Volume 9 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Isabel Enriquez-Medina, Isaac Rodas-Ortiz, Isabella Bedoya-Garcia, AnaMaria Velasquez-Godoy, Carlos Alvarez-Vasco, Andres Ceballos Bermudez. Bridging gap between agro-industrial waste, biodiversity and mycelium-based biocomposites: Understanding their properties by multiscale methodology[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 495-507. doi: 10.1016/j.jobab.2024.07.001
Citation: Isabel Enriquez-Medina, Isaac Rodas-Ortiz, Isabella Bedoya-Garcia, AnaMaria Velasquez-Godoy, Carlos Alvarez-Vasco, Andres Ceballos Bermudez. Bridging gap between agro-industrial waste, biodiversity and mycelium-based biocomposites: Understanding their properties by multiscale methodology[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 495-507. doi: 10.1016/j.jobab.2024.07.001

Bridging gap between agro-industrial waste, biodiversity and mycelium-based biocomposites: Understanding their properties by multiscale methodology

doi: 10.1016/j.jobab.2024.07.001
More Information
  • Corresponding author: E-mail address: aceballos@icesi.edu.co (A. Ceballos Bermudez)
  • Available Online: 2024-07-05
  • Publish Date: 2024-11-01
  • A multiscale methodology approach was employed integrating microscopic analysis of the biomasses present in the biocomposite (lignocellulosic and fungal) to understand their macroscopic response in terms of physical and mechanical properties. Colombian native strain Ganoderma gibbosum, used for the first time in the production of biocomposites was cultivated on peach palm fruit peel flour and sugar cane bagasse wet dust, individually and as a mixture. During the solid-state fermentation were monitoring the change that occurred in substrate composition such as glucan, arabinoxylan, and lignin through biomass compositional analysis using structural carbohydrates and lignin. Moreover, fungal biomass formation was monitored via scanning electron microscopy. The resulting biocomposites underwent characterization through flexural and water absorption tests. Our findings indicated that G. gibbosum primarily degraded the polysaccharides in each of the evaluated media. However, lignin degradation to 15.06 g/g was only observed in the mixture biocomposite of peach palm fruit peel fluor and sugarcane bagasse wet dust in a ratio of 1꞉1, accompanied by a reduction in glucan and arabinoxylan weights to 26.1 and 7.72 g/g, respectively. This polymer degradation, combined with a protein-rich source in the mixture biocomposite of peach palm fruit peel fluor and sugarcane bagasse wet dust in a ratio of 1꞉1, facilitated the production of a fungal skin (biological matrix) with a high hyphal density of 65%, contributing to Young's modulus of 3.83 MPa, elongation without failure, and low water absorption rate in this biocomposite (55%). The lignocellulosic biomass in the culture media acted as a filler for mechanical interlocking with the matrix and provided attachment points for water absorption. Thus, our study establishes a connection between the microscopic scale and the macroscopic behavior of this biocomposite, assessing structural carbohydrates and lignin analysis during solid-state fermentation (SSF), laying the groundwork for a more customized design of mycelium-based biocomposites. Finally, this study demonstrates the possibility of tailoring nutrient composition by designing their culture media to obtain physical-mechanical properties according to the application requirement.

     

  • Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2024.07.001.
  • loading
  • Aiduang, W., Kumla, J., Srinuanpan, S., Thamjaree, W., Lumyong, S., Suwannarach, N., 2022. Mechanical, physical, and chemical properties of mycelium-based composites produced from various lignocellulosic residues and fungal species. J. Fungi 8, 1125. doi: 10.3390/jof8111125
    Antinori, M.E., Ceseracciu, L., Mancini, G., Heredia-Guerrero, J.A., Athanassiou, A., 2020. Fine-tuning of physicochemical properties and growth dynamics of mycelium-based materials. ACS Appl. Bio Mater. 3, 1044–1051. doi: 10.1021/acsabm.9b01031
    Appels, F.V.W., Camere, S., Montalti, M., Karana, E., Jansen, K.M.B., Dijksterhuis, J., Krijgsheld, P., Wösten, H.A.B., 2019. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Mater. Des. 161, 64–71. doi: 10.1016/j.matdes.2018.11.027
    Belozerskaya, T.A., Gessler, N.N., Aver'yanov, A.A., 2017. Melanin pigments of fungi. In: Mérillon, J.M., Gopal Ramawat, K. (Eds. ), Fungal Metabolites. Springer, Cham, pp. 263–291.
    Boey, J.Y., Lee, C.K., Tay, G.S., 2022. Factors affecting mechanical properties of reinforced bioplastics: a review. Polymers 14, 3737. doi: 10.3390/polym14183737
    Cartabia, M., Girometta, C.E., Milanese, C., Baiguera, R.M., Buratti, S., Branciforti, D.S., Vadivel, D., Girella, A., Babbini, S., Savino, E., Dondi, D., 2021. Collection and characterization of wood decay fungal strains for developing pure mycelium mats. J. Fungi 7, 1008. doi: 10.3390/jof7121008
    Castoldi, R., Bracht, A., de Morais, G.R., Baesso, M.L., Correa, R.C.G., Peralta, R.A., de Fátima Peralta Muniz Moreira, R., de Lourdes Teixeira de Moraes Polizeli, M., de Souza, C.G.M., Peralta, R.M., 2014. Biological pretreatment of Eucalyptus grandis sawdust with white-rot fungi: study of degradation patterns and saccharification kinetics. Chem. Eng. J. 258, 240–246. doi: 10.1016/j.cej.2014.07.090
    Chan, X.Y., Saeidi, N., Javadian, A., Hebel, D.E., Gupta, M., 2021. Mechanical properties of dense mycelium-bound composites under accelerated tropical weathering conditions. Sci. Rep. 11, 22112. doi: 10.1038/s41598-021-01598-4
    Chen, H.Y., Liu, J.B., Chang, X., Chen, D.M., Xue, Y., Liu, P., Lin, H.L., Han, S., 2017. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol. 160, 196–206. doi: 10.1016/j.fuproc.2016.12.007
    Di Lonardo, D., van der Wal, A., Harkes, P., de Boer, W., 2020. Effect of nitrogen on fungal growth efficiency. Plant Biosyst 433–437. doi: 10.1080/11263504.2020.1779849
    Enriquez-Medina, I., Bermudez, A.C., Ortiz-Montoya, E.Y., Alvarez-Vasco, C., 2023. From purposeless residues to biocomposites: a hyphae made connection. Biotechnol. Rep. 39, e00807. doi: 10.1016/j.btre.2023.e00807
    Fackler, K., Schwanninger, M., Gradinger, C., Hinterstoisser, B., Messner, K., 2007. Qualitative and quantitative changes of beech wood degraded by wood-rotting basidiomycetes monitored by Fourier transform infrared spectroscopic methods and multivariate data analysis. FEMS Microbiol. Lett. 271, 162–169. doi: 10.1111/j.1574-6968.2007.00712.x
    Fricker, M.D., Heaton, L.L.M., Jones, N.S., Boddy, L., 2017. The mycelium as a network, 5. Microbiol Spectr.
    Gou, L.Y., Li, S., Yin, J.S., Li, T.T., Liu, X., 2021. Morphological and physico-mechanical properties of mycelium biocomposites with natural reinforcement particles. Constr. Build. Mater. 304, 124656. doi: 10.1016/j.conbuildmat.2021.124656
    Gulati, D., Sain, M., 2006. Fungal-modification of natural fibers: a novel method of treating natural fibers for composite reinforcement. J. Polym. Environ. 14, 347–352. doi: 10.1007/s10924-006-0030-7
    Haneef, M., Ceseracciu, L., Canale, C., Bayer, I.S., Heredia-Guerrero, J.A., Athanassiou, A., 2017. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci. Rep. 7, 41292. doi: 10.1038/srep41292
    Islam, M.R., Tudryn, G., Bucinell, R., Schadler, L., Picu, R.C., 2018. Mechanical behavior of mycelium-based particulate composites. J. Mater. Sci. 53, 16371–16382. doi: 10.1007/s10853-018-2797-z
    Islam, M.R., Tudryn, G., Bucinell, R., Schadler, L., Picu, R.C., 2017. Morphology and mechanics of fungal mycelium. Sci. Rep. 7, 13070. doi: 10.1038/s41598-017-13295-2
    Jiang, B., Tsao, R., Li, Y., Miao, M., 2014. Food Safety: Food Analysis Technologies/Techniques. Elsevier, Amsterdam, pp. 273–288 In: van Alfen, N.K. (Ed. )Encyclopedia of Agriculture and Food Systems.
    Jones, M., Huynh, T., Dekiwadia, C., Daver, F., John, S., 2017. Mycelium composites: a review of engineering characteristics and growth kinetics. J. Bionanosci. 11, 241–257. doi: 10.1166/jbns.2017.1440
    Jones, M., Mautner, A., Luenco, S., Bismarck, A., John, S., 2020. Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater. Des. 187, 108397. doi: 10.1016/j.matdes.2019.108397
    Kenned, J.J., Sankaranarayanasamy, K., Kumar, C.S., 2021. Chemical, biological, and nanoclay treatments for natural plant fiber-reinforced polymer composites: a review. Polym. Polym. Compos. 29, 1011–1038. doi: 10.1177/0967391120942419
    Kumar Dutta, P., Dutta, J., Tripathi, V.S., 2004. Chitin and chitosan: chemistry, properties and applications. J. Sci. Ind. Res. 63, 20–31.
    Mankar, A.R., Pandey, A., Modak, A., Pant, K.K., 2021. Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresour. Technol. 334, 125235. doi: 10.1016/j.biortech.2021.125235
    Mohammed, M., Rasidi, M., Mohammed, A.M., Rahman, R., Osman, A., Adam, T., Betar, B.O., Dahham, O.S., 2022. Interfacial bonding mechanisms of natural fibre-matrix composites: an overview. BioResources 17, 7031–7090.
    Niu, D.Z., Zuo, S.S., Jiang, D., Tian, P.J., Zheng, M.L., Xu, C.C., 2018. Treatment using white rot fungi changed the chemical composition of wheat straw and enhanced digestion by rumen microbiota in vitro. Anim. Feed. Sci. Technol. 237, 46–54. doi: 10.1016/j.anifeedsci.2018.01.005
    Peng, L.C., Yi, J., Yang, X.Y., Xie, J., Chen, C.W., 2023. Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts. J. Bioresour. Bioprod. 8, 78–89.
    Rahardjo, Y.S.P., Tramper, J., Rinzema, A., 2006. Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives. Biotechnol. Adv. 24, 161–179. doi: 10.1016/j.biotechadv.2005.09.002
    Rigobello, A., Colmo, C., Ayres, P., 2022. Effect of composition strategies on mycelium-based composites flexural behaviour. Biomimetics 7, 53. doi: 10.3390/biomimetics7020053
    Sánchez, C., 2009. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 27, 185–194. doi: 10.1016/j.biotechadv.2008.11.001
    Sánchez, Ó. J., Montoya, S., 2020. Assessment of polysaccharide and biomass production from three white-rot fungi by solid-state fermentation using wood and agro-industrial residues: a kinetic approach. Forests 11, 1055. doi: 10.3390/f11101055
    Silva Ribeiro, G., Conceição Monteiro, M.K., Rodrigues do Carmo, J., da Silva Pena, R., Campos Chisté, R., 2021. Peach palm flour: production, hygroscopic behaviour and application in cookies. Heliyon 7, e07062. doi: 10.1016/j.heliyon.2021.e07062
    Smits, T.H.M., Wick, L.Y., Harms, H., Keel, C., 2003. Characterization of the surface hydrophobicity of filamentous fungi. Environ. Microbiol. 5, 85–91. doi: 10.1046/j.1462-2920.2003.00389.x
    Toscano, G., Maceratesi, V., Leoni, E., Stipa, P., Laudadio, E., Sabbatini, S., 2022. FTIR spectroscopy for determination of the raw materials used in wood pellet production. Fuel 313, 123017. doi: 10.1016/j.fuel.2021.123017
    Väisänen, T., Das, O., Tomppo, L., 2017. A review on new bio-based constituents for natural fiber-polymer composites. J. Clean. Prod. 149, 582–596. doi: 10.1016/j.jclepro.2017.02.132
    Volk, R., Schröter, M., Saeidi, N., Steffl, S., Javadian, A., Hebel, D.E., Schultmann, F., 2024. Life cycle assessment of mycelium-based composite materials. Resour. Conserv. Recycl. 205, 107579. doi: 10.1016/j.resconrec.2024.107579
    Wittner, N., Slezsák, J., Broos, W., Geerts, J., Gergely, S., Vlaeminck, S.E., Cornet, I., 2023. Rapid lignin quantification for fungal wood pretreatment by ATR-FTIR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 285, 121912. doi: 10.1016/j.saa.2022.121912
    Womer, S., Huynh, T., John, S., 2023. Hybridizations and reinforcements in mycelium composites: a review. Bioresour. Technol. Rep. 22, 101456. doi: 10.1016/j.biteb.2023.101456
    Yang, L.B., Park, D., Qin, Z., 2021. Material function of mycelium-based bio-composite: a review. Front. Mater. 8, 737377. doi: 10.3389/fmats.2021.737377
    Yuyama, L.K.O., Aguiar, J.P.L., Yuyama, K., Clement, C.R., Macedo, S.H.M., Fávaro, D.I.T., Afonso, C., Vasconcellos, M.B.A., Pimentel, S.A., Badolato, E.S.G., Vannucchi, H., 2003. Chemical composition of the fruit mesocarp of three peach palm (Bactris gasipaes) populations grown in central Amazonia. Brazil. Int. J. Food Sci. Nutr. 54, 49–56.
    Zhou, X.W., Cong, W.R., Su, K.Q., Zhang, Y.M., 2013. Ligninolytic enzymes from Ganoderma spp: current status and potential applications. Crit. Rev. Microbiol. 39, 416–426. doi: 10.3109/1040841X.2012.722606
    Zimele, Z., Irbe, I., Grinins, J., Bikovens, O., Verovkins, A., Bajare, D., 2020. Novel mycelium-based biocomposites (MBB) as building materials. J. Renew. Mater. 8, 1067–1076. doi: 10.32604/jrm.2020.09646
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (117) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return