Volume 9 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Long Cheng, Shanyong Wang, Hailong Lu, Jun Ye, Junming Xu, Kui Wang, Jianchun Jiang. Selective activation of C–C bonds in lignin model compounds and lignin for production of value-added chemicals[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 433-464. doi: 10.1016/j.jobab.2024.02.001
Citation: Long Cheng, Shanyong Wang, Hailong Lu, Jun Ye, Junming Xu, Kui Wang, Jianchun Jiang. Selective activation of C–C bonds in lignin model compounds and lignin for production of value-added chemicals[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 433-464. doi: 10.1016/j.jobab.2024.02.001

Selective activation of C–C bonds in lignin model compounds and lignin for production of value-added chemicals

doi: 10.1016/j.jobab.2024.02.001
More Information
  • Corresponding author: E-mail address: chengl@jsut.edu.cn (L. Cheng)
  • Available Online: 2024-02-10
  • Publish Date: 2024-11-01
  • Lignin is a rich renewable aromatic resource that can produce high-value-added chemicals. Lignin is regarded as one of the three major components of lignocellulosic biomass, which is composed of phenylpropane units connected by C–O bond and C–C bond. The cleavage of two chemical bonds is the main catalytic pathway in the production of chemicals and fuels from lignin. Although the cleavage of C–O converts lignin into valuable aromatic compounds and renewable carbon sources, selective depolymerization for C–C bonds is an important method to increase the yield of aromatic monomers. Therefore, in this review, we summarized the latest research trends on C–C bond selective cleavage in lignin and lignin model compounds, focusing on various catalytic systems, including hydrogenolysis, oxidate, photocatalysis, and electrocatalysis. By analyzing the current status of C–C bond breakage, the core issues and challenges related to this process and the expectations for future research were emphasized.

     

  • Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
  • loading
  • Abbas, A., Qadeer, K., Al-Hinai, A., Tarar, M.H., Qyyum, M.A., Al-Muhtaseb, A.H., Al Abri, R., Lee, M., Dickson, R., 2022. Process development and policy implications for large scale deployment of solar-driven electrolysis-based renewable methanol production. Green Chem. 24, 7630–7643. doi: 10.1039/d2gc01993k
    Abdus Salam, M., Wayne Cheah, Y., Ho, P.H., Bernin, D., Achour, A., Nejadmoghadam, E., Öhrman, O., Arora, P., Olsson, L., Creaser, D., 2022. Elucidating the role of NiMoS-USY during the hydrotreatment of kraft lignin. Chem. Eng. J. 442, 136216. doi: 10.1016/j.cej.2022.136216
    Achour, A., Bernin, D., Creaser, D., Olsson, L., 2023. Evaluation of kraft and hydrolysis lignin hydroconversion over unsupported NiMoS catalyst. Chem. Eng. J. 453, 139829. doi: 10.1016/j.cej.2022.139829
    Alabi, A.O., Sambo, A.S., 2023. Comparative bio-energy potential of De-oiled coconut pulp and coconut shell: insights from physicochemical characterization, pyrolysis kinetics and thermodynamic studies. Fuel Process. Technol. 243, 107658. doi: 10.1016/j.fuproc.2023.107658
    Cao, L.C., Yu, I.K.M., Liu, Y.Y., Ruan, X.X., Tsang, D.C.W., Hunt, A.J., Ok, Y.S., Song, H., Zhang, S.C., 2018. Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects. Bioresour. Technol. 269, 465–475. doi: 10.1016/j.biortech.2018.08.065
    Chandel, A.K., Garlapati, V.K., Singh, A.K., Antunes, F.A.F., da Silva, S.S., 2018. The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour. Technol. 264, 370–381. doi: 10.1016/j.biortech.2018.06.004
    Chen, H., Hong, D.H., Wan, K., Wang, J.J., Niu, B., Zhang, Y.Y., Long, D.H., 2022. Urchin-like Nb2O5 hollow microspheres enabling efficient and selective photocatalytic C-C bond cleavage in lignin models under ambient conditions. Chin. Chem. Lett. 33, 4357–4362. doi: 10.1016/j.cclet.2021.11.084
    Chen, M.Q., Dai, W., Wang, Y.S., Tang, Z.Y., Li, H., Li, C., Yang, Z.L., Wang, J., 2023a. Selective catalytic depolymerization of lignin to guaiacols over Mo-Mn/sepiolite in supercritical ethanol. Fuel 333, 126365. doi: 10.1016/j.fuel.2022.126365
    Chen, M.Q., Li, H., Wang, Y.S., Tang, Z.Y., Dai, W., Li, C., Yang, Z.L., Wang, J., 2023b. Lignin depolymerization for aromatic compounds over Ni-Ce/biochar catalyst under aqueous-phase glycerol. Appl. Energy 332, 120489. doi: 10.1016/j.apenergy.2022.120489
    Cui, T.T., Ma, L.N., Wang, S.B., Ye, C.L., Liang, X., Zhang, Z.D., Meng, G., Zheng, L.R., Hu, H.S., Zhang, J.W., Duan, H.H., Wang, D.S., Li, Y.D., 2021. Atomically dispersed Pt-N3C1 sites enabling efficient and selective electrocatalytic C-C bond cleavage in lignin models under ambient conditions. J. Am. Chem. Soc. 143, 9429–9439. doi: 10.1021/jacs.1c02328
    Deng, J., Zhou, C., Yang, Y., Nan, B., Dong, L., Cai, L.C., Li, L.N., Wang, Z.J., Yang, X.F., Chen, Z.P., 2023. Visible-light-driven selective cleavage of C-C bonds in lignin model substrates using carbon nitride-supported ruthenium single-atom catalyst. Chem. Eng. J. 462, 142282. doi: 10.1016/j.cej.2023.142282
    Dong, L., Xia, J., Guo, Y., Liu, X.H., Wang, H.F., Wang, Y.Q., 2021. Mechanisms of Caromatic-C bonds cleavage in lignin over NbOx-supported Ru catalyst. J. Catal. 394, 94–103. doi: 10.1016/j.jcat.2021.01.001
    Dou, X.M., Jiang, X., Li, W.Z., Zhu, C.F., Liu, Q.C., Lu, Q., Zheng, X.S., Chang, H.M., Jameel, H., 2020. Highly efficient conversion of Kraft lignin into liquid fuels with a Co-Zn-beta zeolite catalyst. Appl. Catal. B 268, 118429. doi: 10.1016/j.apcatb.2019.118429
    Gao, D.H., Ouyang, D.H., Zhao, X.B., 2022. Electro-oxidative depolymerization of lignin for production of value-added chemicals. Green Chem. 24, 8585–8605. doi: 10.1039/d2gc02660k
    Gao, H.B., Qiu, L.L., Wu, F.P., Xiao, J., Zhao, Y.P., Liang, J., Bai, Y.H., Liu, F.J., Cao, J.P., 2023. Highly efficient catalytic hydrogenolysis of lignin model compounds over hydrotalcite-derived Ni/Al2O3 catalysts. Fuel 337, 127196. doi: 10.1016/j.fuel.2022.127196
    Gírio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Łukasik, R., 2010. Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. 101, 4775–4800. doi: 10.1016/j.biortech.2010.01.088
    Gu, F.W., Liu, H.C., 2020. Hydroxyl radicals-mediated oxidative cleavage of the glycosidic bond in cellobiose by copper catalysts and its application to low-temperature depolymerization of cellulose. Chin. J. Catal. 41, 1073–1080. doi: 10.1016/S1872-2067(20)63569-0
    He, P.P., Chen, B., Huang, L., Liu, X.X., Qin, J.Z., Zhang, Z.H., Dai, W., 2022. Heterogeneous manganese-oxide-catalyzed successive cleavage and functionalization of alcohols to access amides and nitriles. Chemistry 8, 1906–1927. doi: 10.1016/j.chempr.2022.02.021
    Hou, T.T., Luo, N.C., Li, H.J., Heggen, M., Lu, J.M., Wang, Y.H., Wang, F., 2017. Yin and Yang dual characters of CuOx clusters for C-C bond oxidation driven by visible light. ACS Catal. 7, 3850–3859. doi: 10.1021/acscatal.7b00629
    Hu, Y.Z., Yan, L., Zhao, X.L., Wang, C.G., Li, S., Zhang, X.H., Ma, L.L., Zhang, Q., 2021. Mild selective oxidative cleavage of lignin C-C bonds over a copper catalyst in water. Green Chem. 23, 7030–7040. doi: 10.1039/d1gc02102h
    Jindal, M., Uniyal, P., Thallada, B., 2023. Reductive catalytic fractionation as a novel pretreatment/lignin-first approach for lignocellulosic biomass valorization: a review. Bioresour. Technol. 385, 129396. doi: 10.1016/j.biortech.2023.129396
    Jing, Y.X., Shakouri, M., Liu, X.H., Hu, Y.F., Guo, Y., Wang, Y.Q., 2022. Breaking C-C bonds and preserving C-O bonds in aromatic plastics and lignin via a reversing bond energy cleavage strategy. ACS Catal. 12, 10690–10699. doi: 10.1021/acscatal.2c02924
    Kang, Y., Yang, Y.Q., Yao, X.Q., Liu, Y.R., Ji, X.Y., Xin, J.Y., Xu, J.L., Dong, H.X., Yan, D.X., He, H.Y., Lu, X.M., 2020. Weak bonds joint effects catalyze the cleavage of strong C-C bond of lignin-inspired compounds and lignin in air by ionic liquids. ChemSusChem 13, 5945–5953. doi: 10.1002/cssc.202001828
    Kang, Y., Yao, X.Q., Yang, Y.Q., Xu, J.L., Xin, J.Y., Zhou, Q., Li, M.J., Lu, X.M., Zhang, S.J., 2021. Metal-free and mild photo-thermal synergism in ionic liquids for lignin Cα-Cβ bond cleavage to provide aldehydes. Green Chem. 23, 5524–5534. doi: 10.1039/d1gc00784j
    Klass, D.L., 1998. Biomass for Renewable Energy, Fuels, and Chemicals. Academic Press, San Diego.
    Kong, L.P., Dai, L.Y., Wang, Y.Y., 2023. Enhancing aromatic hydrocarbon formation via catalytic depolymerization of lignin waste over Ru/WOx/N-C catalyst. Fuel 332, 126263. doi: 10.1016/j.fuel.2022.126263
    Kong, X.C., Liu, C., Xu, W.C., Han, Y., Fan, Y.Y., Lei, M., Li, M., Xiao, R., 2021. Catalytic hydroprocessing of stubborn lignin in supercritical methanol with Cu/CuMgAlOx catalyst. Fuel Process. Technol. 218, 106869. doi: 10.1016/j.fuproc.2021.106869
    Lee, T.W., Yang, J.W., 2018. Transition-metal-free conversion of lignin model compounds to high-value aromatics: scope and chemoselectivity. Green Chem. 20, 3761–3771. doi: 10.1039/c8gc01886c
    Li, C., Shi, J.J., Zhang, K., Wang, Y.S., Tang, Z.Y., Chen, M.Q., 2022a. Efficient conversion of Kraft lignin to guaiacol and 4-alkyl guaiacols over Fe-Fe3C/C based catalyst under supercritical ethanol. Fuel 315, 123249. doi: 10.1016/j.fuel.2022.123249
    Li, H.J., Liu, M.J., Liu, H.F., Luo, N.C., Zhang, C.F., Wang, F., 2020a. Amine-mediated bond cleavage in oxidized lignin models. ChemSusChem 13, 4660–4665. doi: 10.1002/cssc.202001228
    Li, L.X., Kong, J.H., Zhang, H.M., Liu, S.J., Zeng, Q., Zhang, Y.Q., Ma, H., He, H.Y., Long, J.X., Li, X.H., 2020b. Selective aerobic oxidative cleavage of lignin C-C bonds over novel hierarchical Ce-Cu/MFI nanosheets. Appl. Catal. B 279, 119343. doi: 10.1016/j.apcatb.2020.119343
    Li, P.J., Liu, R., Zhao, Z.J., Niu, F.S., Hu, K., 2023. Lignin C-C bond cleavage induced by consecutive two-photon excitation of a metal-free photocatalyst. Chem. Commun. 59, 1777–1780. doi: 10.1039/d2cc06730g
    Li, S.Y., Li, Z.J., Yu, H., Sytu, M.R., Wang, Y.X., Beeri, D., Zheng, W.W., Sherman, B.D., Yoo, C.G., Leem, G., 2020c. Solar-driven lignin oxidation via hydrogen atom transfer with a dye-sensitized TiO2 photoanode. ACS Energy Lett. 5, 777–784. doi: 10.1021/acsenergylett.9b02391
    Li, S.Y., Wijethunga, U.K., Davis, A.H., Kim, S., Zheng, W.W., Sherman, B.D., Yoo, C.G., Leem, G., 2022b. Ru(Ⅱ) polypyridyl-modified TiO2 nanoparticles for photocatalytic C-C/C-O bond cleavage at room temperature. ACS Appl. Nano Mater. 5, 948–956. doi: 10.1021/acsanm.1c03622
    Li, X.X., Ding, Y.M., Pan, X.L., Xing, Y.N., Zhang, B., Liu, X.Y., Tan, Y.L., Wang, H., Li, C.Z., 2022c. Scission of C-O and C-C linkages in lignin over RuRe alloy catalyst. J. Energy Chem. 67, 492–499. doi: 10.1016/j.jechem.2021.10.040
    Liang, D., Wu, J.C., Xie, C., Wen, J., Lyu, Y.H., Sofer, Z., Zheng, J.Y., Wang, S.Y., 2022. Efficiently and selectively photocatalytic cleavage of C-C bond by C3N4 nanosheets: defect-enhanced engineering and rational reaction route. Appl. Catal. B 317, 121690. doi: 10.1016/j.apcatb.2022.121690
    Liao, Y.H., D'Halluin, M., Makshina, E., Verboekend, D., Sels, B.F., 2018. Shape selectivity vapor-phase conversion of lignin-derived 4-ethylphenol to phenol and ethylene over acidic aluminosilicates: impact of acid properties and pore constraint. Appl. Catal. B 234, 117–129. doi: 10.1016/j.apcatb.2018.04.001
    Lim, S.H., Jang, H., Kim, M.J., Wee, K.R., Lim, D.H., Kim, Y.I., Cho, D.W., 2022. Visible-light-induced selective C-C bond cleavage reactions of dimeric β-O-4 and β-1 lignin model substrates utilizing amine-functionalized fullerene. J. Org. Chem. 87, 2289–2300. doi: 10.1021/acs.joc.1c01991
    Lin, F., Ma, Y.L., Sun, Y.G., Zhao, K.H., Gao, T.T., Zhu, Y.B., 2021. Heterogeneous Ni-Ru/H-ZSM-5 one-pot catalytic conversion of lignin into monophenols. Renew. Energy 170, 1070–1080. doi: 10.1016/j.renene.2021.01.150
    Liu, H.F., Li, H.J., Lu, J.M., Zeng, S., Wang, M., Luo, N.C., Xu, S.T., Wang, F., 2018. Photocatalytic cleavage of C-C bond in lignin models under visible light on mesoporous graphitic carbon nitride through π-π stacking interaction. ACS Catal. 8, 4761–4771. doi: 10.1021/acscatal.8b00022
    Liu, H.F., Li, H.J., Luo, N.C., Wang, F., 2020a. Visible-light-induced oxidative lignin C-C bond cleavage to aldehydes using vanadium catalysts. ACS Catal 10, 632–643. doi: 10.1021/acscatal.9b03768
    Liu, M.Y., Han, B.X., Dyson, P.J., 2022a. Simultaneous generation of methyl esters and CO in lignin transformation. Angew. Chem. Int. Ed Engl. 61, e202209093. doi: 10.1002/anie.202209093
    Liu, M.Y., Zhang, Z.R., Yan, J., Liu, S.S., Liu, H.Z., Liu, Z.T., Wang, W.T., He, Z.H., Han, B.X., 2020b. Aerobic oxidative cleavage and esterification of C(OH)-C bonds. Chemistry 6, 3288–3296. doi: 10.1016/j.chempr.2020.09.006
    Liu, X.W., Wang, L.G., Zhai, L.J., Wu, C.L., Xu, H.J., 2022b. H2O2-promoted C-C bond oxidative cleavage of β-O-4 lignin models to benzanilides using water as a solvent under metal-free conditions. Green Chem. 24, 4395–4398. doi: 10.1039/d2gc00878e
    Lu, X.Y., Wang, D.D., Guo, H.Q., Xiu, P.C., Chen, J.J., Qin, Y., Robin, H.M., Xu, C.Z., Zhang, X.G., Gu, X.L., 2022. Insights into depolymerization pathways and mechanism of alkali lignin over a Ni1.2-ZrO2/WO3/γ-Al2O3 catalyst. Chin. J. Chem. Eng. 48, 191–201. doi: 10.1007/s11239-021-02490-8
    Ma, L.N., Zhou, H., Kong, X.G., Li, Z.H., Duan, H.H., 2021. An electrocatalytic strategy for C-C bond cleavage in lignin model compounds and lignin under ambient conditions. ACS Sustain. Chem. Eng. 9, 1932–1940. doi: 10.1021/acssuschemeng.0c08612
    Meng, Q.L., Yan, J., Wu, R.Z., Liu, H.Z., Sun, Y., Wu, N.N., Xiang, J.F., Zheng, L.R., Zhang, J., Han, B.X., 2021. Sustainable production of benzene from lignin. Nat. Commun. 12, 4534. doi: 10.1038/s41467-021-24780-8
    Mushtaq, U., Park, J., Riaz, A., Ranaware, V., Khan, M.K., Verma, D., Kim, J., 2021. High-yield production of deoxygenated monomers from kraft lignin over ZnO-co/N-CNTs in water. ACS Sustain. Chem. Eng. 9, 3232–3245. doi: 10.1021/acssuschemeng.0c08664
    Nguyen, S.T., Murray, P.R.D., Knowles, R.R., 2020. Light-driven depolymerization of native lignin enabled by proton-coupled electron transfer. ACS Catal 10, 800–805. doi: 10.1021/acscatal.9b04813
    Parthasarathi, R., Romero, R.A., Redondo, A., Gnanakaran, S., 2011. Theoretical study of the remarkably diverse linkages in lignin. J. Phys. Chem. Lett. 2, 2660–2666. doi: 10.1021/jz201201q
    Salam, M.A., Cheah, Y.W., Ho, P.H., Olsson, L., Creaser, D., 2021. Hydrotreatment of lignin dimers over NiMoS-USY: effect of silica/alumina ratio. Sustain. Energy Fuels 5, 3445–3457. doi: 10.1039/d1se00412c
    Sahayaraj, D.V., Lusi, A., Kohler, A.J., Bateni, H., Radhakrishnan, H., Saraeian, A., Shanks, B.H., Bai, X.L., Tessonnier, J.P., 2023. An effective strategy to produce highly amenable cellulose and enhance lignin upgrading to aromatic and olefinic hydrocarbons. Energy Environ. Sci. 16, 97–112. doi: 10.1039/D2EE02304K
    Shen, X.J., Zhang, C.F., Han, B.X., Wang, F., 2022. Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: road to the carbon-neutral future. Chem. Soc. Rev. 51, 1608–1628. doi: 10.1039/d1cs00908g
    Shi, N., Liu, D., Huang, Q., Guo, Z.S., Jiang, R.X., Wang, F., Chen, Q.T., Li, M., Shen, G.B., Wen, F.S., 2019. Product-oriented decomposition of lignocellulose catalyzed by novel polyoxometalates-ionic liquid mixture. Bioresour. Technol. 283, 174–183. doi: 10.1016/j.biortech.2019.03.048
    Shin, H.Y., Jo, S.M., Kim, S.S., 2022. Oxidative depolymerization of kraft lignin assisted by potassium tert-butoxide and its effect on color and UV absorption. Ind. Crops Prod. 187, 115539. doi: 10.1016/j.indcrop.2022.115539
    Singh, K., Mehra, S., Kumar, A., 2022. Metal-based ionic liquids: effective catalysts in aqueous media for the selective production of vanillin from alkali lignin at room temperature. Green Chem. 24, 9629–9642. doi: 10.1039/d2gc03207d
    Subbotina, E., Rukkijakan, T., Marquez-Medina, M.D., Yu, X.W., Johnsson, M., Samec, J.S.M., 2021. Oxidative cleavage of C-C bonds in lignin. Nat. Chem. 13, 1118–1125. doi: 10.1038/s41557-021-00783-2
    Sudarsanam, P., Zhong, R.Y., Van den Bosch, S., Coman, S.M., Parvulescu, V.I., Sels, B.F., 2018. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev. 47, 8349–8402. doi: 10.1039/c8cs00410b
    Sun, L.G., Ye, X.H., Cao, Z.W., Zhang, C.Y., Yao, C., Ni, C.Y., Li, X.Z., 2022. Upconversion enhanced photocatalytic conversion of lignin biomass into valuable product over CeVO4/palygorskite nanocomposite: effect of Gd3+ incorporation. Appl. Catal. A 648, 118923. doi: 10.1016/j.apcata.2022.118923
    Sun, Z.H., Fridrich, B., de Santi, A., Elangovan, S., Barta, K., 2018. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678. doi: 10.1021/acs.chemrev.7b00588
    Tan, S.Z., Yu, X.Z., Zhu, L.N., Fu, W.R., Wang, L.Y., 2022. Heterogeneous iron-catalyzed aerobic oxidative cleavage of C-C bonds in alcohols to esters. ACS Sustain. Chem. Eng. 10, 16527–16537. doi: 10.1021/acssuschemeng.2c03355
    Tian, Z.P., Liang, X.B., Li, R.X., Wang, C., Liu, J.P., Lei, L.B., Shu, R.Y., Chen, Y., 2022. Hydrodeoxygenation of guaiacol as a model compound of pyrolysis lignin-oil over NiCo bimetallic catalyst: reactivity and kinetic study. Fuel 308, 122034. doi: 10.1016/j.fuel.2021.122034
    Wang, H.Y., Giardino, G.J., Chen, R., Yang, C.J., Niu, J., Wang, D.W., 2023a. Photocatalytic depolymerization of native lignin toward chemically recyclable polymer networks. ACS Cent. Sci. 9, 48–55. doi: 10.1021/acscentsci.2c01257
    Wang, L.G., He, M., Liu, X.W., Zhai, L.J., Niu, L.X., Xue, Z.L., Wu, H.T., 2023b. t-BuOK promoted C-C bond oxidative cleavage of β-O-4 and β-1 lignin models to benzoic acids at room temperature. Green Chem. 25, 550–553. doi: 10.1039/D2GC02982K
    Wang, L., Yin, J., Jiang, J.G., Zhang, Y.F., Song, M.Y., Zhang, R., Dong, Z.G., Yang, H.P., Yu, H.B., 2022a. Revealing G-lignin model compounds pyrolysis behavior: β-O-4 and 5-5' dimer and trimer. Fuel 317, 123531. doi: 10.1016/j.fuel.2022.123531
    Wang, N., Xue, R., Yang, N., Sun, H., Zhang, B.Y., Ma, Z.M., Ma, Y.Q., Zang, L.H., 2022b. Efficient oxidative cleavage of lignin C-C model compound using MOF-derived Cobalt/Nickel sulfide heterostructures. J. Alloys Compd. 929, 167324. doi: 10.1016/j.jallcom.2022.167324
    Wang, W.L., Liu, Y.C., Wang, Y., Liu, L.F., Hu, C.W., 2022c. The influence of solvent on the pyrolysis of organosolv lignins extracted from willow. Energy Convers. Manag. X 13, 100139.
    Wang, X.T., Chu, S., Shao, J.J., Liu, C., Luo, Z.C., Xiao, R., Zhang, H.Y., 2022d. Efficient and selective C-C bond cleavage of a lignin model using a polyimide photocatalyst with high photooxidation capability. ACS Sustain. Chem. Eng. 10, 11555–11566. doi: 10.1021/acssuschemeng.2c02991
    Wang, Y.L., He, J.H., Zhang, Y.T., 2020. CeCl3-promoted simultaneous photocatalytic cleavage and amination of Cα-Cβ bond in lignin model compounds and native lignin. CCS Chem. 2, 107–117. doi: 10.31635/ccschem.020.201900076
    Wang, Y.L., Liu, Y., He, J.H., Zhang, Y.T., 2019. Redox-neutral photocatalytic strategy for selective C-C bond cleavage of lignin and lignin models via PCET process. Sci. Bull. 64, 1658–1666. doi: 10.1016/j.scib.2019.09.003
    Wu, X.J., Lin, J.C., Zhang, H.Z., Xie, S.J., Zhang, Q.H., Sels, B.F., Wang, Y., 2021a. Z-Scheme nanocomposite with high redox ability for efficient cleavage of lignin C-C bonds under simulated solar light. Green Chem. 23, 10071–10078. doi: 10.1039/d1gc03455c
    Wu, X.J., Xie, S.J., Zhang, H.K., Zhang, Q.H., Sels, B.F., Wang, Y., 2021b. Metal sulfide photocatalysts for lignocellulose valorization. Adv. Mater. 33, e2007129. doi: 10.1002/adma.202007129
    Wu, X.J., Fan, X.T., Xie, S.J., Lin, J.C., Cheng, J., Zhang, Q.H., Chen, L.Y., Wang, Y., 2018. Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions. Nat. Catal. 1, 772–780. doi: 10.1038/s41929-018-0148-8
    Xie, B., Tobimatsu, Y., Kamitakahara, H., Takano, T., 2022. Reaction selectivity in electro-oxidation of lignin dimer model compounds and synthetic lignin with different mediators for the laccase mediator system (PZH, NHPI, ABTS). ACS Sustain. Chem. Eng. 10, 6633–6641. doi: 10.1021/acssuschemeng.2c00432
    Xu, J., Shi, J.S., Wang, J.Y., Zhang, L.H., Wang, Y.J., 2022a. Photocatalyst g-C3N4 for efficient cleavage of lignin C-C bonds in micellar aqueous medium. Mol. Catal. 530, 112598. doi: 10.1016/j.mcat.2022.112598
    Xu, J.K., Zhou, P.F., Zhang, C.T., Yuan, L., Xiao, X., Dai, L., Huo, K.F., 2022b. Striding the threshold of photocatalytic lignin-first biorefining via a bottom-up approach: from model compounds to realistic lignin. Green Chem. 24, 5351–5378. doi: 10.1039/d2gc01409b
    Xu, X.W., Li, P.H., Zhong, Y.D., Yu, J.D., Miao, C., Tong, G.L., 2023. Review on the oxidative catalysis methods of converting lignin into vanillin. Int. J. Biol. Macromol. 243, 125203. doi: 10.1016/j.ijbiomac.2023.125203
    Xu, Y.H., Li, M.F., 2021. Hydrothermal liquefaction of lignocellulose for value-added products: mechanism, parameter and production application. Bioresour. Technol. 342, 126035. doi: 10.1016/j.biortech.2021.126035
    Ye, K., Liu, Y., Wu, S.B., Zhuang, J.P., 2021. A review for lignin valorization: challenges and perspectives in catalytic hydrogenolysis. Ind. Crops Prod. 172, 114008. doi: 10.1016/j.indcrop.2021.114008
    Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M., 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599. doi: 10.1021/cr900354u
    Zhai, Y.X., Li, C., Xu, G.Y., Ma, Y.F., Liu, X.H., Zhang, Y., 2017. Depolymerization of lignin via a non-precious Ni-Fe alloy catalyst supported on activated carbon. Green Chem. 19, 1895–1903. doi: 10.1039/C7GC00149E
    Zhang, B., Guo, T.L., Li, Z.W., Kühn, F.E., Lei, M., Zhao, Z.K., Xiao, J.L., Zhang, J., Xu, D.Z., Zhang, T., Li, C.Z., 2022a. Transition-metal-free synthesis of pyrimidines from lignin β-O-4 segments via a one-pot multi-component reaction. Nat. Commun. 13, 3365. doi: 10.1038/s41467-022-30815-5
    Zhang, B., Li, J., Guo, L., Chen, Z.P., Li, C., 2018. Photothermally promoted cleavage of β-1, 4-glycosidic bonds of cellulosic biomass on Ir/HY catalyst under mild conditions. Appl. Catal. B 237, 660–664. doi: 10.1016/j.apcatb.2018.06.041
    Zhang, B.K., Li, W.Z., Li, X., 2022b. Selective production of lignin-derived monomers from corn stover by tuning the acid and hydrogenation sites of aluminum phosphate catalysts. Ind. Crops Prod. 178, 114608. doi: 10.1016/j.indcrop.2022.114608
    Zhang, C.F., Wang, F., 2021. Catalytic cleavage of lignin C-O and C-C bonds. In: Catalysis in Biomass Conversion. Elsevier, Amsterdam, pp. 175–218.
    Zhang, H.C., Liu, Y., Fu, S.Y., Deng, Y.L., 2021. Selective hydrodeoxygenation of lignin model compound (3, 4-dimethoxybenzyl alcohol) by Pd/CNx catalyst. Int. J. Biol. Macromol. 169, 274–281. doi: 10.1001/jama.2021.10161
    Zhang, H.C., Yi, Z.D., Fu, S.Y., Li, C.Z., Lucia, L.A., Liu, Q.Y., 2023a. Pd nanocubes supported on SiW12 @Co-ZIF Nanosheets for High-efficiency rupture of ether bonds in model and actual lignin. Appl. Catal. B 322, 122128. doi: 10.1016/j.apcatb.2022.122128
    Zhang, Q.Q., Gupta, N.K., Rose, M., Gu, X.L., Menezes, P.W., Chen, Z.P., 2023b. Mechanistic insights into the photocatalytic valorization of lignin models via C-O/C-C cleavage or C-C/C-N coupling. Chem Catal. 3, 100470. doi: 10.1016/j.checat.2022.11.009
    Zhang, X., Li, W.Z., Wang, J.D., Zhang, B.K., Guo, G., Shen, C.C., Jiang, Y.H., 2022c. Depolymerization of Kraft lignin into liquid fuels over a WO3 modified acid-base coupled hydrogenation catalyst. Fuel 323, 124428. doi: 10.1016/j.fuel.2022.124428
    Zhang, Y.M., Yue, H.J., Zou, J., Yao, R.J., Duan, W.Y., Ma, H., Zhao, Y.Z., He, Z.M., 2023c. Oxidative lignin depolymerization using metal supported hydrotalcite catalysts: effects of process parameters on phenolic compounds distribution. Fuel 331, 125805. doi: 10.1016/j.fuel.2022.125805
    Zheng, Q.Q., Zhang, D.Q., Fu, P., Wang, A.X., Sun, Y.M., Li, Z.Y., Fan, Q.W., 2022. Insight into the fast pyrolysis of lignin: unraveling the role of volatile evolving and char structural evolution. Chem. Eng. J. 437, 135316. doi: 10.1016/j.cej.2022.135316
    Zhou, H., Chen, L., Guo, Y., Liu, X.H., Wu, X.P., Gong, X.Q., Wang, Y.Q., 2022. Hydrogenolysis cleavage of the Csp2-Csp3 bond over a metal-free NbOPO4 catalyst. ACS Catal. 12, 4806–4812. doi: 10.1021/acscatal.2c00034
    Zhou, Y.F., Slater, T.J.A., Luo, X.L., Shen, Y., 2023. A versatile single-copper-atom electrocatalyst for biomass valorization. Appl. Catal. B 324, 122218. doi: 10.1016/j.apcatb.2022.122218
    Zhou, Z.Y., Liu, D.H., Zhao, X.B., 2021. Conversion of lignocellulose to biofuels and chemicals via sugar platform: an updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renew. Sustain. Energy Rev. 146, 111169. doi: 10.1016/j.rser.2021.111169
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(4)

    Article Metrics

    Article views (303) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return