Volume 9 Issue 2
May  2024
Turn off MathJax
Article Contents
Yuanlong Guo, Pengcheng Liu, Lei Deng, Changwei Lui, Michael North, Gang Hu, Qitian Huang, Zongbao Kent Zhao, Haibo Xie. Molecularly engineered lignin to polyphenol via organocatalysis as an active sunscreen ingredient[J]. Journal of Bioresources and Bioproducts, 2024, 9(2): 197-210. doi: 10.1016/j.jobab.2024.03.003
Citation: Yuanlong Guo, Pengcheng Liu, Lei Deng, Changwei Lui, Michael North, Gang Hu, Qitian Huang, Zongbao Kent Zhao, Haibo Xie. Molecularly engineered lignin to polyphenol via organocatalysis as an active sunscreen ingredient[J]. Journal of Bioresources and Bioproducts, 2024, 9(2): 197-210. doi: 10.1016/j.jobab.2024.03.003

Molecularly engineered lignin to polyphenol via organocatalysis as an active sunscreen ingredient

doi: 10.1016/j.jobab.2024.03.003
More Information
  • Corresponding author: E-mail address: hbxie@gzu.edu.cn (H. Xie)
  • Available Online: 2024-03-20
  • Publish Date: 2024-05-01
  • Phenolation is one of the effective strategies to synthesize lignin-based polyphenols, improve lignin’s properties, and extend its value-added applications in biological, medicinal and cosmetic fields. Herein, by taking the structural feature advantage of lignin, an effective and green strategy was developed to molecularly engineer lignin into a robust lignin-3-(2-hydroxyphenyl)propionate ester (LPPE) derivative via a transesterification reaction between 3,4-dihydrocoumarin (DHC) and the aliphatic hydroxyls in lignin under organocatalysis. The strategy is optimized and the novel derivative was systematically characterized by 1H, 13C and 31P nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectroscopy. The findings indicated that the successful introduction of 3-(2-hydroxyphenyl)propionate groups using a OH groups/DHC/organic base molar ratio of 1꞉1꞉0.3 at 120 °C for 6 h increased the content of phenolic hydroxyl groups from 1.793 1 to 3.017 9 mmol/g, and the LPPE exhibited excellent ultraviolet-absorbing and antioxidant performance with up to 90% free radical scavenging activity within 20 min using 5 mg/mL of LPPE. In addition, good biocompatibility and a high Sun protection factor (SPF) value of 40.9 were achieved at 5% (w) dosage of LPPE in the cream, indicating its significant application potential in sunscreen.

     

  • Declaration of Competing Interest
    There are no conflicts to declare.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2024.03.003
  • loading
  • Abarro, G.J., Podschun, J., Diaz, L.J., Ohashi, S., Saake, B., Lehnen, R., Ishida, H., 2016. Benzoxazines with enhanced thermal stability from phenolated organosolv lignin. RSC Adv. 6, 107689–107698. doi: 10.1039/C6RA22334F
    Alonso, M.V., Oliet, M., Rodríguez, F., García, J., Gilarranz, M.A., Rodríguez, J.J., 2005. Modification of ammonium lignosulfonate by phenolation for use in phenolic resins. Bioresour. Technol. 96, 1013–1018. doi: 10.1016/j.biortech.2004.09.009
    An, L.L., Si, C.L., Wang, G.H., Sui, W.J., Tao, Z.Y., 2019. Enhancing the solubility and antioxidant activity of high-molecular-weight lignin by moderate depolymerization via in situ ethanol/acid catalysis. Ind. Crop. Prod. 128, 177–185. doi: 10.1016/j.indcrop.2018.11.009
    Antunes, F., Mota, I.F., Fangueiro, J.F., Lopes, G., Pintado, M., Costa, P.S., 2023. From sugarcane to skin: lignin as a multifunctional ingredient for cosmetic application. Int. J. Biol. Macromol. 234, 123592. doi: 10.1016/j.ijbiomac.2023.123592
    Barapatre, A., Jha, H., 2017. Degradation of alkali lignin by two ascomycetes and free radical scavenging activity of the products. Biocatal. Biotransform. 35, 269–286. doi: 10.1080/10242422.2017.1327953
    Boddu, S.K., Ur Rehman, N., Mohanta, T.K., Majhi, A., Avula, S.K., Al-Harrasi, A., 2022. A review on DBU-mediated organic transformations. Green Chem. Lett. Rev. 15, 765–795. doi: 10.1080/17518253.2022.2132836
    Chen, J.Q., Xu, F., He, W., Yue, G., Hu, J., Xie, H., 2022. Pretreatment of corn stover by levulinic acid-based protic ionic liquids for enhanced enzymatic hydrolysis. ACS Sustain. Chem. Eng. 10, 7134–7148. doi: 10.1021/acssuschemeng.2c01339
    Cotana, F., Cavalaglio, G., Nicolini, A., Gelosia, M., Coccia, V., Petrozzi, A., Brinchi, L., 2014. Lignin as co-product of second generation bioethanol production from ligno-cellulosic biomass. Energy Procedia 45, 52–60. doi: 10.1016/j.egypro.2014.01.007
    Doherty, W.O.S., Mousavioun, P., Fellows, C.M., 2011. Value-adding to cellulosic ethanol: lignin polymers. Ind. Crop. Prod. 33, 259–276. doi: 10.1016/j.indcrop.2010.10.022
    Dong, H.L., Zheng, L.M., Yu, P.J., Jiang, Q., Wu, Y., Huang, C.X., Yin, B.S., 2020. Characterization and application of lignin–carbohydrate complexes from lignocellulosic materials as antioxidants for scavenging in vitro and in vivo reactive oxygen species. ACS Sustain. Chem. Eng. 8, 256–266. doi: 10.1021/acssuschemeng.9b05290
    Dorrestijn, E., Laarhoven, L.J.J., Arends, I.W.C.E., Mulder, P., 2000. The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J. Anal. Appl. Pyrolysis 54, 153–192. doi: 10.1016/S0165-2370(99)00082-0
    Espinoza-Acosta, J.L., Figueroa-Espinoza, E.G., de los Ángeles De la Rosa-Alcaraz, M., 2022. Recent progress in the production of lignin-based sunscreens: a Review. Bioresources 17, 3674–3701. doi: 10.15376/biores.17.2.espinoza
    Fan, Q., Liu, T., Zhang, C.Q., Liu, Z.Z., Zheng, W.X., Ou, R.X., Wang, Q.W., 2019. Extraordinary solution-processability of lignin in phenol–maleic anhydride and dielectric films with controllable properties. J. Mater. Chem. A 7, 23162–23172. doi: 10.1039/c9ta06665a
    Farooq, M., Zou, T., Riviere, G., Sipponen, M.H., Österberg, M., 2019. Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal lignin particles. Biomacromolecules 20, 693–704. doi: 10.1021/acs.biomac.8b01364
    Fu, Y., Qian, Y., Zhang, A.C., Lou, H.M., Ouyang, X.P., Yang, D.J., Qiu, X.Q., 2022. Long-acting ultraviolet-blocking mechanism of lignin: generation and transformation of semiquinone radicals. ACS Sustain. Chem. Eng. 10, 5421–5429. doi: 10.1021/acssuschemeng.1c08051
    Gan, L.H., Pan, X.J., 2019. Phenol-enhanced depolymerization and activation of kraft lignin in alkaline medium. Ind. Eng. Chem. Res. 58, 7794–7800. doi: 10.1021/acs.iecr.9b01147
    Gao, C., Li, M., Zhu, C.J., Hu, Y.Q., Shen, T., Li, M.Y., Ji, X.X., Lyu, G.J., Zhuang, W., 2021. One-pot depolymerization, demethylation and phenolation of lignin catalyzed by HBr under microwave irradiation for phenolic foam preparation. Compos. Part B Eng. 205, 108530. doi: 10.1016/j.compositesb.2020.108530
    Guo, Y.L., Li, L., Guo, G., Pei, M., Zhang, L.H., Xie, H.B., Sun, H., Zheng, Q., 2021. Synthesis of a fully biobased cellulose-3-(2-hydroxyphenyl) propionate ester with antioxidant activity and UV-resistant properties by the DBU/CO2/DMSO solvent system. Green Chem. 23, 2352–2361. doi: 10.1039/d0gc03478a
    Huang, C.X., Wang, X.C., Liang, C., Jiang, X., Yang, G., Xu, J., Yong, Q., 2019. A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from Moso bamboo prehydrolyzate. Biotechnol. Biofuels 12, 189. doi: 10.1186/s13068-019-1527-3
    Huang, Q., Kamal, R., Shen, H., Lu, H., Song, J., Chu, Y., Xue, C., Zhao, Z.K., 2022. Pilot-scale conversion of corn stover into lipids by the red yeast Rhodosporidium toruloides. J. Environ. Chem. Eng. 10, 108858 doi: 10.1016/j.jece.2022.108858
    Ji, M.C., Li, J.Y., Li, F.Y., Wang, X.J., Man, J., Li, J.F., Zhang, C.W., Peng, S.X., 2022. A biodegradable chitosan-based composite film reinforced by ramie fibre and lignin for food packaging. Carbohydr. Polym. 281, 119078. doi: 10.1016/j.carbpol.2021.119078
    Jiang, X., Liu, J., Du, X.Y., Hu, Z.J., Chang, H.M., Jameel, H., 2018. Phenolation to improve lignin reactivity toward thermosets application. ACS Sustain. Chem. Eng. 6, 5504–5512. doi: 10.1021/acssuschemeng.8b00369
    Jin, L.M., Gan, J.Y., Hu, G., Cai, L., Li, Z.Q., Zhang, L.H., Zheng, Q., Xie, H.B., 2019. Preparation of cellulose films from sustainable CO2/DBU/DMSO system. Polymers (Basel) 11, 994. doi: 10.3390/polym11060994
    Jin, L.M., Yu, X., Peng, C., Guo, Y.L., Zhang, L.H., Xu, Q.Q., Zhao, Z.K., Liu, Y., Xie, H.B., 2018. Fast dissolution pretreatment of the corn stover in gamma-valerolactone promoted by ionic liquids: selective delignification and enhanced enzymatic saccharification. Bioresour. Technol. 270, 537–544. doi: 10.1016/j.biortech.2018.09.083
    Lee, S.C., Tran, T.M.T., Choi, J.W., Won, K., 2019. Lignin for white natural sunscreens. Int. J. Biol. Macromol. 122, 549–554. doi: 10.1016/j.ijbiomac.2018.10.184
    Li, B.W., Xu, C.Q., Liu, L., Yu, J., Fan, Y.M., 2021a. Facile and sustainable etherification of ethyl cellulose towards excellent UV blocking and fluorescence properties. Green Chem. 23, 479–489. doi: 10.1039/d0gc02919j
    Li, J.J., Zhang, J.Z., Zhang, S.F., Gao, Q., Li, J.Z., Zhang, W., 2017. Fast curing bio-based phenolic resins via lignin demethylated under mild reaction condition. Polymers (Basel) 9, 428. doi: 10.3390/polym9090428
    Li, N.N., Ji, X.H., Wang, B.L., Guo, Y.L., Wang, C.H., Chen, Y.S., 2021b. Functional composite hydrogels entrapping polydopamine hollow nanoparticles for highly efficient resistance of skin penetration and photoprotection. Mater. Sci. Eng. C Mater. Biol. Appl. 128, 112346. doi: 10.1016/j.msec.2021.112346
    Lin, D.R., Xiao, L.J., Qin, W., Loy, D.A., Wu, Z.J., Chen, H., Zhang, Q., 2022a. Preparation, characterization and antioxidant properties of curcumin encapsulated chitosan/lignosulfonate micelles. Carbohydr. Polym. 281, 119080. doi: 10.1016/j.carbpol.2021.119080
    Lin, X.R., Shen, T., Li, M.H., Shaoyu, J.W., Zhuang, W., Li, M., Xu, H., Zhu, C.J., Ying, H.J., Ouyang, P.K., 2022b. Synthesis, characterization, and utilization of poly-amino acid-functionalized lignin for efficient and selective removal of lead ion from aqueous solution. J. Clean. Prod. 347, 131219. doi: 10.1016/j.jclepro.2022.131219
    Liu, P.C., Guo, Y.L., Guo, G., Dai, L., Hu, G., Xie, H.B., 2023. Lignin-grafting alternative copolymer of 3, 4-dihydrocoumarin and epoxides as an active and flexible ingredient in sunscreen. Green Chem. 25, 4469–4481. doi: 10.1039/d3gc00531c
    Lu, X.Y., Gu, X.L., Shi, Y.J., 2022. A review on lignin antioxidants: their sources, isolations, antioxidant activities and various applications. Int. J. Biol. Macromol. 210, 716–741. doi: 10.1016/j.ijbiomac.2022.04.228
    Mehta, M.J., Kumar, A., 2019. Ionic liquid stabilized gelatin-lignin films: a potential UV-shielding material with excellent mechanical and antimicrobial properties. Chemistry (Easton) 25, 1269–1274. doi: 10.1002/chem.201803763
    Miao, C.L., Zhuang, X.S., Yang, L.M., Li, H.W., Lv, P.M., Luo, W., 2023. Study on extraction of lignin and synthesis of lignin-based epoxy resins using ionic liquid. Biomass Convers. Biorefin. 13, 1115–1126. doi: 10.1007/s13399-021-01295-2
    Mikame, K., Funaoka, M., 2006. Polymer structure of lignophenol I—Structure and function of fractionated lignophenol. Polym. J. 38, 585–591. doi: 10.1295/polymj.PJ2005142
    Mou, H.Y., Huang, J., Li, W.Y., Wu, X., Liu, Y.B., Fan, H.M., 2020. Study on the chemical modification of alkali lignin towards for cellulase adsorbent application. Int. J. Biol. Macromol. 149, 794–800. doi: 10.1016/j.ijbiomac.2020.01.229
    Nand, B., Khanna, G., Chaudhary, A., Lumb, A., Khurana, J.M., 2015. 1, 8-diazabicyclo[5.4.0]undec-7-ene (DBU): a versatile reagent in organic synthesis. Curr. Org. Chem. 19, 790–812. doi: 10.2174/1385272819666150402221133
    Nilsson, T.Y., Wagner, M., Inganäs, O., 2015. Lignin modification for biopolymer/conjugated polymer hybrids as renewable energy storage materials. ChemSusChem 8, 4081–4085. doi: 10.1002/cssc.201500570
    Qian, Y., Qiu, X.Q., Zhu, S.P., 2015. Lignin: a nature-inspired Sun blocker for broad-spectrum sunscreens. Green Chem. 17, 320–324. doi: 10.1039/C4GC01333F
    Qian, Y., Zhong, X.W., Li, Y., Qiu, X.Q., 2017. Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high Sun protection factor. Ind. Crop. Prod. 101, 54–60. doi: 10.1016/j.indcrop.2017.03.001
    Qiu, X.Q., Zeng, W.M., Liang, W.S., Xue, Y.Y., Hong, N.L., Li, Y., 2016. Sulfobutylated lignosulfonate with ultrahigh sulfonation degree and its dispersion property in low-rank coal-water slurry. J. Dispers. Sci. Technol. 37, 472–478. doi: 10.1080/01932691.2015.1022658
    Sadeghifar, H., Ragauskas, A., 2020. Lignin as a UV light blocker: a review. Polymers (Basel) 12, 1134. doi: 10.3390/polym12051134
    Sang, D.Y., Tu, X.D., Tian, J., He, Z.J., Yao, M., 2018. Anchimerically assisted cleavage of aryl methyl ethers by aluminum chloride-sodium iodide in acetonitrile. ChemistrySelect 3, 10103–10107. doi: 10.1002/slct.201802565
    Sawamura, K., Tobimatsu, Y., Kamitakahara, H., Takano, T., 2017. Lignin functionalization through chemical demethylation: preparation and tannin-like properties of demethylated guaiacyl-type synthetic lignins. ACS Sustain. Chem. Eng. 5, 5424–5431. doi: 10.1021/acssuschemeng.7b00748
    Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S.F., Beckham, G.T., Sels, B.F., 2018. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852–908. doi: 10.1039/c7cs00566k
    Shen, Y.T., Li, S.K., Qi, R.L., Wu, C.X., Yang, M., Wang, J., Cai, Z.J., Liu, K.A., Yue, J.L., Guan, B., Han, Y.C., Wang, S., Wang, Y.L., 2022. Assembly of hexagonal column interpenetrated spheres from plant polyphenol/cationic surfactants and their application as antimicrobial molecular banks. Angew. Chem. Int. Ed Engl. 61, e202110938. doi: 10.1002/anie.202110938
    Simonin, J.P., 2016. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 300, 254–263. doi: 10.1016/j.cej.2016.04.079
    Sudo, A., Uenishi, K., Endo, T., 2007. Imidazole-promoted copolymerization of epoxide and 3, 4-dihydrocoumarin and its application to a high-performance curing system. J. Polym. Sci. A Polym. Chem. 45, 3798–3802. doi: 10.1002/pola.22096
    Taleb, F., Ammar, M., Mosbah, M.B., Salem, R.B., Moussaoui, Y., 2020. Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption. Sci. Rep. 10, 11048. doi: 10.1038/s41598-020-68047-6
    Thébault, M., Kutuzova, L., Jury, S., Eicher, I., Zikulnig-Rusch and, E.M., Kandelbauer, R., 2020. Effect of phenolation, lignin-type and degree of substitution on the properties of lignin-modified phenol-formaldehyde impregnation resins: molecular weight distribution, wetting behavior, rheological properties and thermal curing profiles. J. Renew. Mater. 8, 603–630. doi: 10.32604/jrm.2020.09616
    Tortora, M., Cavalieri, F., Mosesso, P., Ciaffardini, F., Melone, F., Crestini, C., 2014. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules. Biomacromolecules 15, 1634–1643. doi: 10.1021/bm500015j
    Tran, M.H., Phan, D.P., Lee, E.Y., 2021. Review on lignin modifications toward natural UV protection ingredient for lignin-based sunscreens. Green Chem. 23, 4633–4646. doi: 10.1039/d1gc01139a
    Uenishi, K., Sudo, A., Endo, T., 2008. Anionic alternating copolymerization of 3, 4-dihydrocoumarin and glycidyl ethers: a new approach to polyester synthesis. J. Polym. Sci. A Polym. Chem. 46, 4092–4102. doi: 10.1002/pola.22752
    Upton, B.M., Kasko, A.M., 2016. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem. Rev. 116, 2275–2306. doi: 10.1021/acs.chemrev.5b00345
    Van Zee, N.J., Coates, G.W., 2014. Alternating copolymerization of dihydrocoumarin and epoxides catalyzed by chromium salen complexes: a new route to functional polyesters. Chem. Commun. 50, 6322–6325. doi: 10.1039/c4cc01566e
    Wang, G.H., Liu, X.Q., Zhang, J.Y., Sui, W.J., Jang, J., Si, C., 2018. One-pot lignin depolymerization and activation by solid acid catalytic phenolation for lightweight phenolic foam preparation. Ind. Crop. Prod. 124, 216–225. doi: 10.1016/j.indcrop.2018.07.080
    Wang, H., Eberhardt, T.L., Wang, C.P., Gao, S.S., Pan, H., 2019. Demethylation of alkali lignin with halogen acids and its application to phenolic resins. Polymers (Basel) 11, 1771. doi: 10.3390/polym11111771
    Wang, M., Wang, F., 2019. Catalytic scissoring of lignin into aryl monomers. Adv. Mater. 31, e1901866. doi: 10.1002/adma.201901866
    Wei, X.X., Liu, Y., Luo, Y.D., Shen, Z., Wang, S.F., Li, M.F., Zhang, L.M., 2021. Effect of organosolv extraction on the structure and antioxidant activity of eucalyptus kraft lignin. Int. J. Biol. Macromol. 187, 462–470. doi: 10.1016/j.ijbiomac.2021.07.082
    Wen, J.L., Sun, S.L., Xue, B.L., Sun, R.C., 2013a. Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials (Basel) 6, 359–391. doi: 10.3390/ma6010359
    Wen, J.L., Sun, S.L., Yuan, T.Q., Xu, F., Sun, R.C., 2013b. Structural elucidation of lignin polymers of Eucalyptus chips during organosolv pretreatment and extended delignification. J. Agric. Food Chem. 61, 11067–11075. doi: 10.1021/jf403717q
    Wen, R., Fu, S.Y., Zhang, H., 2023b. Synergy of modified lignin and p-coumaric acid for improving the function of Sun-protection in sunscreen. Bioresources 18, 1602–1615. doi: 10.15376/biores.18.1.1602-1615
    Widsten, P., Tamminen, T., Liitiä, T., 2020. Natural sunscreens based on nanoparticles of modified kraft lignin (CatLignin). ACS Omega 5, 13438–13446. doi: 10.1021/acsomega.0c01742
    Wu, Y., Qian, Y., Zhang, A.C., Lou, H.M., Yang, D.J., Qiu, X.Q., 2020. Light color dihydroxybenzophenone grafted lignin with high UVA/UVB absorbance ratio for efficient and safe natural sunscreen. Ind. Eng. Chem. Res. 59, 17057–17068. doi: 10.1021/acs.iecr.9b06970
    Wu, Y., Wu, X.W., Zhang, A.C., Ouyang, X.P., Lou, H.M., Yang, D.J., Qian, Y., Qiu, X.Q., 2023. Rational design and synthesis of lignin-derived smart sunscreens. Adv. Funct. Mater. 33, 2303889. doi: 10.1002/adfm.202303889
    Xie, H.B., Yu, X., Yang, Y.L., Zhao, Z.K., 2014. Capturing CO2 for cellulose dissolution. Green Chem. 16, 2422–2427. doi: 10.1039/C3GC42395F
    Xie, M.T., Chen, Z.D., Xia, Y., Lin, M.S., Li, J.Q., Lan, W., Zhang, L.M., Yue, F.X., 2021. Influence of the lignin extraction methods on the content of tricin in grass lignins. Front. Energy Res. 9, 756285. doi: 10.3389/fenrg.2021.756285
    Yang, T.T., Xiao, P., Zhang, J.M., Jia, R.N., Nawaz, H., Chen, Z.Y., Zhang, J., 2019. Multifunctional cellulose ester containing hindered phenol groups with free-radical-scavenging and UV-resistant activities. ACS Appl. Mater. Interfaces 11, 4302–4310. doi: 10.1021/acsami.8b15642
    Yang, Z.Z., He, L.N., Zhao, Y.N., Li, B., Yu, B., 2011. CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energy Environ. Sci. 4, 3971–3975. doi: 10.1039/c1ee02156g
    Zhang, F.D., Jiang, X., Lin, J., Zhao, G.J., Chang, H.M., Jameel, H., 2019. Reactivity improvement by phenolation of wheat straw lignin isolated from a biorefinery process. New J. Chem. 43, 2238–2246. doi: 10.1039/c8nj05016c
    Zhang, H., Ren, H., Zhai, H.M., 2021. Analysis of phenolation potential of spruce kraft lignin and construction of its molecular structure model. Ind. Crop. Prod. 167, 113506. doi: 10.1016/j.indcrop.2021.113506
    Zhang, J.W., Tian, Z.J., Ji, X.X., Zhang, F.S., 2023a. Light-colored lignin extraction by ultrafiltration membrane fractionation for lignin nanoparticles preparation as UV-blocking sunscreen. Int. J. Biol. Macromol. 231, 123244. doi: 10.1016/j.ijbiomac.2023.123244
    Zhang, T.T., Zhou, H., Fu, Y.J., Zhao, Y.J., Yuan, Z.W., Shao, Z.Y., Wang, Z.J., Qin, M.H., 2020. Short-time hydrothermal treatment of poplar wood for the production of a lignin-derived polyphenol antioxidant. ChemSusChem 13, 4478–4486. doi: 10.1002/cssc.202000534
    Zhang, Y.S., Yuan, Z.S., Mahmood, N., Huang, S.H., Xu, C.C., 2016. Sustainable bio-phenol-hydroxymethylfurfural resins using phenolated de-polymerized hydrolysis lignin and their application in bio-composites. Ind. Crop. Prod. 79, 84–90. doi: 10.3390/md14050084
    Zhang, Z.L., Li, F.F., Heo, J.W., Chen, J.S., Kim, J.W., Kim, M.S., Kim, Y.S., 2023b. N-Hydroxysuccinimide-catalyzed facile synthesis of high-phenolic-hydroxyl-content lignin for enhanced antioxidant properties. J. Wood Chem. Technol. 43, 35–45. doi: 10.1080/02773813.2023.2173781
    Zhao, W.T., Wei, C.L., Cui, Y.D., Ye, J.Q., He, B., Liu, X.M., Sun, J., 2022. Efficient demethylation of lignin for polyphenol production enabled by low- cost bifunctional protic ionic liquid under mild and halogen-free conditions. Chem. Eng. J. 443, 136486. doi: 10.1016/j.cej.2022.136486
    Zhong, L., Wang, C., Xu, M.M., Ji, X.X., Yang, G.H., Chen, J.C., Janaswamy, S., Lyu, G.J., 2021. Alkali-catalyzed organosolv pretreatment of lignocellulose enhances enzymatic hydrolysis and results in highly antioxidative lignin. Energy Fuels 35, 5039–5048. doi: 10.1021/acs.energyfuels.1c00320
    Zhu, G.Z., Ye, D.W., Chen, X.T., Wu, Y.C., Yang, Z.M., Mai, Y.L., Liao, B., Chen, J.Z., 2023. Lignin-derived polyphenols with enhanced antioxidant activities by chemical demethylation and their structure-activity relationship. Int. J. Biol. Macromol. 237, 124030. doi: 10.1016/j.ijbiomac.2023.124030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (213) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return