Citation: | Isabel Enriquez-Medina, Isaac Rodas-Ortiz, Isabella Bedoya-Garcia, AnaMaria Velasquez-Godoy, Carlos Alvarez-Vasco, Andres Ceballos Bermudez. Bridging gap between agro-industrial waste, biodiversity and mycelium-based biocomposites: Understanding their properties by multiscale methodology[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 495-507. doi: 10.1016/j.jobab.2024.07.001 |
[1] |
Aiduang, W., Kumla, J., Srinuanpan, S., Thamjaree, W., Lumyong, S., Suwannarach, N., 2022. Mechanical, physical, and chemical properties of mycelium-based composites produced from various lignocellulosic residues and fungal species. J. Fungi 8, 1125.
|
[2] |
Antinori, M.E., Ceseracciu, L., Mancini, G., Heredia-Guerrero, J.A., Athanassiou, A., 2020. Fine-tuning of physicochemical properties and growth dynamics of mycelium-based materials. ACS Appl. Bio Mater. 3, 1044-1051.
|
[3] |
Appels, F.V.W., Camere, S., Montalti, M., Karana, E., Jansen, K.M.B., Dijksterhuis, J., Krijgsheld, P., Wösten, H.A.B., 2019. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Mater. Des. 161, 64-71.
|
[4] |
Belozerskaya, T.A., Gessler, N.N., Aver‘yanov, A.A., 2017. Melanin pigments of fungi. In: Mérillon, J.M., Gopal Ramawat, K. (Eds.). Fungal Metabolites. Cham: Springer, 263-291.
|
[5] |
Boey, J.Y., Lee, C.K., Tay, G.S., 2022. Factors affecting mechanical properties of reinforced bioplastics: a review. Polymers 14, 3737.
|
[6] |
Cartabia, M., Girometta, C.E., Milanese, C., Baiguera, R.M., Buratti, S., Branciforti, D.S., Vadivel, D., Girella, A., Babbini, S., Savino, E., Dondi, D., 2021. Collection and characterization of wood decay fungal strains for developing pure mycelium mats. J. Fungi 7, 1008.
|
[7] |
Castoldi, R., Bracht, A., de Morais, G.R., Baesso, M.L., Correa, R.C.G., Peralta, R.A., de Fátima Peralta Muniz Moreira, R., de Lourdes Teixeira de Moraes Polizeli, M., de Souza, C.G.M., Peralta, R.M., 2014. Biological pretreatment of Eucalyptus grandis sawdust with white-rot fungi: study of degradation patterns and saccharification kinetics. Chem. Eng. J. 258, 240-246.
|
[8] |
Chan, X.Y., Saeidi, N., Javadian, A., Hebel, D.E., Gupta, M., 2021. Mechanical properties of dense mycelium-bound composites under accelerated tropical weathering conditions. Sci. Rep. 11, 22112.
|
[9] |
Chen, H.Y., Liu, J.B., Chang, X., Chen, D.M., Xue, Y., Liu, P., Lin, H.L., Han, S., 2017. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol. 160, 196-206.
|
[10] |
Di Lonardo, D., van der Wal, A., Harkes, P., de Boer, W., 2020. Effect of nitrogen on fungal growth efficiency. Plant Biosyst. 433-437.
|
[11] |
Enriquez-Medina, I., Bermudez, A.C., Ortiz-Montoya, E.Y., Alvarez-Vasco, C., 2023. From purposeless residues to biocomposites: a hyphae made connection. Biotechnol. Rep. 39, e00807.
|
[12] |
Fackler, K., Schwanninger, M., Gradinger, C., Hinterstoisser, B., Messner, K., 2007. Qualitative and quantitative changes of beech wood degraded by wood-rotting basidiomycetes monitored by Fourier transform infrared spectroscopic methods and multivariate data analysis. FEMS Microbiol. Lett. 271, 162-169.
|
[13] |
Fricker, M.D., Heaton, L.L.M., Jones, N.S., Boddy, L., 2017. The mycelium as a network. Microbiol Spectr. 5.
|
[14] |
Gou, L.Y., Li, S., Yin, J.S., Li, T.T., Liu, X., 2021. Morphological and physico-mechanical properties of mycelium biocomposites with natural reinforcement particles. Constr. Build. Mater. 304, 124656.
|
[15] |
Gulati, D., Sain, M., 2006. Fungal-modification of natural fibers: a novel method of treating natural fibers for composite reinforcement. J. Polym. Environ. 14, 347-352.
|
[16] |
Haneef, M., Ceseracciu, L., Canale, C., Bayer, I.S., Heredia-Guerrero, J.A., Athanassiou, A., 2017. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci. Rep. 7, 41292.
|
[17] |
Islam, M.R., Tudryn, G., Bucinell, R., Schadler, L., Picu, R.C., 2018. Mechanical behavior of mycelium-based particulate composites. J. Mater. Sci. 53, 16371-16382.
|
[18] |
Islam, M.R., Tudryn, G., Bucinell, R., Schadler, L., Picu, R.C., 2017. Morphology and mechanics of fungal mycelium. Sci. Rep. 7, 13070.
|
[19] |
Jiang, B., Tsao, R., Li, Y., Miao, M., 2014. Food Safety: Food Analysis Technologies/Techniques. In: van Alfen, N.K. (Ed.). Encyclopedia of Agriculture and Food Systems. Amsterdam: Elsevier, 273-288.
|
[20] |
Jones, M., Huynh, T., Dekiwadia, C., Daver, F., John, S., 2017. Mycelium composites: a review of engineering characteristics and growth kinetics. J. Bionanosci. 11, 241-257.
|
[21] |
Jones, M., Mautner, A., Luenco, S., Bismarck, A., John, S., 2020. Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater. Des. 187, 108397.
|
[22] |
Kenned, J.J., Sankaranarayanasamy, K., Kumar, C.S., 2021. Chemical, biological, and nanoclay treatments for natural plant fiber-reinforced polymer composites: a review. Polym. Polym. Compos. 29, 1011-1038.
|
[23] |
Kumar Dutta, P., Dutta, J., Tripathi, V.S., 2004. Chitin and chitosan: chemistry, properties and applications. J. Sci. Ind. Res. 63, 20-31.
|
[24] |
Mankar, A.R., Pandey, A., Modak, A., Pant, K.K., 2021. Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresour. Technol. 334, 125235.
|
[25] |
Mohammed, M., Rasidi, M., Mohammed, A.M., Rahman, R., Osman, A., Adam, T., Betar, B.O., Dahham, O.S., 2022. Interfacial bonding mechanisms of natural fibre-matrix composites: an overview. BioResources 17, 7031-7090.
|
[26] |
Niu, D.Z., Zuo, S.S., Jiang, D., Tian, P.J., Zheng, M.L., Xu, C.C., 2018. Treatment using white rot fungi changed the chemical composition of wheat straw and enhanced digestion by rumen microbiota in vitro. Anim. Feed. Sci. Technol. 237, 46-54.
|
[27] |
Peng, L.C., Yi, J., Yang, X.Y., Xie, J., Chen, C.W., 2023. Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts. J. Bioresour. Bioprod. 8, 78-89.
|
[28] |
Rahardjo, Y.S.P., Tramper, J., Rinzema, A., 2006. Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives. Biotechnol. Adv. 24, 161-179.
|
[29] |
Rigobello, A., Colmo, C., Ayres, P., 2022. Effect of composition strategies on mycelium-based composites flexural behaviour. Biomimetics 7, 53.
|
[30] |
Sánchez, C., 2009. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 27, 185-194.
|
[31] |
Sánchez, Ó.J., Montoya, S., 2020. Assessment of polysaccharide and biomass production from three white-rot fungi by solid-state fermentation using wood and agro-industrial residues: a kinetic approach. Forests 11, 1055.
|
[32] |
Silva Ribeiro, G., Conceição Monteiro, M.K., Rodrigues do Carmo, J., da Silva Pena, R., Campos Chisté, R., 2021. Peach palm flour: production, hygroscopic behaviour and application in cookies. Heliyon 7, e07062.
|
[33] |
Smits, T.H.M., Wick, L.Y., Harms, H., Keel, C., 2003. Characterization of the surface hydrophobicity of filamentous fungi. Environ. Microbiol. 5, 85-91.
|
[34] |
Toscano, G., Maceratesi, V., Leoni, E., Stipa, P., Laudadio, E., Sabbatini, S., 2022. FTIR spectroscopy for determination of the raw materials used in wood pellet production. Fuel 313, 123017.
|
[35] |
Väisänen, T., Das, O., Tomppo, L., 2017. A review on new bio-based constituents for natural fiber-polymer composites. J. Clean. Prod. 149, 582-596.
|
[36] |
Volk, R., Schröter, M., Saeidi, N., Steffl, S., Javadian, A., Hebel, D.E., Schultmann, F., 2024. Life cycle assessment of mycelium-based composite materials. Resour. Conserv. Recycl. 205, 107579.
|
[37] |
Wittner, N., Slezsák, J., Broos, W., Geerts, J., Gergely, S., Vlaeminck, S.E., Cornet, I., 2023. Rapid lignin quantification for fungal wood pretreatment by ATR-FTIR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 285, 121912.
|
[38] |
Womer, S., Huynh, T., John, S., 2023. Hybridizations and reinforcements in mycelium composites: a review. Bioresour. Technol. Rep. 22, 101456.
|
[39] |
Yang, L.B., Park, D., Qin, Z., 2021. Material function of mycelium-based bio-composite: a review. Front. Mater. 8, 737377.
|
[40] |
Yuyama, L.K.O., Aguiar, J.P.L., Yuyama, K., Clement, C.R., Macedo, S.H.M., Fávaro, D.I.T., Afonso, C., Vasconcellos, M.B.A., Pimentel, S.A., Badolato, E.S.G., Vannucchi, H., 2003. Chemical composition of the fruit mesocarp of three peach palm (Bactris gasipaes) populations grown in central Amazonia, Brazil. Int. J. Food Sci. Nutr. 54, 49-56.
|
[41] |
Zhou, X.W., Cong, W.R., Su, K.Q., Zhang, Y.M., 2013. Ligninolytic enzymes from Ganoderma spp: current status and potential applications. Crit. Rev. Microbiol. 39, 416-426.
|
[42] |
Zimele, Z., Irbe, I., Grinins, J., Bikovens, O., Verovkins, A., Bajare, D., 2020. Novel mycelium-based biocomposites (MBB) as building materials. J. Renew. Mater. 8, 1067-1076.
|