Volume 9 Issue 3
Aug.  2024
Turn off MathJax
Article Contents
Zhiqiang Fu, Tong Zhao, Hu Wang, Jingyi Wei, Haozhe Liu, Liying Duan, Yan Wang, Ruixiang Yan. Study on the mechanism and law of temperature, humidity and moisture content on the mechanical properties of molded fiber products[J]. Journal of Bioresources and Bioproducts, 2024, 9(3): 351-368. doi: 10.1016/j.jobab.2024.04.003
Citation: Zhiqiang Fu, Tong Zhao, Hu Wang, Jingyi Wei, Haozhe Liu, Liying Duan, Yan Wang, Ruixiang Yan. Study on the mechanism and law of temperature, humidity and moisture content on the mechanical properties of molded fiber products[J]. Journal of Bioresources and Bioproducts, 2024, 9(3): 351-368. doi: 10.1016/j.jobab.2024.04.003

Study on the mechanism and law of temperature, humidity and moisture content on the mechanical properties of molded fiber products

doi: 10.1016/j.jobab.2024.04.003
More Information
  • Corresponding author: E-mail address: fzq6670300@163.com (Z. Fu)
  • Available Online: 2024-04-13
  • Publish Date: 2024-07-05
  • The change of temperature, humidity and moisture content (MC) will lead to the change of mechanical properties of molded fiber products (MFP). However, it is difficult to decouple the effects of temperature, humidity and MC on the mechanical properties of MFP, and predict the mechanical properties of MFP during the use. In this study, the laws and mechanism of mechanical properties of MFP with ambient temperature, humidity and MC were studied. The results showed that the direct effect of temperature (20−70 ℃) on mechanical properties of MFP was insignificant, and the mechanical properties of MFP were mainly changed by MC. The MC was related to ambient temperature and humidity, and the relationship between the three could be described by the modified Guggenheim-Anderson-de Boer (GAB) model (20−70 ℃ and 30 %–90 % relative humidity). With the increase of MC, the elastic modulus and fracture strain was increased and decreased linearly, the yield strength and failure strength were presented GaussAmp laws, and the failure strain was presented asymptotic regressed distribution law. Two fracture modes of MFP, brittle fracture and ductile fracture, were revealed by the scanning electron microscopy of the mesoscopic fiber structure of sugarcane bagasse molded fiber products. The mathematical models and the changes of fiber structure were verified by wheat straw molded fiber products and waste paper molded fiber products. This study was contributed to understand the effects and mechanism of the change of temperature, humidity and MC on the mechanical properties of MFP.

     

  • Declaration of competing interest
    All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.
  • loading
  • Abdul Khalil, H.P.S., Bhat, I.U.H., Jawaid, M., Zaidon, A., Hermawan, D., Hadi, Y.S., 2012. Bamboo fibre reinforced biocomposites: a review. Mater. Des. 42, 353–368. doi: 10.1016/j.matdes.2012.06.015
    Al-musawi, H., Huber, C., Grabner, M., Ungerer, B., Krenke, T., Matz, P., Teischinger, A., Müller, U., 2023. Compressive strength of beech and birch at different moisture contents and temperatures. J. Mater. Sci. 58, 13994–14008. doi: 10.1007/s10853-023-08882-w
    Alptekin, A., Çallioğlu, H., 2023. Mechanical properties of starch bio-composite and molded pulp samples manufactured using pine and eucalyptus fibers. Polym. Polym. Compos. 31, 096739112311619.
    Aviara, N.A., 2020. Moisture sorption isotherms and isotherm model performance evaluation for food and agricultural products. In: George, K., Nikolaos, L. (Eds.), Sorption in 2020s. IntechOpen, London.
    Azmin, S.N.H.M., Hayat, N.A.B.M., Nor, M.S.M., 2020. Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. J. Bioresour. Bioprod. 5, 248–255. doi: 10.1016/j.jobab.2020.10.003
    Baumann, G., Brandner, R., Müller, U., Kumpenza, C., Stadlmann, A., Feist, F., 2020. Temperature-related properties of solid birch wood under quasi-static and dynamic bending. Materials13, 5518. doi: 10.3390/ma13235518
    Chen, Q., Yuan, J., Sun, F.B., Zhang, S.B., Xiao, H., Chen, Y.Z., Jia, S.S., Xie, J.L., Qi, J.Q., Fei, B.H., Lu, Y.L., 2023. Real-time flexural fracture behaviors and toughening mechanisms of bamboo slivers with different fiber content and moisture content. Eng. Fract. Mech. 288, 109244. doi: 10.1016/j.engfracmech.2023.109244
    Curling, S.F., Laflin, N., Davies, G.M., Ormondroyd, G.A., Elias, R.M., 2017. Feasibility of using straw in a strong, thin, pulp moulded packaging material. Ind. Crops Prod. 97, 395–400. doi: 10.1016/j.indcrop.2016.12.042
    Debnath, M., Sarder, R., Pal, L., Hubbe, M.A., 2022. Molded pulp products for sustainable packaging: production rate challenges and product opportunities. Bioresources 17, 3810–3870. doi: 10.15376/biores.17.2.debnath
    Didone, M., Tosello, G., 2020. Moulded pulp products manufacturing with thermoforming. Packag. Technol. Sci. 34, 71–73.
    Dislaire, C., Seantier, B., Muzy, M., Grohens, Y., 2021. Mechanical and hygroscopic properties of molded pulp products using different wood-based cellulose fibers. Polymers (Basel) 13, 3225. doi: 10.3390/polym13193225
    El Hawary, O., Boccarusso, L., Ansell, M.P., Durante, M., Pinto, F., 2023. An overview of natural fiber composites for marine applications. J. Mar. Sci. Eng. 11, 1076. doi: 10.3390/jmse11051076
    Fu, Z.Q., Liu, H.Z., Huang, L.Q., Zhang, G.P., Zhao, T., Zhao, Z.J., 2022. Study on the storage time of a cold box based on conduction-convection-radiation coupling. J. Energy Storage 56, 106142. doi: 10.1016/j.est.2022.106142
    Guo, X., Ji, H.W., Zheng, H.Y., 2013. Finite element simulation of molded pulp pallet in the dropping process. Appl. Mech. Mater. 469, 209–212. doi: 10.4028/www.scientific.net/AMM.469.209
    Gutierrez, M., Maluk, C., 2020. Mechanical behaviour of bamboo at elevated temperatures–experimental studies. Eng. Struct. 220, 110997. doi: 10.1016/j.engstruct.2020.110997
    Gonzalez, M.G., Takeuchi, C.P., Perozo, M.C., 2012. Variation of tensile strength parallel to the fiber of bamboo Guadua angustifolia kunth in function of moisture content. Key Eng. Mater. 517, 71–75. doi: 10.4028/www.scientific.net/KEM.517.71
    Han, G.C., 2022. Characterization and properties of nanocellulose-enhanced pulp-molded lunch boxes. J. Phys. 2393, 012006. doi: 10.1088/1742-6596/2393/1/012006
    Haslach, H.W., 2000. The moisture and rate-dependent mechanical properties of paper: a review. Mech. Time Depend. Mater. 4, 169–210. doi: 10.1023/A:1009833415827
    Hay, F.R., Rezaei, S., Buitink, J., 2022. Seed moisture isotherms, sorption models, and longevity. Front. Plant Sci. 13, 891913.
    Hua, G.J., Yang, M.T., Fei, W.M., Lu, F.D., 2020. Poisson’s ratios of molded pulp materials by digital image correlation method and uniaxial tensile test. J. Eng. Fibres. Fabr. 15, 155892502090827.
    Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S., 2006. Fundamentals of Heat and Mass Transfer. John Wiley & Sons, Inc., New York, pp. 530–540.
    Jakovljević, S., Lisjak, D., 2019. Investigation into the effects of humidity on the mechanical and physical properties of bamboo. Constr. Build. Mater. 194, 386–396. doi: 10.1016/j.conbuildmat.2018.11.030
    Jarupan, L., Hunsa-Udom, R., Bumbudsanpharoke, N., 2021. Potential use of oil palm fronds for papermaking and application as molded pulp trays for fresh product under simulated cold chain logistics. J. Nat. Fibres. 19, 2772–2784.
    Jayas, D.S., Mazza, G., 1993. Comparison of five, three-parameter equations for the description of adsorption data of oats. Trans. ASAE 36, 119–125. doi: 10.13031/2013.28322
    Ji, H.W., Wang, H.W., 2010. Short span compressive stress-strain relation and model of molded pulp material. Key Eng. Mater. 450, 202–205. doi: 10.4028/www.scientific.net/KEM.450.202
    Jiang, K.X., Yan, Z., Fang, W.J., Zhang, Y.Q., 2022. Effect of moisture content on the microscopic properties of amorphous cellulose: a molecular dynamics simulations. Mater. Res. Express 9, 125308. doi: 10.1088/2053-1591/acaa8c
    Korkmaz, O., Büyüksarı, U., 2019. Effects of moisture content on mechanical properties of micro-size oak wood. Bioresources 14, 7655–7663. doi: 10.15376/biores.14.4.7655-7663
    Kun, G., Xi, W., 2017. Design and analysis of cushioning packaging for home appliances. Procedia Eng. 174, 904–909. doi: 10.1016/j.proeng.2017.01.240
    Lang, C.V., Jung, J., Wang, T.R., Zhao, Y.Y., 2022. Investigation of mechanisms and approaches for improving hydrophobicity of molded pulp biocomposites produced from apple pomace. Food Bioprod. Process. 133, 1–15.
    Li, S., 1998. Dialectic: the relationship between water activity and relative humidity. J. Microbiol. 18, 64.
    Li, X.Z., Mou, Q.Y., Ren, H.Q., Li, X.J., Zhong, Y., 2020. Effects of moisture content and load orientation on dowel-bearing behavior of bamboo scrimber. Constr. Build. Mater. 262, 120864. doi: 10.1016/j.conbuildmat.2020.120864
    Li, Z.H., Tang, J.J., Mao, K.M., Song, H., 2023. Nonlinear compression behavior research of molded pulp material. J. Phys. 2499, 012006.
    Liu, C., Luan, P.C., Li, Q., Cheng, Z., Sun, X., Cao, D.X., Zhu, H.L., 2020. Biodegradable, hygienic, and compostable tableware from hybrid sugarcane and bamboo fibers as plastic alternative. Matter 3, 2066–2079. doi: 10.1016/j.matt.2020.10.004
    Luan, P.C., Li, J., He, S.M., Kuang, Y.S., Mo, L.H., Song, T., 2019. Investigation of deposit problem during sugarcane bagasse pulp molded tableware production. J. Clean. Prod. 237, 117856. doi: 10.1016/j.jclepro.2019.117856
    Maslinda, A.B., Abdul Majid, M.S., Ridzuan, M.J.M., Afendi, M., Gibson, A.G., 2017. Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Compos. Struct. 167, 227–237. doi: 10.1016/j.compstruct.2017.02.023
    Muzaffar, K., Kumar, P., 2016. Moisture sorption isotherms and storage study of spray dried tamarind pulp powder. Powder Technol. 291, 322–327. doi: 10.1016/j.powtec.2015.12.046
    Qin, C.R., Li, J., Wang, W., Li, W., 2022. Improving mechanical strength and water barrier properties of pulp molded product by wet-end added polyamide epichlorohydrin/cationic starch. ACS Omega 7, 22173–22180. doi: 10.1021/acsomega.1c07369
    Ramamoorthy, S.K., Skrifvars, M., Persson, A., 2015. A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym. Rev. 55, 107–162. doi: 10.1080/15583724.2014.971124
    Rattanawongkun, P., Kerddonfag, N., Tawichai, N., Intatha, U., Soykeabkaew, N., 2020. Improving agricultural waste pulps via self-blending concept with potential use in moulded pulp packaging. J. Environ. Chem. Eng. 8, 104320. doi: 10.1016/j.jece.2020.104320
    Salmén, L., 1990. On the interaction between moisture and wood fibre materials. MRS Online Proc. Libr. 197, 193–201. doi: 10.1557/PROC-197-193
    Semple, K.E., Zhou, C.L., Rojas, O.J., Nkeuwa, W.N., Dai, C.P., 2022. Moulded pulp fibers for disposable food packaging: a state-of-the-art review. Food Packag. Shelf Life 33, 100908. doi: 10.1016/j.fpsl.2022.100908
    Shadhin, M., Jayaraman, R., Rahman, M., Mann, D., 2024. Effect of fiber surface treatment on mechanical, interfacial, and moisture absorption properties of cattail fiber-reinforced composites. J. Appl. Polym. Sci. 141, e54765. doi: 10.1002/app.54765
    Sørensen, G., Hoffmann, J., 2003. Moisture sorption in moulded fibre trays and effect on static compression strength. Packag. Technol. Sci. 16, 159–169. doi: 10.1002/pts.622
    Sun, X.F., He, M.J., Li, Z., 2020. Novel engineered wood and bamboo composites for structural applications: state-of-art of manufacturing technology and mechanical performance evaluation. Constr. Build. Mater. 249, 118751. doi: 10.1016/j.conbuildmat.2020.118751
    Szewczyk, W., Głowacki, K., 2018. Impact of humidity on energy absorption during paper tensile test. Fibres Text. East. Eur. 26, 116–121. doi: 10.5604/01.3001.0012.1322
    Tomita, S., Nakano, S., Segi, M., Nishimura, T., 2022. Elastic metamaterial composite made of molded pulp and steel for suppression of low-frequency vibration in thin-plate structures. Mater. Des. 223, 111200. doi: 10.1016/j.matdes.2022.111200
    Teodorescu, I., Erbaşu, R., Branco, J.M., Tăpuşi, D., 2021. Study in the changes of the moisture content in wood. IOP Conf. Ser. 664, 012017. doi: 10.1088/1755-1315/664/1/012017
    Wang, B., Xiao, X.R., Astakhov, V.P., Liu, Z.Q., 2019. The effects of stress triaxiality and strain rate on the fracture strain of Ti6Al4V. Eng. Fract. Mech. 219, 106627. doi: 10.1016/j.engfracmech.2019.106627
    Wang, D.M., Wang, J., Liao, Q.H., 2013. Investigation of mechanical property for paper honeycomb sandwich composite under different temperature and relative humidity. J. Reinf. Plast. Compos. 32, 987–997. doi: 10.1177/0731684413475912
    Wang, J.J., Li, Y., Li, Q., Long, Y., Yu, T., Li, Z., 2024. Evolution of stiffness in flax yarn within flax fiber reinforced composites during moisture absorption. Compos. Part B 268, 111096. doi: 10.1016/j.compositesb.2023.111096
    Wang, J.J., Li, Y., Yu, T., Li, Q., Li, Z., 2022a. Anisotropic behaviors of moisture absorption and hygroscopic swelling of unidirectional flax fiber reinforced composites. Compos. Struct. 297, 115941. doi: 10.1016/j.compstruct.2022.115941
    Wang, M.Q., Harries, K.A., Zhao, Y.X., Xu, Q.F., Wang, Z.L., Leng, Y.B., 2022b. Variation of mechanical properties of P. edulis (Moso) bamboo with moisture content. Constr. Build. Mater. 324, 126629. doi: 10.1016/j.conbuildmat.2022.126629
    Wang, Q., Chen, T., Wang, X.D., Zheng, Y., Zheng, J.Y., Song, G.J., Liu, S.Y., 2023. Recent progress on moisture absorption aging of plant fiber reinforced polymer composites. Polymers15, 4121. doi: 10.3390/polym15204121
    Wang, Z.W., Li, X.F., 2014. Effect of strain rate on cushioning properties of molded pulp products. Mater. Des. 57, 598–607. doi: 10.1016/j.matdes.2014.01.019

    10.1007/978-94-009-5103-7_7

    10.1007/978-94-009-5103-7_40

    Xiao, Y.Z., Shao, Z.Z., 2015. Effect of temperature on the static compression of molded pulp products. In: Kim, Y.H. (Ed.). Proceedings of the 5th International Conference on Civil Engineering and Transportation 2015. Amsterdam: Atlantis Press, 1786–1791.
    Yilmaz Aydin, T., Ozveren, A., 2018. Effects of moisture content on elastic constants of fir wood. Eur. J. Wood Wood Prod. 77, 63–70.
    Yimlamai, P., Ardsamang, T., Puthson, P., Somboon, P., Puangsin, B., 2023. Soda pulping of sunn hemp (Crotalaria juncea L.) and its usage in molded pulp packaging. J. Bioresour. Bioprod. 8, 280–291.
    Yuan, J., Fang, C.H., Chen, Q., Fei, B.H., 2021. Observing bamboo dimensional change caused by humidity. Constr. Build. Mater. 309, 124988. doi: 10.1016/j.conbuildmat.2021.124988
    Zhang, Y.L., Duan, C., Bokka, S.K., He, Z.B., Ni, Y.H., 2022. Molded fiber and pulp products as green and sustainable alternatives to plastics: a mini review. J. Bioresour. Bioprod. 7, 14–25.
    Zhou, W.J., Li, H.T., Chen, C., Corbi, O., 2023. Effect of temperature on axial compressive mechanical properties of bamboo. Constr. Build. Mater. 371, 130734. doi: 10.1016/j.conbuildmat.2023.130734
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views (242) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return