Citation: | Long Cheng, Shanyong Wang, Hailong Lu, Jun Ye, Junming Xu, Kui Wang, Jianchun Jiang. Selective activation of C–C bonds in lignin model compounds and lignin for production of value-added chemicals[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 433-464. doi: 10.1016/j.jobab.2024.02.001 |
Abbas, A., Qadeer, K., Al-Hinai, A., Tarar, M.H., Qyyum, M.A., Al-Muhtaseb, A.H., Al Abri, R., Lee, M., Dickson, R., 2022. Process development and policy implications for large scale deployment of solar-driven electrolysis-based renewable methanol production. Green Chem. 24, 7630–7643. doi: 10.1039/d2gc01993k
|
Abdus Salam, M., Wayne Cheah, Y., Ho, P.H., Bernin, D., Achour, A., Nejadmoghadam, E., Öhrman, O., Arora, P., Olsson, L., Creaser, D., 2022. Elucidating the role of NiMoS-USY during the hydrotreatment of kraft lignin. Chem. Eng. J. 442, 136216. doi: 10.1016/j.cej.2022.136216
|
Achour, A., Bernin, D., Creaser, D., Olsson, L., 2023. Evaluation of kraft and hydrolysis lignin hydroconversion over unsupported NiMoS catalyst. Chem. Eng. J. 453, 139829. doi: 10.1016/j.cej.2022.139829
|
Alabi, A.O., Sambo, A.S., 2023. Comparative bio-energy potential of De-oiled coconut pulp and coconut shell: insights from physicochemical characterization, pyrolysis kinetics and thermodynamic studies. Fuel Process. Technol. 243, 107658. doi: 10.1016/j.fuproc.2023.107658
|
Cao, L.C., Yu, I.K.M., Liu, Y.Y., Ruan, X.X., Tsang, D.C.W., Hunt, A.J., Ok, Y.S., Song, H., Zhang, S.C., 2018. Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects. Bioresour. Technol. 269, 465–475. doi: 10.1016/j.biortech.2018.08.065
|
Chandel, A.K., Garlapati, V.K., Singh, A.K., Antunes, F.A.F., da Silva, S.S., 2018. The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour. Technol. 264, 370–381. doi: 10.1016/j.biortech.2018.06.004
|
Chen, H., Hong, D.H., Wan, K., Wang, J.J., Niu, B., Zhang, Y.Y., Long, D.H., 2022. Urchin-like Nb2O5 hollow microspheres enabling efficient and selective photocatalytic C-C bond cleavage in lignin models under ambient conditions. Chin. Chem. Lett. 33, 4357–4362. doi: 10.1016/j.cclet.2021.11.084
|
Chen, M.Q., Dai, W., Wang, Y.S., Tang, Z.Y., Li, H., Li, C., Yang, Z.L., Wang, J., 2023a. Selective catalytic depolymerization of lignin to guaiacols over Mo-Mn/sepiolite in supercritical ethanol. Fuel 333, 126365. doi: 10.1016/j.fuel.2022.126365
|
Chen, M.Q., Li, H., Wang, Y.S., Tang, Z.Y., Dai, W., Li, C., Yang, Z.L., Wang, J., 2023b. Lignin depolymerization for aromatic compounds over Ni-Ce/biochar catalyst under aqueous-phase glycerol. Appl. Energy 332, 120489. doi: 10.1016/j.apenergy.2022.120489
|
Cui, T.T., Ma, L.N., Wang, S.B., Ye, C.L., Liang, X., Zhang, Z.D., Meng, G., Zheng, L.R., Hu, H.S., Zhang, J.W., Duan, H.H., Wang, D.S., Li, Y.D., 2021. Atomically dispersed Pt-N3C1 sites enabling efficient and selective electrocatalytic C-C bond cleavage in lignin models under ambient conditions. J. Am. Chem. Soc. 143, 9429–9439. doi: 10.1021/jacs.1c02328
|
Deng, J., Zhou, C., Yang, Y., Nan, B., Dong, L., Cai, L.C., Li, L.N., Wang, Z.J., Yang, X.F., Chen, Z.P., 2023. Visible-light-driven selective cleavage of C-C bonds in lignin model substrates using carbon nitride-supported ruthenium single-atom catalyst. Chem. Eng. J. 462, 142282. doi: 10.1016/j.cej.2023.142282
|
Dong, L., Xia, J., Guo, Y., Liu, X.H., Wang, H.F., Wang, Y.Q., 2021. Mechanisms of Caromatic-C bonds cleavage in lignin over NbOx-supported Ru catalyst. J. Catal. 394, 94–103. doi: 10.1016/j.jcat.2021.01.001
|
Dou, X.M., Jiang, X., Li, W.Z., Zhu, C.F., Liu, Q.C., Lu, Q., Zheng, X.S., Chang, H.M., Jameel, H., 2020. Highly efficient conversion of Kraft lignin into liquid fuels with a Co-Zn-beta zeolite catalyst. Appl. Catal. B 268, 118429. doi: 10.1016/j.apcatb.2019.118429
|
Gao, D.H., Ouyang, D.H., Zhao, X.B., 2022. Electro-oxidative depolymerization of lignin for production of value-added chemicals. Green Chem. 24, 8585–8605. doi: 10.1039/d2gc02660k
|
Gao, H.B., Qiu, L.L., Wu, F.P., Xiao, J., Zhao, Y.P., Liang, J., Bai, Y.H., Liu, F.J., Cao, J.P., 2023. Highly efficient catalytic hydrogenolysis of lignin model compounds over hydrotalcite-derived Ni/Al2O3 catalysts. Fuel 337, 127196. doi: 10.1016/j.fuel.2022.127196
|
Gírio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Łukasik, R., 2010. Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. 101, 4775–4800. doi: 10.1016/j.biortech.2010.01.088
|
Gu, F.W., Liu, H.C., 2020. Hydroxyl radicals-mediated oxidative cleavage of the glycosidic bond in cellobiose by copper catalysts and its application to low-temperature depolymerization of cellulose. Chin. J. Catal. 41, 1073–1080. doi: 10.1016/S1872-2067(20)63569-0
|
He, P.P., Chen, B., Huang, L., Liu, X.X., Qin, J.Z., Zhang, Z.H., Dai, W., 2022. Heterogeneous manganese-oxide-catalyzed successive cleavage and functionalization of alcohols to access amides and nitriles. Chemistry 8, 1906–1927. doi: 10.1016/j.chempr.2022.02.021
|
Hou, T.T., Luo, N.C., Li, H.J., Heggen, M., Lu, J.M., Wang, Y.H., Wang, F., 2017. Yin and Yang dual characters of CuOx clusters for C-C bond oxidation driven by visible light. ACS Catal. 7, 3850–3859. doi: 10.1021/acscatal.7b00629
|
Hu, Y.Z., Yan, L., Zhao, X.L., Wang, C.G., Li, S., Zhang, X.H., Ma, L.L., Zhang, Q., 2021. Mild selective oxidative cleavage of lignin C-C bonds over a copper catalyst in water. Green Chem. 23, 7030–7040. doi: 10.1039/d1gc02102h
|
Jindal, M., Uniyal, P., Thallada, B., 2023. Reductive catalytic fractionation as a novel pretreatment/lignin-first approach for lignocellulosic biomass valorization: a review. Bioresour. Technol. 385, 129396. doi: 10.1016/j.biortech.2023.129396
|
Jing, Y.X., Shakouri, M., Liu, X.H., Hu, Y.F., Guo, Y., Wang, Y.Q., 2022. Breaking C-C bonds and preserving C-O bonds in aromatic plastics and lignin via a reversing bond energy cleavage strategy. ACS Catal. 12, 10690–10699. doi: 10.1021/acscatal.2c02924
|
Kang, Y., Yang, Y.Q., Yao, X.Q., Liu, Y.R., Ji, X.Y., Xin, J.Y., Xu, J.L., Dong, H.X., Yan, D.X., He, H.Y., Lu, X.M., 2020. Weak bonds joint effects catalyze the cleavage of strong C-C bond of lignin-inspired compounds and lignin in air by ionic liquids. ChemSusChem 13, 5945–5953. doi: 10.1002/cssc.202001828
|
Kang, Y., Yao, X.Q., Yang, Y.Q., Xu, J.L., Xin, J.Y., Zhou, Q., Li, M.J., Lu, X.M., Zhang, S.J., 2021. Metal-free and mild photo-thermal synergism in ionic liquids for lignin Cα-Cβ bond cleavage to provide aldehydes. Green Chem. 23, 5524–5534. doi: 10.1039/d1gc00784j
|
Klass, D.L., 1998. Biomass for Renewable Energy, Fuels, and Chemicals. Academic Press, San Diego.
|
Kong, L.P., Dai, L.Y., Wang, Y.Y., 2023. Enhancing aromatic hydrocarbon formation via catalytic depolymerization of lignin waste over Ru/WOx/N-C catalyst. Fuel 332, 126263. doi: 10.1016/j.fuel.2022.126263
|
Kong, X.C., Liu, C., Xu, W.C., Han, Y., Fan, Y.Y., Lei, M., Li, M., Xiao, R., 2021. Catalytic hydroprocessing of stubborn lignin in supercritical methanol with Cu/CuMgAlOx catalyst. Fuel Process. Technol. 218, 106869. doi: 10.1016/j.fuproc.2021.106869
|
Lee, T.W., Yang, J.W., 2018. Transition-metal-free conversion of lignin model compounds to high-value aromatics: scope and chemoselectivity. Green Chem. 20, 3761–3771. doi: 10.1039/c8gc01886c
|
Li, C., Shi, J.J., Zhang, K., Wang, Y.S., Tang, Z.Y., Chen, M.Q., 2022a. Efficient conversion of Kraft lignin to guaiacol and 4-alkyl guaiacols over Fe-Fe3C/C based catalyst under supercritical ethanol. Fuel 315, 123249. doi: 10.1016/j.fuel.2022.123249
|
Li, H.J., Liu, M.J., Liu, H.F., Luo, N.C., Zhang, C.F., Wang, F., 2020a. Amine-mediated bond cleavage in oxidized lignin models. ChemSusChem 13, 4660–4665. doi: 10.1002/cssc.202001228
|
Li, L.X., Kong, J.H., Zhang, H.M., Liu, S.J., Zeng, Q., Zhang, Y.Q., Ma, H., He, H.Y., Long, J.X., Li, X.H., 2020b. Selective aerobic oxidative cleavage of lignin C-C bonds over novel hierarchical Ce-Cu/MFI nanosheets. Appl. Catal. B 279, 119343. doi: 10.1016/j.apcatb.2020.119343
|
Li, P.J., Liu, R., Zhao, Z.J., Niu, F.S., Hu, K., 2023. Lignin C-C bond cleavage induced by consecutive two-photon excitation of a metal-free photocatalyst. Chem. Commun. 59, 1777–1780. doi: 10.1039/d2cc06730g
|
Li, S.Y., Li, Z.J., Yu, H., Sytu, M.R., Wang, Y.X., Beeri, D., Zheng, W.W., Sherman, B.D., Yoo, C.G., Leem, G., 2020c. Solar-driven lignin oxidation via hydrogen atom transfer with a dye-sensitized TiO2 photoanode. ACS Energy Lett. 5, 777–784. doi: 10.1021/acsenergylett.9b02391
|
Li, S.Y., Wijethunga, U.K., Davis, A.H., Kim, S., Zheng, W.W., Sherman, B.D., Yoo, C.G., Leem, G., 2022b. Ru(Ⅱ) polypyridyl-modified TiO2 nanoparticles for photocatalytic C-C/C-O bond cleavage at room temperature. ACS Appl. Nano Mater. 5, 948–956. doi: 10.1021/acsanm.1c03622
|
Li, X.X., Ding, Y.M., Pan, X.L., Xing, Y.N., Zhang, B., Liu, X.Y., Tan, Y.L., Wang, H., Li, C.Z., 2022c. Scission of C-O and C-C linkages in lignin over RuRe alloy catalyst. J. Energy Chem. 67, 492–499. doi: 10.1016/j.jechem.2021.10.040
|
Liang, D., Wu, J.C., Xie, C., Wen, J., Lyu, Y.H., Sofer, Z., Zheng, J.Y., Wang, S.Y., 2022. Efficiently and selectively photocatalytic cleavage of C-C bond by C3N4 nanosheets: defect-enhanced engineering and rational reaction route. Appl. Catal. B 317, 121690. doi: 10.1016/j.apcatb.2022.121690
|
Liao, Y.H., D'Halluin, M., Makshina, E., Verboekend, D., Sels, B.F., 2018. Shape selectivity vapor-phase conversion of lignin-derived 4-ethylphenol to phenol and ethylene over acidic aluminosilicates: impact of acid properties and pore constraint. Appl. Catal. B 234, 117–129. doi: 10.1016/j.apcatb.2018.04.001
|
Lim, S.H., Jang, H., Kim, M.J., Wee, K.R., Lim, D.H., Kim, Y.I., Cho, D.W., 2022. Visible-light-induced selective C-C bond cleavage reactions of dimeric β-O-4 and β-1 lignin model substrates utilizing amine-functionalized fullerene. J. Org. Chem. 87, 2289–2300. doi: 10.1021/acs.joc.1c01991
|
Lin, F., Ma, Y.L., Sun, Y.G., Zhao, K.H., Gao, T.T., Zhu, Y.B., 2021. Heterogeneous Ni-Ru/H-ZSM-5 one-pot catalytic conversion of lignin into monophenols. Renew. Energy 170, 1070–1080. doi: 10.1016/j.renene.2021.01.150
|
Liu, H.F., Li, H.J., Lu, J.M., Zeng, S., Wang, M., Luo, N.C., Xu, S.T., Wang, F., 2018. Photocatalytic cleavage of C-C bond in lignin models under visible light on mesoporous graphitic carbon nitride through π-π stacking interaction. ACS Catal. 8, 4761–4771. doi: 10.1021/acscatal.8b00022
|
Liu, H.F., Li, H.J., Luo, N.C., Wang, F., 2020a. Visible-light-induced oxidative lignin C-C bond cleavage to aldehydes using vanadium catalysts. ACS Catal 10, 632–643. doi: 10.1021/acscatal.9b03768
|
Liu, M.Y., Han, B.X., Dyson, P.J., 2022a. Simultaneous generation of methyl esters and CO in lignin transformation. Angew. Chem. Int. Ed Engl. 61, e202209093. doi: 10.1002/anie.202209093
|
Liu, M.Y., Zhang, Z.R., Yan, J., Liu, S.S., Liu, H.Z., Liu, Z.T., Wang, W.T., He, Z.H., Han, B.X., 2020b. Aerobic oxidative cleavage and esterification of C(OH)-C bonds. Chemistry 6, 3288–3296. doi: 10.1016/j.chempr.2020.09.006
|
Liu, X.W., Wang, L.G., Zhai, L.J., Wu, C.L., Xu, H.J., 2022b. H2O2-promoted C-C bond oxidative cleavage of β-O-4 lignin models to benzanilides using water as a solvent under metal-free conditions. Green Chem. 24, 4395–4398. doi: 10.1039/d2gc00878e
|
Lu, X.Y., Wang, D.D., Guo, H.Q., Xiu, P.C., Chen, J.J., Qin, Y., Robin, H.M., Xu, C.Z., Zhang, X.G., Gu, X.L., 2022. Insights into depolymerization pathways and mechanism of alkali lignin over a Ni1.2-ZrO2/WO3/γ-Al2O3 catalyst. Chin. J. Chem. Eng. 48, 191–201. doi: 10.1007/s11239-021-02490-8
|
Ma, L.N., Zhou, H., Kong, X.G., Li, Z.H., Duan, H.H., 2021. An electrocatalytic strategy for C-C bond cleavage in lignin model compounds and lignin under ambient conditions. ACS Sustain. Chem. Eng. 9, 1932–1940. doi: 10.1021/acssuschemeng.0c08612
|
Meng, Q.L., Yan, J., Wu, R.Z., Liu, H.Z., Sun, Y., Wu, N.N., Xiang, J.F., Zheng, L.R., Zhang, J., Han, B.X., 2021. Sustainable production of benzene from lignin. Nat. Commun. 12, 4534. doi: 10.1038/s41467-021-24780-8
|
Mushtaq, U., Park, J., Riaz, A., Ranaware, V., Khan, M.K., Verma, D., Kim, J., 2021. High-yield production of deoxygenated monomers from kraft lignin over ZnO-co/N-CNTs in water. ACS Sustain. Chem. Eng. 9, 3232–3245. doi: 10.1021/acssuschemeng.0c08664
|
Nguyen, S.T., Murray, P.R.D., Knowles, R.R., 2020. Light-driven depolymerization of native lignin enabled by proton-coupled electron transfer. ACS Catal 10, 800–805. doi: 10.1021/acscatal.9b04813
|
Parthasarathi, R., Romero, R.A., Redondo, A., Gnanakaran, S., 2011. Theoretical study of the remarkably diverse linkages in lignin. J. Phys. Chem. Lett. 2, 2660–2666. doi: 10.1021/jz201201q
|
Salam, M.A., Cheah, Y.W., Ho, P.H., Olsson, L., Creaser, D., 2021. Hydrotreatment of lignin dimers over NiMoS-USY: effect of silica/alumina ratio. Sustain. Energy Fuels 5, 3445–3457. doi: 10.1039/d1se00412c
|
Sahayaraj, D.V., Lusi, A., Kohler, A.J., Bateni, H., Radhakrishnan, H., Saraeian, A., Shanks, B.H., Bai, X.L., Tessonnier, J.P., 2023. An effective strategy to produce highly amenable cellulose and enhance lignin upgrading to aromatic and olefinic hydrocarbons. Energy Environ. Sci. 16, 97–112. doi: 10.1039/D2EE02304K
|
Shen, X.J., Zhang, C.F., Han, B.X., Wang, F., 2022. Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: road to the carbon-neutral future. Chem. Soc. Rev. 51, 1608–1628. doi: 10.1039/d1cs00908g
|
Shi, N., Liu, D., Huang, Q., Guo, Z.S., Jiang, R.X., Wang, F., Chen, Q.T., Li, M., Shen, G.B., Wen, F.S., 2019. Product-oriented decomposition of lignocellulose catalyzed by novel polyoxometalates-ionic liquid mixture. Bioresour. Technol. 283, 174–183. doi: 10.1016/j.biortech.2019.03.048
|
Shin, H.Y., Jo, S.M., Kim, S.S., 2022. Oxidative depolymerization of kraft lignin assisted by potassium tert-butoxide and its effect on color and UV absorption. Ind. Crops Prod. 187, 115539. doi: 10.1016/j.indcrop.2022.115539
|
Singh, K., Mehra, S., Kumar, A., 2022. Metal-based ionic liquids: effective catalysts in aqueous media for the selective production of vanillin from alkali lignin at room temperature. Green Chem. 24, 9629–9642. doi: 10.1039/d2gc03207d
|
Subbotina, E., Rukkijakan, T., Marquez-Medina, M.D., Yu, X.W., Johnsson, M., Samec, J.S.M., 2021. Oxidative cleavage of C-C bonds in lignin. Nat. Chem. 13, 1118–1125. doi: 10.1038/s41557-021-00783-2
|
Sudarsanam, P., Zhong, R.Y., Van den Bosch, S., Coman, S.M., Parvulescu, V.I., Sels, B.F., 2018. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev. 47, 8349–8402. doi: 10.1039/c8cs00410b
|
Sun, L.G., Ye, X.H., Cao, Z.W., Zhang, C.Y., Yao, C., Ni, C.Y., Li, X.Z., 2022. Upconversion enhanced photocatalytic conversion of lignin biomass into valuable product over CeVO4/palygorskite nanocomposite: effect of Gd3+ incorporation. Appl. Catal. A 648, 118923. doi: 10.1016/j.apcata.2022.118923
|
Sun, Z.H., Fridrich, B., de Santi, A., Elangovan, S., Barta, K., 2018. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678. doi: 10.1021/acs.chemrev.7b00588
|
Tan, S.Z., Yu, X.Z., Zhu, L.N., Fu, W.R., Wang, L.Y., 2022. Heterogeneous iron-catalyzed aerobic oxidative cleavage of C-C bonds in alcohols to esters. ACS Sustain. Chem. Eng. 10, 16527–16537. doi: 10.1021/acssuschemeng.2c03355
|
Tian, Z.P., Liang, X.B., Li, R.X., Wang, C., Liu, J.P., Lei, L.B., Shu, R.Y., Chen, Y., 2022. Hydrodeoxygenation of guaiacol as a model compound of pyrolysis lignin-oil over NiCo bimetallic catalyst: reactivity and kinetic study. Fuel 308, 122034. doi: 10.1016/j.fuel.2021.122034
|
Wang, H.Y., Giardino, G.J., Chen, R., Yang, C.J., Niu, J., Wang, D.W., 2023a. Photocatalytic depolymerization of native lignin toward chemically recyclable polymer networks. ACS Cent. Sci. 9, 48–55. doi: 10.1021/acscentsci.2c01257
|
Wang, L.G., He, M., Liu, X.W., Zhai, L.J., Niu, L.X., Xue, Z.L., Wu, H.T., 2023b. t-BuOK promoted C-C bond oxidative cleavage of β-O-4 and β-1 lignin models to benzoic acids at room temperature. Green Chem. 25, 550–553. doi: 10.1039/D2GC02982K
|
Wang, L., Yin, J., Jiang, J.G., Zhang, Y.F., Song, M.Y., Zhang, R., Dong, Z.G., Yang, H.P., Yu, H.B., 2022a. Revealing G-lignin model compounds pyrolysis behavior: β-O-4 and 5-5' dimer and trimer. Fuel 317, 123531. doi: 10.1016/j.fuel.2022.123531
|
Wang, N., Xue, R., Yang, N., Sun, H., Zhang, B.Y., Ma, Z.M., Ma, Y.Q., Zang, L.H., 2022b. Efficient oxidative cleavage of lignin C-C model compound using MOF-derived Cobalt/Nickel sulfide heterostructures. J. Alloys Compd. 929, 167324. doi: 10.1016/j.jallcom.2022.167324
|
Wang, W.L., Liu, Y.C., Wang, Y., Liu, L.F., Hu, C.W., 2022c. The influence of solvent on the pyrolysis of organosolv lignins extracted from willow. Energy Convers. Manag. X 13, 100139.
|
Wang, X.T., Chu, S., Shao, J.J., Liu, C., Luo, Z.C., Xiao, R., Zhang, H.Y., 2022d. Efficient and selective C-C bond cleavage of a lignin model using a polyimide photocatalyst with high photooxidation capability. ACS Sustain. Chem. Eng. 10, 11555–11566. doi: 10.1021/acssuschemeng.2c02991
|
Wang, Y.L., He, J.H., Zhang, Y.T., 2020. CeCl3-promoted simultaneous photocatalytic cleavage and amination of Cα-Cβ bond in lignin model compounds and native lignin. CCS Chem. 2, 107–117. doi: 10.31635/ccschem.020.201900076
|
Wang, Y.L., Liu, Y., He, J.H., Zhang, Y.T., 2019. Redox-neutral photocatalytic strategy for selective C-C bond cleavage of lignin and lignin models via PCET process. Sci. Bull. 64, 1658–1666. doi: 10.1016/j.scib.2019.09.003
|
Wu, X.J., Lin, J.C., Zhang, H.Z., Xie, S.J., Zhang, Q.H., Sels, B.F., Wang, Y., 2021a. Z-Scheme nanocomposite with high redox ability for efficient cleavage of lignin C-C bonds under simulated solar light. Green Chem. 23, 10071–10078. doi: 10.1039/d1gc03455c
|
Wu, X.J., Xie, S.J., Zhang, H.K., Zhang, Q.H., Sels, B.F., Wang, Y., 2021b. Metal sulfide photocatalysts for lignocellulose valorization. Adv. Mater. 33, e2007129. doi: 10.1002/adma.202007129
|
Wu, X.J., Fan, X.T., Xie, S.J., Lin, J.C., Cheng, J., Zhang, Q.H., Chen, L.Y., Wang, Y., 2018. Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions. Nat. Catal. 1, 772–780. doi: 10.1038/s41929-018-0148-8
|
Xie, B., Tobimatsu, Y., Kamitakahara, H., Takano, T., 2022. Reaction selectivity in electro-oxidation of lignin dimer model compounds and synthetic lignin with different mediators for the laccase mediator system (PZH, NHPI, ABTS). ACS Sustain. Chem. Eng. 10, 6633–6641. doi: 10.1021/acssuschemeng.2c00432
|
Xu, J., Shi, J.S., Wang, J.Y., Zhang, L.H., Wang, Y.J., 2022a. Photocatalyst g-C3N4 for efficient cleavage of lignin C-C bonds in micellar aqueous medium. Mol. Catal. 530, 112598. doi: 10.1016/j.mcat.2022.112598
|
Xu, J.K., Zhou, P.F., Zhang, C.T., Yuan, L., Xiao, X., Dai, L., Huo, K.F., 2022b. Striding the threshold of photocatalytic lignin-first biorefining via a bottom-up approach: from model compounds to realistic lignin. Green Chem. 24, 5351–5378. doi: 10.1039/d2gc01409b
|
Xu, X.W., Li, P.H., Zhong, Y.D., Yu, J.D., Miao, C., Tong, G.L., 2023. Review on the oxidative catalysis methods of converting lignin into vanillin. Int. J. Biol. Macromol. 243, 125203. doi: 10.1016/j.ijbiomac.2023.125203
|
Xu, Y.H., Li, M.F., 2021. Hydrothermal liquefaction of lignocellulose for value-added products: mechanism, parameter and production application. Bioresour. Technol. 342, 126035. doi: 10.1016/j.biortech.2021.126035
|
Ye, K., Liu, Y., Wu, S.B., Zhuang, J.P., 2021. A review for lignin valorization: challenges and perspectives in catalytic hydrogenolysis. Ind. Crops Prod. 172, 114008. doi: 10.1016/j.indcrop.2021.114008
|
Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M., 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599. doi: 10.1021/cr900354u
|
Zhai, Y.X., Li, C., Xu, G.Y., Ma, Y.F., Liu, X.H., Zhang, Y., 2017. Depolymerization of lignin via a non-precious Ni-Fe alloy catalyst supported on activated carbon. Green Chem. 19, 1895–1903. doi: 10.1039/C7GC00149E
|
Zhang, B., Guo, T.L., Li, Z.W., Kühn, F.E., Lei, M., Zhao, Z.K., Xiao, J.L., Zhang, J., Xu, D.Z., Zhang, T., Li, C.Z., 2022a. Transition-metal-free synthesis of pyrimidines from lignin β-O-4 segments via a one-pot multi-component reaction. Nat. Commun. 13, 3365. doi: 10.1038/s41467-022-30815-5
|
Zhang, B., Li, J., Guo, L., Chen, Z.P., Li, C., 2018. Photothermally promoted cleavage of β-1, 4-glycosidic bonds of cellulosic biomass on Ir/HY catalyst under mild conditions. Appl. Catal. B 237, 660–664. doi: 10.1016/j.apcatb.2018.06.041
|
Zhang, B.K., Li, W.Z., Li, X., 2022b. Selective production of lignin-derived monomers from corn stover by tuning the acid and hydrogenation sites of aluminum phosphate catalysts. Ind. Crops Prod. 178, 114608. doi: 10.1016/j.indcrop.2022.114608
|
Zhang, C.F., Wang, F., 2021. Catalytic cleavage of lignin C-O and C-C bonds. In: Catalysis in Biomass Conversion. Elsevier, Amsterdam, pp. 175–218.
|
Zhang, H.C., Liu, Y., Fu, S.Y., Deng, Y.L., 2021. Selective hydrodeoxygenation of lignin model compound (3, 4-dimethoxybenzyl alcohol) by Pd/CNx catalyst. Int. J. Biol. Macromol. 169, 274–281. doi: 10.1001/jama.2021.10161
|
Zhang, H.C., Yi, Z.D., Fu, S.Y., Li, C.Z., Lucia, L.A., Liu, Q.Y., 2023a. Pd nanocubes supported on SiW12 @Co-ZIF Nanosheets for High-efficiency rupture of ether bonds in model and actual lignin. Appl. Catal. B 322, 122128. doi: 10.1016/j.apcatb.2022.122128
|
Zhang, Q.Q., Gupta, N.K., Rose, M., Gu, X.L., Menezes, P.W., Chen, Z.P., 2023b. Mechanistic insights into the photocatalytic valorization of lignin models via C-O/C-C cleavage or C-C/C-N coupling. Chem Catal. 3, 100470. doi: 10.1016/j.checat.2022.11.009
|
Zhang, X., Li, W.Z., Wang, J.D., Zhang, B.K., Guo, G., Shen, C.C., Jiang, Y.H., 2022c. Depolymerization of Kraft lignin into liquid fuels over a WO3 modified acid-base coupled hydrogenation catalyst. Fuel 323, 124428. doi: 10.1016/j.fuel.2022.124428
|
Zhang, Y.M., Yue, H.J., Zou, J., Yao, R.J., Duan, W.Y., Ma, H., Zhao, Y.Z., He, Z.M., 2023c. Oxidative lignin depolymerization using metal supported hydrotalcite catalysts: effects of process parameters on phenolic compounds distribution. Fuel 331, 125805. doi: 10.1016/j.fuel.2022.125805
|
Zheng, Q.Q., Zhang, D.Q., Fu, P., Wang, A.X., Sun, Y.M., Li, Z.Y., Fan, Q.W., 2022. Insight into the fast pyrolysis of lignin: unraveling the role of volatile evolving and char structural evolution. Chem. Eng. J. 437, 135316. doi: 10.1016/j.cej.2022.135316
|
Zhou, H., Chen, L., Guo, Y., Liu, X.H., Wu, X.P., Gong, X.Q., Wang, Y.Q., 2022. Hydrogenolysis cleavage of the Csp2-Csp3 bond over a metal-free NbOPO4 catalyst. ACS Catal. 12, 4806–4812. doi: 10.1021/acscatal.2c00034
|
Zhou, Y.F., Slater, T.J.A., Luo, X.L., Shen, Y., 2023. A versatile single-copper-atom electrocatalyst for biomass valorization. Appl. Catal. B 324, 122218. doi: 10.1016/j.apcatb.2022.122218
|
Zhou, Z.Y., Liu, D.H., Zhao, X.B., 2021. Conversion of lignocellulose to biofuels and chemicals via sugar platform: an updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renew. Sustain. Energy Rev. 146, 111169. doi: 10.1016/j.rser.2021.111169
|