrial crop: a review. Environ. Sci. Pollut. Res. Int. 28, 52832–52843. doi: 10.1007/s11356-021-16264-5
    Reyes, G., Ajdary, R., Yazdani, M.R., Rojas, O.J., 2022. Hollow filaments synthesized by dry-jet wet spinning of cellulose nanofibrils: structural properties and thermoregulation with phase-change infills. ACS Appl. Polym. Mater. 4, 2908–2916. doi: 10.1021/acsapm.2c00177
    Rieland, J.M., Love, B.J., 2020. Ionic liquids: a milestone on the pathway to greener recycling of cellulose from biomass. Resour. Conserv. Recycl. 155, 104678. doi: 10.1016/j.resconrec.2019.104678
    Ronzon, T., Piotrowski, S., Carus, M., 2015. DataM-biomass estimates (v3): a new database to quantify biomass availability in the European Union. Environ. Sci. Econ. 7, 112213604.
    Roos, S., Sandin, G., Peters, G., Schwarz Bour, L., 2019. White paper on textile recycling. Available at: 10.13140/RG.2.2.31018.77766.
    Rosa, L., Grammatikos, S.A., 2019. Comparative life cycle assessment of cotton and other natural fibers for textile applications. Fibers 7, 101. doi: 10.1590/2176-457338281
    Rydholm, S.A., 1965. Pulping Processes, 6th ed. Interscience Publishers, New York.
    Saeed, H.A.M., Liu, Y., Lucia, L.A., Chen, H., 2017. Evaluation of Sudanese sorghum and bagasse as a pulp and paper feedstock. Bioresources 12, 5212–5222.
    Sarkar, M., Nayeem, J., Popy, R.S., Quadery, A.H., Sarwar Jahan, M., 2018. Dissolving pulp from jute wastes. Bioresour. Technol. Rep. 4, 96–100. doi: 10.1016/j.biteb.2018.09.008
    Schultz, T., Suresh, A., 2017. Life cycle assessment comparing ten sources of manmade cellulose fiber. Available at: www.SCSglobalServices.com
    Sczostak, A., 2009. Cotton linters: an alternative cellulosic raw material. Macromol. Symp. 280, 45–53. doi: 10.1002/masy.200950606
    Serra-Parareda, F., Tarrés, Q., Sanchez-Salvador, J.L., Campano, C., Pèlach, M. À., Mutjé, P., Negro, C., Delgado-Aguilar, M., 2021. Tuning morphology and structure of non-woody nanocellulose: ranging between nanofibers and nanocrystals. Ind. Crops Prod. 171, 113877. doi: 10.1016/j.indcrop.2021.113877
    Shakhes, J., Marandi, M.A.B., Zeinaly, F., Saraian, A., Saghafi, T., 2011. Tobacco fibers for paper. BioResources 6, 4481–4493. doi: 10.15376/biores.6.4.4481-4493
    Shen, L., Worrell, E., Patel, M.K., 2010. Environmental impact assessment of man-made cellulose fibres. Resour. Conserv. Recycl., 55, 260–274. doi: 10.1016/j.resconrec.2010.10.001
    Sinclair, A., Jiang, L., Bajwa, D., Bajwa, S., Tangpong, S., Wang, X.N., 2018. Cellulose nanofibers produced from various agricultural residues and their reinforcement effects in polymer nanocomposites. J. Appl. Polym. Sci. 135, 46304. doi: 10.1002/app.46304
    Singh, S.P., Jawaid, M., Chandrasekar, M., Senthilkumar, K., Yadav, B., Saba, N., Siengchin, S., 2021. Sugarcane wastes into commercial products: processing methods, production optimization and challenges. J. Clean. Prod. 328, 129453. doi: 10.1016/j.jclepro.2021.129453
    Sixta, H., 2006. Handbook of pulp. Mater. Sci. 2, 137945465.
    Sixta, H., Iakovlev, M., Testova, L., Roselli, A., Hummel, M., Borrega, M., van Heiningen, A., Froschauer, C., Schottenberger, H., 2013. Novel concepts of dissolving pulp production. Cellulose 20, 1547–1561. doi: 10.1007/s10570-013-9943-1
    Sklavounos, E., 2014. Conditioning of SO2-ethanol-water (SEW) spent liquor from lignocellulosics for ABE fermentation to biofuels and chemicals. Available at: 10.13140/RG.2.1.1767.6325.
    Sluiter, J.B., Ruiz, R.O., Scarlata, C.J., Sluiter, A.D., Templeton, D.W., 2010. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J. Agric. Food Chem. 58, 9043–9053. doi: 10.1021/jf1008023
    SSGA, 2022. Conversion table: specialty soy and grains alliance. Available at: https://soyagrainsalliance.org/conversion-table/.
    Stevulova, N., Cigasova, J., Estokova, A., Terpakova, E., Geffert, A., Kacik, F., Singovszka, E., Holub, M., 2014. Properties characterization of chemically modified hemp hurds. Materials 7, 8131–8150. doi: 10.3390/ma7128131
    Sugesty, S., Kardiansyah, T., Hardiani, H., 2015. Bamboo as raw materials for dissolving pulp with environmental friendly technology for rayon fiber. Procedia Chem. 17, 194–199. doi: 10.1016/j.proche.2015.12.122
    Sun, N., Li, W.Y., Stoner, B., Jiang, X.Y., Lu, X.M., Rogers, R.D., 2011. Composite fibers spun directly from solutions of raw lignocellulosic biomass dissolved in ionic liquids. Green Chem. 13, 1158–1161. doi: 10.1039/c1gc15033b
    Sun, X.T., Wang, X., Sun, F.Q., Tian, M.W., Qu, L.J., Perry, P., Owens, H., Liu, X.Q., 2021. Textile waste fiber regeneration via a green chemistry approach: a molecular strategy for sustainable fashion. Adv. Mater. 33, e2105174. doi: 10.1002/adma.202105174
    Sundarraj, A.A., Ranganathan, T.V., 2018. A review on cellulose and its utilization from agro-industrial waste. Drug Invent. Today 4, 188548238.
    Suopajärvi, T., Ricci, P., Karvonen, V., Ottolina, G., Liimatainen, H., 2020. Acidic and alkaline deep eutectic solvents in delignification and nanofibrillation of corn stalk, wheat straw, and rapeseed stem residues. Ind. Crops Prod. 145, 111956. doi: 10.1016/j.indcrop.2019.111956
    Suresh, A., 2022. Identifying low carbon sources of man-made cellulosic fibres (MMCF). Available at: https://unfccc.int/documents/630806
    Szegedi, K., 2023. Shifting Sands: How Consumer Behaviour is Embracing Sustainability [WWW Document]. Deloitte.
    Tao, P., Zhang, Y.H., Wu, Z.M., Liao, X.P., Nie, S.X., 2019. Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: transition of cellulose crystal structure. Carbohydr. Polym. 214, 1–7. doi: 10.1016/j.carbpol.2019.03.012
    Textiles Inside, 2022. New plant-based textile fiber. Available at: https://textilesinside.com/new-plant-based-textile-fiber/.
    The International Organization for Standardization, 2023. ISO 14068-1_2023(en), Climate change management–transition to net zero–Part 1: carbon neutrality. Available at: https://www.iso.org/obp/ui/en/#iso:std:iso:14068:-1:ed-1:v1:en.
    Thygesen, A., Forskningscenter Risø, 2006. Properties of hemp fibre polymer composites : an optimisation of fibre properties using novel defibration methods and fibre characterisation. Lyngby: Risø National Laboratory.
    Tian, C., Zheng, L., Miao, Q., Nash, C., Cao, C., Ni, Y., 2013. Improvement in the Fock test for determining the reactivity of dissolving pulp. TAPPI J. 12, 21–26. doi: 10.32964/tj12.11.21
    Tian, C., Zheng, L.Q., Miao, Q.X., Cao, C.Y., Ni, Y.H., 2014. Improving the reactivity of kraft-based dissolving pulp for viscose rayon production by mechanical treatments. Cellulose 21, 3647–3654. doi: 10.1007/s10570-014-0332-1
    Tolesa, L.D., Gupta, B.S., Lee, M.J., 2018. Treatment of coffee husk with ammonium-based ionic liquids: lignin extraction, degradation, and characterization. ACS Omega 3, 10866–10876. doi: 10.1021/acsomega.8b01447
    Tuzzin, G., Godinho, M., Dettmer, A., Zattera, A.J., 2016. Nanofibrillated cellulose from tobacco industry wastes. Carbohydr. Polym. 148, 69–77. doi: 10.1016/j.carbpol.2016.04.045
    United Nations, 2022. World population to reach 8 billion on 15 November 2022. Available at: https://www.un.org/en/desa/world-population-reach-8-billion-15-november-2022
    United States Department of Agriculture USDA, 2022. National agricultural statistics service: quick stats tools. Available at: https://quickstats.nass.usda.gov/
    Vallejos, M.E., Felissia, F.E., Area, M.C., Ehman, N.V., Tarrés, Q., Mutjé, P., 2016. Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Carbohydr. Polym. 139, 99–105. doi: 10.1016/j.carbpol.2015.12.004
    Valta, K., Sivonen, E., 2003. Method for manufacturing cellulose carbamate. Available at: https://patents.google.com/patent/US20050054848A1/en#:~:text=In/20the/20method/2C/20an/20auxiliary,urea/20into/20cellulose/2C/20and/20the
    Vena, P.F., García-Aparicio, M.P., Brienzo, M., Gorgens, J.F., Rypstra, T., 2013. Impact of hemicelluloses pre-extraction on pulp properties of sugarcane bagasse. Cellul. Chem. Technol. 47, 425–441.
    Venkatramanan, V., Shah, S., Rai, A.K., Prasad, R., 2021. Nexus between crop residue burning, bioeconomy and sustainable development goals over north-western India. Front. Energy Res. 8, 614212. doi: 10.3389/fenrg.2020.614212
    Vera, R.E., Vivas, K.A., Urdaneta, F., Franco, J., Sun, R., Forfora, N., Frazier, R., Gongora, S., Saloni, D., Fenn, L., Zhu, J.Y., Chang, H. min, Jameel, H., Gonzalez, R., 2023b. Transforming non-wood feedstocks into dissolving pulp via organosolv pulping: an alternative strategy to boost the share of natural fibers in the textile industry. J. Clean. Prod. 429. doi: 10.1016/j.jclepro.2023.139394, Available at:.
    Vera, R.E., Suarez, A., Zambrano, F., Marquez, R., Bedard, J., Vivas, K.A., Pifano, A., Farrell, M., Ankeny, M., Jameel, H., Gonzalez, R., 2023. Upcycling cotton textile waste into bio-based building blocks through an environmentally friendly and high-yield conversion process. Resour. Conserv. Recycl. 189, 106715. doi: 10.1016/j.resconrec.2022.106715
    Vera, R.E., Zambrano, F., Marquez, R., Vivas, K.A., Forfora, N., Bedard, J., Farrell, M., Ankeny, M., Pal, L., Jameel, H., Gonzalez, R., 2023. Environmentally friendly oxidation pretreatments to produce sugar-based building blocks from dyed textile wastes via enzymatic hydrolysis. Chem. Eng. J. 467, 143321. doi: 10.1016/j.cej.2023.143321
    Vera, R.E., Zambrano, F., Suarez, A., Pifano, A., Marquez, R., Farrell, M., Ankeny, M., Jameel, H., Gonzalez, R., 2022. Transforming textile wastes into biobased building blocks via enzymatic hydrolysis: a review of key challenges and opportunities. Clean. Circ. Bioecon. 3, 100026.
    Vocht, M.P., Beyer, R., Thomasic, P., Müller, A., Ota, A., Hermanutz, F., Buchmeiser, M.R., 2021. High-performance cellulosic filament fibers prepared via dry-jet wet spinning from ionic liquids. Cellulose 28, 3055–3067. doi: 10.1007/s10570-021-03697-x
    Wang, B., Sain, M., Oksman, K., 2007. Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl. Compos. Mater. 14, 89–103. doi: 10.1007/s10443-006-9032-9
    Wang, N., Chen, H.Z., 2013. Manufacture of dissolving pulps from cornstalk by novel method coupling steam explosion and mechanical carding fractionation. Bioresour. Technol. 139, 59–65. doi: 10.1016/j.biortech.2013.04.015
    Wang, Q.B., Du, H.S., Zhang, F., Zhang, Y.D., Wu, M.Y., Yu, G., Liu, C., Li, B., Peng, H., 2018. Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method. J. Mater. Chem. A 6, 13021–13030. doi: 10.1039/c8ta01986j
    Wawan Kartiwa Haroen Dan Nyoman Wistara, 2008. Rayon filament properties from five lesser known tropical woods species. J. Tek. Ind. Pert. 18, 94–98.
    Wei, W., Tian, Z.J., Ji, X.X., Wang, Q., Chen, J.C., Zhang, G.C., Lucia, L.A., 2020. Understanding the effect of severity factor of prehydrolysis on dissolving pulp production using prehydrolysis kraft pulping and elemental chlorine-free bleaching sequence. BioResources 15, 4323–4336. doi: 10.15376/biores.15.2.4323-4336
    West, A., 2021. Fiber world: sustainable alternative plant fibers for textiles. Text. World. Available at: https://www.textileworld.com/textile-world/features/2021/04/fiber-world-sustainable-alternative-plant-fibers-for-textiles.
    Williams, D., 2019. Industrial hemp as a modern commodity crop. ASA, CSSA, and SSSA 8, 243598319.
    Win Win Textiles, 2018. Introduction to regenerated cellulosic fibres. Available at: https://win-win.info/sustainable-concepts/regenerated-cellulosic-fibres/
    Woodings, C., 2003. Fibers, regenerated cellulose. Available at: 10.1002/0471238961.1805070523151504.a01.pub2
    Wu, G., Qu, P., Sun, E., Chang, Z., Xu, Y., Huang, H., 2015. Composted rice husk properties. BioResources 10, 227–239.
    Xu, J.Y., Krietemeyer, E.F., Boddu, V.M., Liu, S.X., Liu, W.C., 2018. Production and characterization of cellulose nanofibril (CNF) from agricultural waste corn stover. Carbohydr. Polym. 192, 202–207. doi: 10.1016/j.carbpol.2018.03.017
    Yang, B., Qin, X.Y., Hu, H.C., Duan, C., He, Z.B., Ni, Y.H., 2020. Using ionic liquid (EmimAc)-water mixture in selective removal of hemicelluloses from a paper-grade bleached hardwood kraft pulp. Cellulose 27, 9653–9661. doi: 10.1007/s10570-020-03423-z
    Yang, Y.P., Zhang, Y., Dawelbeit, A., Deng, Y., Lang, Y.X., Yu, M.H., 2017. Structure and properties of regenerated cellulose fibers from aqueous NaOH/thiourea/urea solution. Cellulose 24, 4123–4137. doi: 10.1007/s10570-017-1418-3
    Yousef, S., Tatariants, M., Tichonovas, M., Sarwar, Z., Jonuškienė, I., Kliucininkas, L., 2019. A new strategy for using textile waste as a sustainable source of recovered cotton. Resour. Conserv. Recycl. 145, 359–369. doi: 10.1016/j.resconrec.2019.02.031
    Yuan, Z.Y., Wen, Y.B., Kapu, N.S., Beatson, R., Mark Martinez, D., 2017. A biorefinery scheme to fractionate bamboo into high-grade dissolving pulp and ethanol. Biotechnol. Biofuels 10, 38. doi: 10.1186/s13068-017-0723-2
    Yunnan Reascend Tobacco Technology Group Co. Ltd., 2009. Preparation method of hemp dissolving pulp. Available at: https://patents.google.com/patent/CN102644211A/en.
    Zhang, Y., Ghaly, A.E., Li, B., 2013. Physical properties of rice residues as affected by variety and climatic and cultivation conditions in three continents. Am. J. Appl. Sci. 9, 1757–1768.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(7)

    Article Metrics

    Article views (432) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return