Volume 9 Issue 2
May  2024
Turn off MathJax
Article Contents
Yuanlong Guo, Pengcheng Liu, Lei Deng, Changwei Lui, Michael North, Gang Hu, Qitian Huang, Zongbao Kent Zhao, Haibo Xie. Molecularly engineered lignin to polyphenol via organocatalysis as an active sunscreen ingredient[J]. Journal of Bioresources and Bioproducts, 2024, 9(2): 197-210. doi: 10.1016/j.jobab.2024.03.003
Citation: Yuanlong Guo, Pengcheng Liu, Lei Deng, Changwei Lui, Michael North, Gang Hu, Qitian Huang, Zongbao Kent Zhao, Haibo Xie. Molecularly engineered lignin to polyphenol via organocatalysis as an active sunscreen ingredient[J]. Journal of Bioresources and Bioproducts, 2024, 9(2): 197-210. doi: 10.1016/j.jobab.2024.03.003

Molecularly engineered lignin to polyphenol via organocatalysis as an active sunscreen ingredient

doi: 10.1016/j.jobab.2024.03.003
Funds:

Introduced Talent Research Project of Guizhou University ([2022]16)

Platform & Talents [2016]5652, [2017]5788, [2018]5781, and [2019]5607)

No. 21774028

Science and Technology Department of Guizhou Province (Natural Science Key Fund ZK [2021]023

No. 21574030)

Science and Technology Department of Guizhou Province & Guizhou University Joint Fund

LETSGrp2020042402 and Basic research project of Guizhou University ([2023]01).

This work was supported by National Natural Science Foundation of China (No. 22275041

  • Publish Date: 2024-03-20
  • Phenolation is one of the effective strategies to synthesize lignin-based polyphenols, improve lignin's properties, and extend its value-added applications in biological, medicinal and cosmetic fields. Herein, by taking the structural feature advantage of lignin, an effective and green strategy was developed to molecularly engineer lignin into a robust lignin-3-(2-hydroxyphenyl)propionate ester (LPPE) derivative via a transesterification reaction between 3,4-dihydrocoumarin (DHC) and the aliphatic hydroxyls in lignin under organocatalysis. The strategy is optimized and the novel derivative was systematically characterized by 1H, 13C and 31P nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectroscopy. The findings indicated that the successful introduction of 3-(2-hydroxyphenyl)propionate groups using a OH groups/DHC/organic base molar ratio of 1꞉1꞉0.3 at 120 °C for 6 h increased the content of phenolic hydroxyl groups from 1.793 1 to 3.017 9 mmol/g, and the LPPE exhibited excellent ultraviolet-absorbing and antioxidant performance with up to 90% free radical scavenging activity within 20 min using 5 mg/mL of LPPE. In addition, good biocompatibility and a high Sun protection factor (SPF) value of 40.9 were achieved at 5% (w) dosage of LPPE in the cream, indicating its significant application potential in sunscreen.

     

  • loading
  • [1]
    Abarro, G.J., Podschun, J., Diaz, L.J., Ohashi, S., Saake, B., Lehnen, R., Ishida, H., 2016. Benzoxazines with enhanced thermal stability from phenolated organosolv lignin. RSC Adv. 6, 107689-107698.
    [2]
    Alonso, M.V., Oliet, M., Rodríguez, F., García, J., Gilarranz, M.A., Rodríguez, J.J., 2005. Modification of ammonium lignosulfonate by phenolation for use in phenolic resins. Bioresour. Technol. 96, 1013-1018.
    [3]
    An, L.L., Si, C.L., Wang, G.H., Sui, W.J., Tao, Z.Y., 2019. Enhancing the solubility and antioxidant activity of high-molecular-weight lignin by moderate depolymerization via in situ ethanol/acid catalysis. Ind. Crop. Prod. 128, 177-185.
    [4]
    Antunes, F., Mota, I.F., Fangueiro, J.F., Lopes, G., Pintado, M., Costa, P.S., 2023. From sugarcane to skin: lignin as a multifunctional ingredient for cosmetic application. Int. J. Biol. Macromol. 234, 123592.
    [5]
    Barapatre, A., Jha, H., 2017. Degradation of alkali lignin by two ascomycetes and free radical scavenging activity of the products. Biocatal. Biotransform. 35, 269-286.
    [6]
    Boddu, S.K., Ur Rehman, N., Mohanta, T.K., Majhi, A., Avula, S.K., Al-Harrasi, A., 2022. A review on DBU-mediated organic transformations. Green Chem. Lett. Rev. 15, 765-795.
    [7]
    Chen, J.Q., Xu, F., He, W., Yue, G., Hu, J., Xie, H., 2022. Pretreatment of corn stover by levulinic acid-based protic ionic liquids for enhanced enzymatic hydrolysis. ACS Sustain. Chem. Eng. 10, 7134-7148.
    [8]
    Cotana, F., Cavalaglio, G., Nicolini, A., Gelosia, M., Coccia, V., Petrozzi, A., Brinchi, L., 2014. Lignin as co-product of second generation bioethanol production from ligno-cellulosic biomass. Energy Procedia 45, 52-60.
    [9]
    Doherty, W.O.S., Mousavioun, P., Fellows, C.M., 2011. Value-adding to cellulosic ethanol: lignin polymers. Ind. Crop. Prod. 33, 259-276.
    [10]
    Dong, H.L., Zheng, L.M., Yu, P.J., Jiang, Q., Wu, Y., Huang, C.X., Yin, B.S., 2020. Characterization and application of lignin-carbohydrate complexes from lignocellulosic materials as antioxidants for scavenging in vitro and in vivo reactive oxygen species. ACS Sustain. Chem. Eng. 8, 256-266.
    [11]
    Dorrestijn, E., Laarhoven, L.J.J., Arends, I.W.C.E., Mulder, P., 2000. The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J. Anal. Appl. Pyrolysis 54, 153-192.
    [12]
    Espinoza-Acosta, J.L., Figueroa-Espinoza, E.G., de los Ángeles De la Rosa-Alcaraz, M., 2022. Recent progress in the production of lignin-based sunscreens: a Review. Bioresources 17, 3674-3701.
    [13]
    Fan, Q., Liu, T., Zhang, C.Q., Liu, Z.Z., Zheng, W.X., Ou, R.X., Wang, Q.W., 2019. Extraordinary solution-processability of lignin in phenol-maleic anhydride and dielectric films with controllable properties. J. Mater. Chem. A 7, 23162-23172.
    [14]
    Farooq, M., Zou, T., Riviere, G., Sipponen, M.H., Österberg, M., 2019. Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal lignin particles. Biomacromolecules 20, 693-704.
    [15]
    Fu, Y., Qian, Y., Zhang, A.C., Lou, H.M., Ouyang, X.P., Yang, D.J., Qiu, X.Q., 2022. Long-acting ultraviolet-blocking mechanism of lignin: generation and transformation of semiquinone radicals. ACS Sustain. Chem. Eng. 10, 5421-5429.
    [16]
    Gan, L.H., Pan, X.J., 2019. Phenol-enhanced depolymerization and activation of kraft lignin in alkaline medium. Ind. Eng. Chem. Res. 58, 7794-7800.
    [17]
    Gao, C., Li, M., Zhu, C.J., Hu, Y.Q., Shen, T., Li, M.Y., Ji, X.X., Lyu, G.J., Zhuang, W., 2021. One-pot depolymerization, demethylation and phenolation of lignin catalyzed by HBr under microwave irradiation for phenolic foam preparation. Compos. Part B Eng. 205, 108530.
    [18]
    Guo, Y.L., Li, L., Guo, G., Pei, M., Zhang, L.H., Xie, H.B., Sun, H., Zheng, Q., 2021. Synthesis of a fully biobased cellulose-3-(2-hydroxyphenyl) propionate ester with antioxidant activity and UV-resistant properties by the DBU/CO2/DMSO solvent system. Green Chem. 23, 2352-2361.
    [19]
    Huang, C.X., Wang, X.C., Liang, C., Jiang, X., Yang, G., Xu, J., Yong, Q., 2019. A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from Moso bamboo prehydrolyzate. Biotechnol. Biofuels 12, 189.
    [20]
    Huang et al., 2022.
    [21]
    Ji, M.C., Li, J.Y., Li, F.Y., Wang, X.J., Man, J., Li, J.F., Zhang, C.W., Peng, S.X., 2022. A biodegradable chitosan-based composite film reinforced by ramie fibre and lignin for food packaging. Carbohydr. Polym. 281, 119078.
    [22]
    Jiang, X., Liu, J., Du, X.Y., Hu, Z.J., Chang, H.M., Jameel, H., 2018. Phenolation to improve lignin reactivity toward thermosets application. ACS Sustain. Chem. Eng. 6, 5504-5512.
    [23]
    Jin, L.M., Gan, J.Y., Hu, G., Cai, L., Li, Z.Q., Zhang, L.H., Zheng, Q., Xie, H.B., 2019. Preparation of cellulose films from sustainable CO2/DBU/DMSO system. Polymers (Basel) 11, 994.
    [24]
    Jin, L.M., Yu, X., Peng, C., Guo, Y.L., Zhang, L.H., Xu, Q.Q., Zhao, Z.K., Liu, Y., Xie, H.B., 2018. Fast dissolution pretreatment of the corn stover in gamma-valerolactone promoted by ionic liquids: selective delignification and enhanced enzymatic saccharification. Bioresour. Technol. 270, 537-544.
    [25]
    Lee, S.C., Tran, T.M.T., Choi, J.W., Won, K., 2019. Lignin for white natural sunscreens. Int. J. Biol. Macromol. 122, 549-554.
    [26]
    Li, B.W., Xu, C.Q., Liu, L., Yu, J., Fan, Y.M., 2021a. Facile and sustainable etherification of ethyl cellulose towards excellent UV blocking and fluorescence properties. Green Chem. 23, 479-489.
    [27]
    Li, J.J., Zhang, J.Z., Zhang, S.F., Gao, Q., Li, J.Z., Zhang, W., 2017. Fast curing bio-based phenolic resins via lignin demethylated under mild reaction condition. Polymers (Basel) 9, 428.
    [28]
    Li, N.N., Ji, X.H., Wang, B.L., Guo, Y.L., Wang, C.H., Chen, Y.S., 2021b. Functional composite hydrogels entrapping polydopamine hollow nanoparticles for highly efficient resistance of skin penetration and photoprotection. Mater. Sci. Eng. C Mater. Biol. Appl. 128, 112346.
    [29]
    Lin, D.R., Xiao, L.J., Qin, W., Loy, D.A., Wu, Z.J., Chen, H., Zhang, Q., 2022a. Preparation, characterization and antioxidant properties of curcumin encapsulated chitosan/lignosulfonate micelles. Carbohydr. Polym. 281, 119080.
    [30]
    Lin, X.R., Shen, T., Li, M.H., Shaoyu, J.W., Zhuang, W., Li, M., Xu, H., Zhu, C.J., Ying, H.J., Ouyang, P.K., 2022b. Synthesis, characterization, and utilization of poly-amino acid-functionalized lignin for efficient and selective removal of lead ion from aqueous solution. J. Clean. Prod. 347, 131219.
    [31]
    Liu, P.C., Guo, Y.L., Guo, G., Dai, L., Hu, G., Xie, H.B., 2023. Lignin-grafting alternative copolymer of 3, 4-dihydrocoumarin and epoxides as an active and flexible ingredient in sunscreen. Green Chem. 25, 4469-4481.
    [32]
    Lu, X.Y., Gu, X.L., Shi, Y.J., 2022. A review on lignin antioxidants: their sources, isolations, antioxidant activities and various applications. Int. J. Biol. Macromol. 210, 716-741.
    [33]
    Mehta, M.J., Kumar, A., 2019. Ionic liquid stabilized gelatin-lignin films: a potential UV-shielding material with excellent mechanical and antimicrobial properties. Chemistry (Easton) 25, 1269-1274.
    [34]
    Miao, C.L., Zhuang, X.S., Yang, L.M., Li, H.W., Lv, P.M., Luo, W., 2023. Study on extraction of lignin and synthesis of lignin-based epoxy resins using ionic liquid. Biomass Convers. Biorefin. 13, 1115-1126.
    [35]
    Mikame, K., Funaoka, M., 2006. Polymer structure of lignophenol I—Structure and function of fractionated lignophenol. Polym. J. 38, 585-591.
    [36]
    Mou, H.Y., Huang, J., Li, W.Y., Wu, X., Liu, Y.B., Fan, H.M., 2020. Study on the chemical modification of alkali lignin towards for cellulase adsorbent application. Int. J. Biol. Macromol. 149, 794-800.
    [37]
    Nand, B., Khanna, G., Chaudhary, A., Lumb, A., Khurana, J.M., 2015. 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU): a versatile reagent in organic synthesis. Curr. Org. Chem. 19, 790-812.
    [38]
    Nilsson, T.Y., Wagner, M., Inganäs, O., 2015. Lignin modification for biopolymer/conjugated polymer hybrids as renewable energy storage materials. ChemSusChem 8, 4081-4085.
    [39]
    Qian, Y., Qiu, X.Q., Zhu, S.P., 2015. Lignin: a nature-inspired Sun blocker for broad-spectrum sunscreens. Green Chem. 17, 320-324.
    [40]
    Qian, Y., Zhong, X.W., Li, Y., Qiu, X.Q., 2017. Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high Sun protection factor. Ind. Crop. Prod. 101, 54-60.
    [41]
    Qiu, X.Q., Zeng, W.M., Liang, W.S., Xue, Y.Y., Hong, N.L., Li, Y., 2016. Sulfobutylated lignosulfonate with ultrahigh sulfonation degree and its dispersion property in low-rank coal-water slurry. J. Dispers. Sci. Technol. 37, 472-478.
    [42]
    Sadeghifar, H., Ragauskas, A., 2020. Lignin as a UV light blocker: a review. Polymers (Basel) 12, 1134.
    [43]
    Sang, D.Y., Tu, X.D., Tian, J., He, Z.J., Yao, M., 2018. Anchimerically assisted cleavage of aryl methyl ethers by aluminum chloride-sodium iodide in acetonitrile. ChemistrySelect 3, 10103-10107.
    [44]
    Sawamura, K., Tobimatsu, Y., Kamitakahara, H., Takano, T., 2017. Lignin functionalization through chemical demethylation: preparation and tannin-like properties of demethylated guaiacyl-type synthetic lignins. ACS Sustain. Chem. Eng. 5, 5424-5431.
    [45]
    Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S.F., Beckham, G.T., Sels, B.F., 2018. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852-908.
    [46]
    Shen, Y.T., Li, S.K., Qi, R.L., Wu, C.X., Yang, M., Wang, J., Cai, Z.J., Liu, K.A., Yue, J.L., Guan, B., Han, Y.C., Wang, S., Wang, Y.L., 2022. Assembly of hexagonal column interpenetrated spheres from plant polyphenol/cationic surfactants and their application as antimicrobial molecular banks. Angew. Chem. Int. Ed Engl. 61, e202110938.
    [47]
    Simonin, J.P., 2016. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 300, 254-263.
    [48]
    Sudo, A., Uenishi, K., Endo, T., 2007. Imidazole-promoted copolymerization of epoxide and 3, 4-dihydrocoumarin and its application to a high-performance curing system. J. Polym. Sci. A Polym. Chem. 45, 3798-3802.
    [49]
    Taleb, F., Ammar, M., Mosbah, M.B., Salem, R.B., Moussaoui, Y., 2020. Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption. Sci. Rep. 10, 11048.
    [50]
    Thébault, M., Kutuzova, L., Jury, S., Eicher, I., Zikulnig-Rusch and, E.M., Kandelbauer, R., 2020. Effect of phenolation, lignin-type and degree of substitution on the properties of lignin-modified phenol-formaldehyde impregnation resins: molecular weight distribution, wetting behavior, rheological properties and thermal curing profiles. J. Renew. Mater. 8, 603-630.
    [51]
    Tortora, M., Cavalieri, F., Mosesso, P., Ciaffardini, F., Melone, F., Crestini, C., 2014. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules. Biomacromolecules 15, 1634-1643.
    [52]
    Tran, M.H., Phan, D.P., Lee, E.Y., 2021. Review on lignin modifications toward natural UV protection ingredient for lignin-based sunscreens. Green Chem. 23, 4633-4646.
    [53]
    Uenishi, K., Sudo, A., Endo, T., 2008. Anionic alternating copolymerization of 3, 4-dihydrocoumarin and glycidyl ethers: a new approach to polyester synthesis. J. Polym. Sci. A Polym. Chem. 46, 4092-4102.
    [54]
    Upton, B.M., Kasko, A.M., 2016. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem. Rev. 116, 2275-2306.
    [55]
    Van Zee, N.J., Coates, G.W., 2014. Alternating copolymerization of dihydrocoumarin and epoxides catalyzed by chromium salen complexes: a new route to functional polyesters. Chem. Commun. 50, 6322-6325.
    [56]
    Wang, G.H., Liu, X.Q., Zhang, J.Y., Sui, W.J., Jang, J., Si, C., 2018. One-pot lignin depolymerization and activation by solid acid catalytic phenolation for lightweight phenolic foam preparation. Ind. Crop. Prod. 124, 216-225.
    [57]
    Wang, H., Eberhardt, T.L., Wang, C.P., Gao, S.S., Pan, H., 2019. Demethylation of alkali lignin with halogen acids and its application to phenolic resins. Polymers (Basel) 11, 1771.
    [58]
    Wang, M., Wang, F., 2019. Catalytic scissoring of lignin into aryl monomers. Adv. Mater. 31, e1901866.
    [59]
    Wei, X.X., Liu, Y., Luo, Y.D., Shen, Z., Wang, S.F., Li, M.F., Zhang, L.M., 2021. Effect of organosolv extraction on the structure and antioxidant activity of eucalyptus kraft lignin. Int. J. Biol. Macromol. 187, 462-470.
    [60]
    Wen, J.L., Sun, S.L., Xue, B.L., Sun, R.C., 2013a. Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials (Basel) 6, 359-391.
    [61]
    Wen, J.L., Sun, S.L., Yuan, T.Q., Xu, F., Sun, R.C., 2013b. Structural elucidation of lignin polymers of Eucalyptus chips during organosolv pretreatment and extended delignification. J. Agric. Food Chem. 61, 11067-11075.
    [62]
    Wen, R., Fu, S.Y., Zhang, H., 2023b. Synergy of modified lignin and p-coumaric acid for improving the function of Sun-protection in sunscreen. Bioresources 18, 1602-1615.
    [63]
    Widsten, P., Tamminen, T., Liitiä, T., 2020. Natural sunscreens based on nanoparticles of modified kraft lignin (CatLignin). ACS Omega 5, 13438-13446.
    [64]
    Wu, Y., Qian, Y., Zhang, A.C., Lou, H.M., Yang, D.J., Qiu, X.Q., 2020. Light color dihydroxybenzophenone grafted lignin with high UVA/UVB absorbance ratio for efficient and safe natural sunscreen. Ind. Eng. Chem. Res. 59, 17057-17068.
    [65]
    Wu, Y., Wu, X.W., Zhang, A.C., Ouyang, X.P., Lou, H.M., Yang, D.J., Qian, Y., Qiu, X.Q., 2023. Rational design and synthesis of lignin-derived smart sunscreens. Adv. Funct. Mater. 33, 2303889.
    [66]
    Xie, H.B., Yu, X., Yang, Y.L., Zhao, Z.K., 2014. Capturing CO2 for cellulose dissolution. Green Chem. 16, 2422-2427.
    [67]
    Xie, M.T., Chen, Z.D., Xia, Y., Lin, M.S., Li, J.Q., Lan, W., Zhang, L.M., Yue, F.X., 2021. Influence of the lignin extraction methods on the content of tricin in grass lignins. Front. Energy Res. 9, 756285.
    [68]
    Yang, T.T., Xiao, P., Zhang, J.M., Jia, R.N., Nawaz, H., Chen, Z.Y., Zhang, J., 2019. Multifunctional cellulose ester containing hindered phenol groups with free-radical-scavenging and UV-resistant activities. ACS Appl. Mater. Interfaces 11, 4302-4310.
    [69]
    Yang, Z.Z., He, L.N., Zhao, Y.N., Li, B., Yu, B., 2011. CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energy Environ. Sci. 4, 3971-3975.
    [70]
    Zhang, F.D., Jiang, X., Lin, J., Zhao, G.J., Chang, H.M., Jameel, H., 2019. Reactivity improvement by phenolation of wheat straw lignin isolated from a biorefinery process. New J. Chem. 43, 2238-2246.
    [71]
    Zhang, H., Ren, H., Zhai, H.M., 2021a. Analysis of phenolation potential of spruce kraft lignin and construction of its molecular structure model. Ind. Crop. Prod. 167,113506.
    [72]
    Zhang, J.W., Tian, Z.J., Ji, X.X., Zhang, F.S., 2023a. Light-colored lignin extraction by ultrafiltration membrane fractionation for lignin nanoparticles preparation as UV-blocking sunscreen. Int. J. Biol. Macromol. 231, 123244.
    [73]
    Zhang, T.T., Zhou, H., Fu, Y.J., Zhao, Y.J., Yuan, Z.W., Shao, Z.Y., Wang, Z.J., Qin, M.H., 2020. Short-time hydrothermal treatment of poplar wood for the production of a lignin-derived polyphenol antioxidant. ChemSusChem 13, 4478-4486.
    [74]
    Zhang, Y.S., Yuan, Z.S., Mahmood, N., Huang, S.H., Xu, C.C., 2016. Sustainable bio-phenol-hydroxymethylfurfural resins using phenolated de-polymerized hydrolysis lignin and their application in bio-composites. Ind. Crop. Prod. 79, 84-90.
    [75]
    Zhang, Z.L., Li, F.F., Heo, J.W., Chen, J.S., Kim, J.W., Kim, M.S., Kim, Y.S., 2023b. N-Hydroxysuccinimide-catalyzed facile synthesis of high-phenolic-hydroxyl-content lignin for enhanced antioxidant properties. J. Wood Chem. Technol. 43, 35-45.
    [76]
    Zhao, W.T., Wei, C.L., Cui, Y.D., Ye, J.Q., He, B., Liu, X.M., Sun, J., 2022. Efficient demethylation of lignin for polyphenol production enabled by low- cost bifunctional protic ionic liquid under mild and halogen-free conditions. Chem. Eng. J. 443, 136486.
    [77]
    Zhong, L., Wang, C., Xu, M.M., Ji, X.X., Yang, G.H., Chen, J.C., Janaswamy, S., Lyu, G.J., 2021. Alkali-catalyzed organosolv pretreatment of lignocellulose enhances enzymatic hydrolysis and results in highly antioxidative lignin. Energy Fuels 35, 5039-5048.
    [78]
    Zhu, G.Z., Ye, D.W., Chen, X.T., Wu, Y.C., Yang, Z.M., Mai, Y.L., Liao, B., Chen, J.Z., 2023. Lignin-derived polyphenols with enhanced antioxidant activities by chemical demethylation and their structure-activity relationship. Int. J. Biol. Macromol. 237, 124030.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return