Volume 9 Issue 3
Aug.  2024
Turn off MathJax
Article Contents
Xucai Wang, Dengxian Wu, Wei Liao, Yaxuan Liu, Wenhui Pei, Jixian Wang, Jiayu Gu, Peng Wang, Kai Lan, Caoxing Huang. Constructing osteo-inductive bio-ink for 3D printing through hybridization of gelatin with maleic acid modified bacterial cellulose by regulating addition volumes of maleic acid solution[J]. Journal of Bioresources and Bioproducts, 2024, 9(3): 336-350. doi: 10.1016/j.jobab.2024.04.001
Citation: Xucai Wang, Dengxian Wu, Wei Liao, Yaxuan Liu, Wenhui Pei, Jixian Wang, Jiayu Gu, Peng Wang, Kai Lan, Caoxing Huang. Constructing osteo-inductive bio-ink for 3D printing through hybridization of gelatin with maleic acid modified bacterial cellulose by regulating addition volumes of maleic acid solution[J]. Journal of Bioresources and Bioproducts, 2024, 9(3): 336-350. doi: 10.1016/j.jobab.2024.04.001

Constructing osteo-inductive bio-ink for 3D printing through hybridization of gelatin with maleic acid modified bacterial cellulose by regulating addition volumes of maleic acid solution

doi: 10.1016/j.jobab.2024.04.001
More Information
  • Corresponding author: E-mail address: hcx@njfu.edu.cn (C. Huang)
  • Available Online: 2024-04-04
  • Publish Date: 2024-07-05
  • Bacterial cellulose (BC) is an exopolysaccharide with unique properties that has been applied in various fields. However, the dense and intertwined nature of BC fibers limits its use in certain applications, including 3D printing scaffolds for bone regeneration. In this work, a controllable BC-based bio-ink for 3D printing was successfully prepared by modifying the neat BC through maleic acid (MA) treatment, aiming to promote bone tissue regeneration. To achieve homogeneous BC dispersions while preserving its crystalline and chemical properties, BC was modified by MA solution (60 %, w/V) with solid-liquid ratio from 1꞉5 to 1꞉50 (w/V) to obtain MA-BC dispersions. The analysis results from microstructure, chemical group, crystallinity, and wettability indicated that the BC/MA solution with ratio of 1꞉30 demonstrated the best pre-treatment performance to obtain MA-BC. Subsequently, by combining MA-BC with gelatin, we successfully formulated MA-BC-GEL gels with favorable rheological properties and compression modulus, which can be used as promising bio-inks for 3D bioprinting applications. In vitro tests demonstrated 1꞉30 MA-BC possessed excellent biocompatibility, a significant ability to express the alkaline phosphatase gene and osteogenic-related genes, and facilitated the formation of mineralized nodules. The utilization of this novel bio-ink in scaffold preparation for bone regeneration highlights the promising application of modified BC in bone tissue engineering field.

     

  • Declaration of competing interest
    The authors declare no conflict of interest.
    CRediT authorship contribution statement
    Xucai Wang: Formal analysis, Investigation, Writing – original draft. Dengxian Wu: Investigation, Writing – original draft. Wei Liao: Writing – original draft. Yaxuan Liu: Methodology. Wenhui Pei: Formal analysis, Methodology. Jixian Wang: Methodology. Jiayu Gu: Investigation. Peng Wang: Conceptualization, Writing – review & editing. Kai Lan: Conceptualization. Caoxing Huang: Conceptualization, Writing – review & editing.
    Ethics approval and consent to participate
    Not applicable.
    Consent for publication
    Not applicable.
    Availability of data
    Data available on request from the authors.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2024.04.001.
    1 The authors contributed equally to this work and should be considered co-first authors.
  • loading
  • Ahmed, J., Gultekinoglu, M., Edirisinghe, M., 2020. Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnol. Adv. 41, 107549. doi: 10.1016/j.biotechadv.2020.107549
    Amiryaghoubi, N., Fathi, M., Pesyan, N.N., Samiei, M., Barar, J., Omidi, Y., 2020. Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine. Med. Res. Rev. 40, 1833–1870. doi: 10.1002/med.21672
    Annabi, N., Fathi, A., Mithieux, S.M., Martens, P., Weiss, A.S., Dehghani, F., 2011. The effect of elastin on chondrocyte adhesion and proliferation on poly (ɛ-caprolactone)/elastin composites. Biomaterials 32, 1517–1525. doi: 10.1016/j.biomaterials.2010.10.024
    Betlej, I., Zakaria, S., Krajewski, K.J., Boruszewski, P., 2021. Bacterial cellulose-properties and its potential application. Sains Malays. 50, 493–505. doi: 10.17576/jsm-2021-5002-20
    Bian, H.Y., Chen, L.H., Dai, H.Q., Zhu, J.Y., 2017. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydr. Polym. 167, 167–176. doi: 10.1016/j.carbpol.2017.03.050
    Bian, H.Y., Luo, J., Wang, R.B., Zhou, X.L., Ni, S.Z., Shi, R., Fang, G.G., Dai, H.Q., 2019. Recyclable and reusable maleic acid for efficient production of cellulose nanofibrils with stable performance. ACS Sustain. Chem. Eng. 7, 20022–20031. doi: 10.1021/acssuschemeng.9b05766
    Black, C.R.M., Goriainov, V., Gibbs, D., Kanczler, J., Tare, R.S., Oreffo, R.O.C., 2015. Bone tissue engineering. Curr. Mol. Biol. Rep. 1, 132–140. doi: 10.1007/s40610-015-0022-2
    Bolchi, C., Bavo, F., Regazzoni, L., Pallavicini, M., 2018. Preparation of enantiopure methionine, arginine, tryptophan, and proline benzyl esters in green ethers by Fischer-Speier reaction. Amino Acids 50, 1261–1268. doi: 10.1007/s00726-018-2599-2
    Bourbon, A.I., Pinheiro, A.C., Ribeiro, C., Miranda, C., Maia, J.M., Teixeira, J.A., Vicente, A.A., 2010. Characterization of galactomannans extracted from seeds of Gleditsia triacanthos and Sophora japonica through shear and extensional rheology: comparison with guar gum and locust bean gum. Food Hydrocoll. 24, 184–192. doi: 10.1016/j.foodhyd.2009.09.004
    Bratosin, D., Mitrofan, L., Palii, C., Estaquier, J., Montreuil, J., 2005. Novel fluorescence assay using calcein-AM for the determination of human erythrocyte viability and aging. Cytometry A 66, 78–84. doi: 10.1002/cyto.a.20152
    Cakmak, A.M., Unal, S., Sahin, A., Oktar, F.N., Sengor, M., Ekren, N., Gunduz, O., Kalaskar, D.M., 2020. 3D printed polycaprolactone/gelatin/bacterial cellulose/hydroxyapatite composite scaffold for bone tissue engineering. Polymers 12, 1962. doi: 10.3390/polym12091962
    Chen, C.T., Ding, W.X., Zhang, H., Zhang, L., Huang, Y., Fan, M.M., Yang, J.Z., Sun, D.P., 2022. Bacterial cellulose-based biomaterials: from fabrication to application. Carbohydr. Polym. 278, 118995. doi: 10.1016/j.carbpol.2021.118995
    Chen, C.T., Yu, Y.L., Li, K.M., Zhao, M.Y., Liu, L., Yang, J.Z., Liu, J., Sun, D.P., 2015. Facile approach to the fabrication of 3D electroconductive nanofibers with controlled size and conductivity templated by bacterial cellulose. Cellulose 22, 3929–3939. doi: 10.1007/s10570-015-0770-4
    Chen, G.Q., Deng, C.X., Li, Y.P., 2012. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 8, 272–288. doi: 10.7150/ijbs.2929
    Choi, S.M., Shin, E.J., 2020. The nanofication and functionalization of bacterial cellulose and its applications. Nanomaterials 10, 406. doi: 10.3390/nano10030406
    Clarissa, W.H.Y., Chia, C.H., Zakaria, S., Evyan, Y.C.Y., 2022. Recent advancement in 3-D printing: nanocomposites with added functionality. Prog. Addit. Manuf. 7, 325–350. doi: 10.1007/s40964-021-00232-z
    Dai, Q.H., Bai, Y.H., Fu, B., Yang, F., 2023. Multifunctional bacterial cellulose films enabled by deep eutectic solvent-extracted lignin. ACS Omega 8, 7430–7437. doi: 10.1021/acsomega.2c06123
    Derkach, S.R., Kuchina, Y.A., Kolotova, D.S., Voron’ko, N.G., 2020. Polyelectrolyte polysaccharide-gelatin complexes: rheology and structure. Polymers 12, 266. doi: 10.3390/polym12020266
    Falzone, N., Huyser, C., Franken, D.R., 2010. Comparison between propidium iodide and 7-amino-actinomycin-D for viability assessment during flow cytometric analyses of the human sperm acrosome. Andrologia 42, 20–26. doi: 10.1111/j.1439-0272.2009.00949.x
    Fan, Z.J., Wang, J.Q., Liu, F.Z., Nie, Y.Y., Ren, L.L., Liu, B., 2016. A new composite scaffold of bioactive glass nanoparticles/graphene: Synchronous improvements of cytocompatibility and mechanical property. Colloids Surf. B 145, 438–446. doi: 10.1016/j.colsurfb.2016.05.026
    Feng, Y.S., Zhu, S.J., Mei, D., Li, J., Zhang, J.X., Yang, S.L., Guan, S.K., 2021. Application of 3D printing technology in bone tissue engineering: a review. Curr. Drug Deliv. 18, 847–861. doi: 10.2174/18755704MTExsNDcy2
    Gao, F., Xu, Z.Y., Liang, Q.F., Liu, B., Li, H.F., Wu, Y.H., Zhang, Y.Y., Lin, Z.F., Wu, M.M., Ruan, C.S., Liu, W.G., 2018. Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect. Adv. Funct. Mater. 28, 1706644. doi: 10.1002/adfm.201706644
    Ge, S.J., Liu, Q., Li, M., Liu, J., Lu, H., Li, F., Zhang, S.L., Sun, Q.J., Xiong, L., 2018. Enhanced mechanical properties and gelling ability of gelatin hydrogels reinforced with chitin whiskers. Food Hydrocoll. 75, 1–12. doi: 10.1016/j.foodhyd.2017.09.023
    Gorgieva, S., Trček, J., 2019. Bacterial cellulose: production, modification and perspectives in biomedical applications. Nanomaterials 9, 1352. doi: 10.3390/nano9101352
    Gu, L.L., Li, T., Song, X.B., Yang, X.T., Li, S.L., Chen, L., Liu, P.J., Gong, X.Y., Chen, C., Sun, L., 2020. Preparation and characterization of methacrylated gelatin/bacterial cellulose composite hydrogels for cartilage tissue engineering. Regen. Biomater. 7, 195–202. doi: 10.1093/rb/rbz050
    Hasanzadeh, R., Azdast, T., Mojaver, M., Darvishi, M.M., Park, C.B., 2022. Cost-effective and reproducible technologies for fabrication of tissue engineered scaffolds: the state-of-the-art and future perspectives. Polymer 244, 124681. doi: 10.1016/j.polymer.2022.124681
    He, S., Liu, A., Zhang, J., Liu, J., Shao, W., 2022. Preparation of ε-polylysine and hyaluronic acid self-assembled microspheres loaded bacterial cellulose aerogels with excellent antibacterial activity. Colloids Surf. A 654, 130114. doi: 10.1016/j.colsurfa.2022.130114
    Hu, C., Zhou, Y.Y., Zhang, T., Jiang, T.J., Meng, C., Zeng, G.S., 2021. Morphological, thermal, mechanical, and optical properties of hybrid nanocellulose film containing cellulose nanofiber and cellulose nanocrystals. Fibres. Polym. 22, 2187–2193. doi: 10.1007/s12221-021-0903-3
    Huang, C., Guo, H.J., Xiong, L., Wang, B., Shi, S.L., Chen, X.F., Lin, X.Q., Wang, C., Luo, J., Chen, X.D., 2016. Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr. Polym. 136, 198–202. doi: 10.11648/j.ajce.20160404.20
    Huang, Y., Wang, J., Yang, F., Shao, Y.N., Zhang, X.L., Dai, K.R., 2017. Modification and evaluation of micro-nano structured porous bacterial cellulose scaffold for bone tissue engineering. Mater. Sci. Eng. C 75, 1034–1041. doi: 10.1016/j.msec.2017.02.174
    Huang, Y., Wang, L., Lu, L., Fan, M.M., Yuan, F.S., Sun, B.J., Qian, J.S., Hao, Q.L., Sun, D.P., 2018. Preparation of bacterial cellulose based nitrogen-doped carbon nanofibers and their applications in the oxygen reduction reaction and sodium–ion battery. New J. Chem. 42, 7407–7415. doi: 10.1039/c8nj00708j
    Hussain, Z., Sajjad, W., Khan, T., Wahid, F., 2019. Production of bacterial cellulose from industrial wastes: a review. Cellulose 26, 2895–2911. doi: 10.1007/s10570-019-02307-1
    Illa, M.P., Sharma, C.S., Khandelwal, M., 2019. Tuning the physiochemical properties of bacterial cellulose: effect of drying conditions. J. Mater. Sci. 54, 12024–12035. doi: 10.1007/s10853-019-03737-9
    Jiang, J., Ye, W.B., Liu, L., Wang, Z.G., Fan, Y.M., Saito, T., Isogai, A., 2017. Cellulose nanofibers prepared using the TEMPO/laccase/O2 system. Biomacromolecules 18, 288–294. doi: 10.1021/acs.biomac.6b01682
    Jyoti, B.V.S., Baek, S.W., 2016. Rheological characterization of ethanolamine gel propellants. J. Energ. Mater. 34, 260–278. doi: 10.1080/07370652.2015.1061617
    Kamiński, K., Jarosz, M., Grudzień, J., Pawlik, J., Zastawnik, F., Pandyra, P., Kołodziejczyk, A.M., 2020. Hydrogel bacterial cellulose: a path to improved materials for new eco-friendly textiles. Cellulose 27, 5353–5365. doi: 10.1007/s10570-020-03128-3
    Kirdponpattara, S., Phisalaphong, M., Kongruang, S., 2017. Gelatin-bacterial cellulose composite sponges thermally cross-linked with glucose for tissue engineering applications. Carbohydr. Polym. 177, 361–368. doi: 10.1016/j.carbpol.2017.08.094
    Lai, C., Zhang, S.J., Sheng, L.Y., Xi, T.F., 2019. Comparative evaluation of the biocompatible and physical–chemical properties of poly(lactide-co-glycolide) and polydopamine as coating materials for bacterial cellulose. J. Mater. Chem. B 7, 630–639. doi: 10.1039/C8TB02456A
    Levental, I., Georges, P.C., Janmey, P.A., 2007. Soft biological materials and their impact on cell function. Soft Matter 3, 299–306. doi: 10.1039/B610522J
    Li, L.Y., Chen, Y., Yu, T.X., Wang, N., Wang, C.S., Wang, H.P., 2019. Preparation of polylactic acid/TEMPO-oxidized bacterial cellulose nanocomposites for 3D printing via Pickering emulsion approach. Compos. Commun. 16, 162–167. doi: 10.1016/j.coco.2019.10.004
    Li, X.C., Xu, Y.F., Wang, B.C., Son, Y.A., 2012. Toggle-switchable fluorescence of bisindolylmaleimide derivatives by reversible esterification/hydrolysis. Tetrahedron Lett. 53, 1098–1101. doi: 10.1016/j.tetlet.2011.12.086
    Lin, D.H., Liu, Z., Shen, R., Chen, S.Q., Yang, X.B., 2020. Bacterial cellulose in food industry: current research and future prospects. Int. J. Biol. Macromol. 158, 1007–1019. doi: 10.1016/j.ijbiomac.2020.04.230
    Ling, Z., Guo, Z.W., Huang, C.X., Yao, L., Xu, F., 2020. Deconstruction of oriented crystalline cellulose by novel levulinic acid based deep eutectic solvents pretreatment for improved enzymatic accessibility. Bioresour. Technol. 305, 123025. doi: 10.1016/j.biortech.2020.123025
    Liu, J., Wang, S.X., Jiang, L., Shao, W., 2021. Production and characterization of antimicrobial bacterial cellulose membranes with non-leaching activity. J. Ind. Eng. Chem. 103, 232–238. doi: 10.1016/j.jiec.2021.07.041
    Liu, W., Du, H.S., Zhang, M.M., Liu, K., Liu, H.Y., Xie, H.X., Zhang, X.Y., Si, C.L., 2020. Bacterial cellulose-based composite scaffolds for biomedical applications: a review. ACS Sustain. Chem. Eng. 8, 7536–7562. doi: 10.1021/acssuschemeng.0c00125
    Lu, C.W., Wang, X.Y., Jia, Q.Q., Xu, S.J., Wang, C.P., Du, S., Wang, J.F., Yong, Q., Chu, F.X., 2024. 3D printed mechanical robust cellulose derived liquid-free ionic conductive elastomer for multifunctional electronic devices. Carbohydr. Polym. 324, 121496. doi: 10.1016/j.carbpol.2023.121496
    Lukin, I., Erezuma, I., Maeso, L., Zarate, J., Desimone, M.F., Al-Tel, T.H., Dolatshahi-Pirouz, A., Orive, G., 2022. Progress in gelatin as biomaterial for tissue engineering. Pharmaceutics 14, 1177. doi: 10.3390/pharmaceutics14061177
    Ma, Y., Cao, X.Y., Feng, X.J., Ma, Y.M., Zou, H., 2007. Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90°. Polymer 48, 7455–7460. doi: 10.1016/j.polymer.2007.10.038
    Malda, J., Visser, J., Melchels, F.P., Jüngst, T., Hennink, W.E., Dhert, W.J.A., Groll, J., Hutmacher, D.W., 2013. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25, 5011–5028. doi: 10.1002/adma.201302042
    Mhd Haniffa, M.A.C., Ching, Y.C., Chuah, C.H., Yong Ching, K., Nazri, N., Abdullah, L.C., Nai-Shang, L.O., 2017. Effect of TEMPO-oxidization and rapid cooling on thermo-structural properties of nanocellulose. Carbohydr. Polym. 173, 91–99. doi: 10.1016/j.carbpol.2017.05.084
    Mu, Z.X., Chen, K.W., Yuan, S., Li, Y.H., Huang, Y.D., Wang, C., Zhang, Y., Liu, W.Z., Luo, W.P., Liang, P.P., Li, X.D., Song, J.L., Ji, P., Cheng, F., Wang, H.N., Chen, T., 2020. Gelatin nanoparticle-injectable platelet-rich fibrin double network hydrogels with local adaptability and bioactivity for enhanced osteogenesis. Adv. Healthc. Mater. 9, e1901469. doi: 10.1002/adhm.201901469
    Nakayama, A., Kakugo, A., Gong, J., Osada, Y., Takai, M., Erata, T., Kawano, S., 2004. High mechanical strength double-network hydrogel with bacterial cellulose. Adv. Funct. Mater. 14, 1124–1128. doi: 10.1002/adfm.200305197
    Nürnberger, S., Schneider, C., van Osch, G.V.M., Keibl, C., Rieder, B., Monforte, X., Teuschl, A.H., Mühleder, S., Holnthoner, W., Schädl, B., Gahleitner, C., Redl, H., Wolbank, S., 2019. Repopulation of an auricular cartilage scaffold, AuriScaff, perforated with an enzyme combination. Acta Biomater. 86, 207–222. doi: 10.1016/j.actbio.2018.12.035
    Otal, E.H., Kim, M.L., Hinestroza, J.P., Kimura, M., 2021. A solid-state pathway towards the tunable carboxylation of cellulosic fabrics: controlling the surface’s acidity. Membranes 11, 514. doi: 10.3390/membranes11070514
    Petta, D., Armiento, A., Grijpma, D.W., Alini, M., Eglin, D., D’Este, M., 2018. A Tissue Adhesive Hyaluronan Bioink that can be Crosslinked Enzymatically and by Visible Light. University of Twente, Enschede, p. 129.
    Ramani, D., Sastry, T.P., 2014. Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: a potential osteoinductive composite. Cellulose 21, 3585–3595. doi: 10.1007/s10570-014-0313-4
    Ravichandran, R., Venugopal, J.R., Sundarrajan, S., Mukherjee, S., Ramakrishna, S., 2012. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Biomaterials 33, 846–855. doi: 10.1016/j.biomaterials.2011.10.030
    Rokhade, A.P., Agnihotri, S.A., Patil, S.A., Mallikarjuna, N.N., Kulkarni, P.V., Aminabhavi, T.M., 2006. Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr. Polym. 65, 243–252. doi: 10.1016/j.carbpol.2006.01.013
    Rovera, C., Fiori, F., Trabattoni, S., Romano, D., Farris, S., 2020. Enzymatic hydrolysis of bacterial cellulose for the production of nanocrystals for the food packaging industry. Nanomaterials 10, 735. doi: 10.3390/nano10040735
    Schaffner, M., Rühs, P.A., Coulter, F., Kilcher, S., Studart, A.R., 2017. 3D printing of bacteria into functional complex materials. Sci. Adv. 3, eaao6804. doi: 10.1126/sciadv.aao6804
    Shaheen, T.I., Montaser, A.S., Li, S.M., 2019. Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering. Int. J. Biol. Macromol. 121, 814–821. doi: 10.1016/j.ijbiomac.2018.10.081
    Sowjanya, J.A., Singh, J., Mohita, T., Sarvanan, S., Moorthi, A., Srinivasan, N., Selvamurugan, N., 2013. Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf. B 109, 294–300. doi: 10.1016/j.colsurfb.2013.04.006
    Tang, S., Chi, K., Xu, H., Yong, Q., Yang, J., Catchmark, J.M., 2021. A covalently cross-linked hyaluronic acid/bacterial cellulose composite hydrogel for potential biological applications. Carbohydr. Polym. 252, 117123. doi: 10.1016/j.carbpol.2020.117123
    Turco, G., Marsich, E., Bellomo, F., Semeraro, S., Donati, I., Brun, F., Grandolfo, M., Accardo, A., Paoletti, S., 2009. Alginate/Hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity. Biomacromolecules 10, 1575–1583. doi: 10.1021/bm900154b
    Turhan, G.D., Afsar, S., Ozel, B., Doyuran, A., Varinlioglu, G., Bengisu, M., 2022. 3D printing with bacterial cellulose-based bioactive composites for design applications. Proceedings of the 40th International Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe), Ghent, Belgium, 1377–1684.
    Vermeulen, S., Tahmasebi Birgani, Z., Habibovic, P., 2022. Biomaterial-induced pathway modulation for bone regeneration. Biomaterials 283, 121431. doi: 10.1016/j.biomaterials.2022.121431
    Wahid, F., Hu, X.H., Chu, L.Q., Jia, S.R., Xie, Y.Y., Zhong, C., 2019. Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties. Int. J. Biol. Macromol. 122, 380–387. doi: 10.1016/j.ijbiomac.2018.10.105
    Wang, J., Tavakoli, J., Tang, Y.H., 2019. Bacterial cellulose production, properties and applications with different culture methods - a review. Carbohydr. Polym. 219, 63–76. doi: 10.1016/j.carbpol.2019.05.008
    Wang, X.C., Tang, S.J., Chai, S.L., Wang, P., Qin, J.H., Pei, W.H., Bian, H.Y., Jiang, Q., Huang, C.X., 2021. Preparing printable bacterial cellulose based gelatin gel to promote in vivo bone regeneration. Carbohydr. Polym. 270, 118342. doi: 10.1016/j.carbpol.2021.118342
    Wang, X.C., Zhang, Y.B., Luo, J.L., Xu, T., Si, C.L., Oscanoa, A.J.C., Tang, D.X., Zhu, L.Y., Wang, P., Huang, C.X., 2023. Printability of hybridized composite from maleic acid-treated bacterial cellulose with gelatin for bone tissue regeneration. Adv. Compos. Hybrid Mater. 6, 134. doi: 10.1007/s42114-023-00711-7
    Wei, J.X., Wang, B.X., Li, Z., Wu, Z.T., Zhang, M.H., Sheng, N., Liang, Q.Q., Wang, H.P., Chen, S.Y., 2020. A 3D-printable TEMPO-oxidized bacterial cellulose/alginate hydrogel with enhanced stability via nanoclay incorporation. Carbohydr. Polym. 238, 116207. doi: 10.1016/j.carbpol.2020.116207
    Wu, S.L., Liu, X.M., Yeung, K.W.K., Liu, C.S., Yang, X.J., 2014. Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R 80, 1–36. doi: 10.1016/j.mser.2014.04.001
    Xiao, L., Feng, S.L., Hua, M.Z., Lu, X.N., 2023. Rapid determination of thiram on apple using a flexible bacterial cellulose-based SERS substrate. Talanta 254, 124128. doi: 10.1016/j.talanta.2022.124128
    Xing, Q., Zhao, F., Chen, S., McNamara, J., Decoster, M.A., Lvov, Y.M., 2010. Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture. Acta Biomater. 6, 2132–2139. doi: 10.1016/j.actbio.2009.12.036
    Xu, G.W., Xue, Y., Zhao, Z.C., Lian, X., Lin, H.L., Han, S., 2018. Influence of poly (methacrylate-co-maleic anhydride) pour point depressant with various pendants on low-temperature flowability of diesel fuel. Fuel 216, 898–907. doi: 10.1016/j.fuel.2017.06.126
    Yan, H.Q., Huang, D.G., Chen, X.Q., Liu, H.F., Feng, Y.H., Zhao, Z.D., Dai, Z.H., Zhang, X.Q., Lin, Q., 2018. A novel and homogeneous scaffold material: preparation and evaluation of alginate/bacterial cellulose nanocrystals/collagen composite hydrogel for tissue engineering. Polym. Bull. 75, 985–1000. doi: 10.1007/s00289-017-2077-0
    Zhou, W., Feng, Y.K., Yang, J., Fan, J.X., Lv, J., Zhang, L., Guo, J.T., Ren, X.K., Zhang, W.C., 2015. Electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) for endothelial cell growth. J. Mater. Sci. 26, 5386.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (337) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return