Volume 9 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Ryen M. Frazier, Mariana Lendewig, Ramon E. Vera, Keren A. Vivas, Naycari Forfora, Ivana Azuaje, Autumn Reynolds, Richard Venditti, Joel J. Pawlak, Ericka Ford, Ronalds Gonzalez. Textiles from non-wood feedstocks: Challenges and opportunities of current and emerging fiber spinning technologies[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 410-432. doi: 10.1016/j.jobab.2024.07.002
Citation: Ryen M. Frazier, Mariana Lendewig, Ramon E. Vera, Keren A. Vivas, Naycari Forfora, Ivana Azuaje, Autumn Reynolds, Richard Venditti, Joel J. Pawlak, Ericka Ford, Ronalds Gonzalez. Textiles from non-wood feedstocks: Challenges and opportunities of current and emerging fiber spinning technologies[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 410-432. doi: 10.1016/j.jobab.2024.07.002

Textiles from non-wood feedstocks: Challenges and opportunities of current and emerging fiber spinning technologies

doi: 10.1016/j.jobab.2024.07.002
More Information
  • Corresponding author: E-mail address: rwgonzal@ncsu.edu (R. Gonzalez)
  • Available Online: 2024-07-10
  • Publish Date: 2024-11-01
  • As the global population continues growing, the demand for textiles also increases, putting pressure on cotton manufacturers to produce more natural fiber from this already undersupplied resource. Synthetic fibers such as polyester (PET) can be manufactured quickly and cheaply, but these petroleum-based products are detrimental to the environment. With increased efforts to encourage transparency and create a more circular textile economy, other natural alternatives must be considered. This article discusses the existing condition and future possibilities for man-made cellulosic fibers (MMCFs), with an emphasis on using non-woody alternative feedstocks as a starting material. This work focuses on conversion technology suitable for producing textile-grade fibers from non-wood-based dissolving pulp, which may be different in nature from its woody counterpart and therefore behave differently in spinning processes. Derivatization and dissolution methods are detailed, along with spinning techniques and parameters for these processes. Existing research related to the spinning of non-woody-based dissolving pulp is covered, along with suggestions for the most promising feedstock and technology combinations. In addition, an emerging method of conversion, in which textile fibers are spun from a hydrogel made of an undissolved nano/micro-fibrillated fiber suspension, is briefly discussed due to its unique potential. Methods and concepts compiled in this review relate to utilizing alternative feedstocks for future fibers while providing a better understanding of conventional and emerging fiber spinning processes for these fibers.

     

  • Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Data availability
    The authors confirm that the data supporting the findings of this work are available within the article.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2024.07.002.
  • loading
  • Abd El-Sayed, E., El-Sakhawy, M., El-Sakhawy, M.A.M., 2020. Non-wood fibers as raw material for pulp and paper industry. Nord. Pulp Pap. Res. J. 35, 215–230. doi: 10.1515/npprj-2019-0064
    Adu, C., Zhu, C.C., Jolly, M., Richardson, R.M., Eichhorn, S.J., 2021. Continuous and sustainable cellulose filaments from ionic liquid dissolved paper sludge nanofibres. J. Clean. Prod. 280, 124503. doi: 10.1016/j.jclepro.2020.124503
    Ahmed, T., Mia, R., Ishraque Toki, G.F., Jahan, J., Hasan, M.M., Saleh Tasin, M.A., Farsee, M.S., Ahmed, S., 2021. Evaluation of sizing parameters on cotton using the modified sizing agent. Clean. Eng. Technol. 5, 100320. doi: 10.1016/j.clet.2021.100320
    Andrade, M.F., Colodette, J.L., 2014. Dissolving pulp production from sugar cane bagasse. Ind. Crops Prod. 52, 58–64. doi: 10.1016/j.indcrop.2013.09.041
    Andreaus, J., Colombi, B.L., Gonçalves, J.A., Alves dos Santos, K., 2019. Processing of cotton and man-made cellulosic fibers. In: Advances in Textile Biotechnology. Elsevier, Amsterdam, pp. 185–238.
    Balkissoon, S., Andrew, J., Sithole, B., 2023. Dissolving wood pulp production: a review. Biomass Conv. Bioref. 13, 16607–16642. doi: 10.1007/s13399-022-02442-z
    Batalha, L.A.R., Colodette, J.L., Gomide, J.L., Barbosa, L.C.A., Maltha, C.R.A., Gomes, F.J.B., 2011. Dissolving pulp production from bamboo. BioResources 7, 640–651. doi: 10.15376/biores.7.1.640-651
    Bettenhausen, C., Halford, B., Patel, P., Scott, A., Vitale, G., 2022. The Future of Sustainable Textiles. Available at: https://www.acs.org/content/dam/acsorg/membership/acs/benefits/discovery-reports/sustainabletextiles.pdf.
    Biswas, M.C., Bush, B., Ford, E., 2020. Glucaric acid additives for the antiplasticization of fibers wet spun from cellulose acetate/acetic acid/water. Carbohydr. Polym. 245, 116510. doi: 10.1016/j.carbpol.2020.116510
    Biswas, M.C., Dwyer, R., Jimenez, J., Su, H.C., Ford, E., 2021. Strengthening regenerated cellulose fibers sourced from recycled cotton T-shirt using glucaric acid for antiplasticization. Polysaccharides 2, 138–153. doi: 10.3390/polysaccharides2010010
    Ceccherini, S., 2022. Pulp Reactivity during Dissolution: From Assessment to Activation. Aalto University, Helsinki.
    Chen, C.X., Duan, C., Li, J.G., Liu, Y.S., Ma, X.J., Zheng, L.Q., Stavik, J., Ni, Y.H., 2016. Cellulose (dissolving pulp) manufacturing processes and properties: a mini-review. BioResources 11, 5553–5564. doi: 10.15376/biores.11.2.chen
    Christoffersson, K., 2005. Dissolving Pulp: Multivariate Characterisation and Analysis of Reactivity and Spectroscopic Properties. Umeå University, Umeå, Sweden.
    Drown, D.C., Edwards, L.L., Mays, J., Miller, M.W., Van Patten, M.D., 1997. Fertilizer production from wheat straw pulping: spent ammonium sulfite liquor. In: Proceedings of the Pulping Conference. TAPPI, USA.
    Duan, C., Verma, S.K., Li, J.G., Ma, X.J., Ni, Y.H., 2016. Viscosity control and reactivity improvements of cellulose fibers by cellulase treatment. Cellulose 23, 269–276. doi: 10.1007/s10570-015-0822-9
    El Seoud, O.A., Kostag, M., Jedvert, K., Malek, N.I., 2020. Cellulose regeneration and chemical recycling: closing the "cellulose gap" using environmentally benign solvents. Macromol. Mater. Eng. 305, 1900832. doi: 10.1002/mame.201900832
    Elsayed, S., Hellsten, S., Guizani, C., Witos, J., Rissanen, M., Rantamäki, A.H., Varis, P., Wiedmer, S.K., Sixta, H., 2020. Recycling of superbase-based ionic liquid solvents for the production of textile-grade regenerated cellulose fibers in the lyocell process. ACS Sustainable Chem. Eng. 8, 14217–14227. doi: 10.1021/acssuschemeng.0c05330
    European Bioplastics, 2024. Bioplastic Materials. Available at: https://www.european-bioplastics.org/bioplastics/materials.
    European Environment Agency, 2021. Plastic in textiles: towards a circular economy for synthetic textiles in Europe. Available at: https://www.eea.europa.eu/ publications/plastic-in-textiles-towards-a.
    Fang, P., Huang, L., Pan, W.H., Wu, S., Feng, X., Song, J.L., Xing, Y.J., 2021. Facile preparation of durable superhydrophobic-superoleophilic mesh using simple chemical oxidation for oil-water separation under harsh conditions. Colloids Surf. A Physicochem. Eng. Aspects 624, 126777. doi: 10.1016/j.colsurfa.2021.126777
    Felgueiras, C., Azoia, N.G., Gonçalves, C., Gama, M., Dourado, F., 2021. Trends on the cellulose-based textiles: raw materials and technologies. Front. Bioeng. Biotechnol. 9, 608826. doi: 10.3389/fbioe.2021.608826
    Fink, H.P., Weigel, P., Purz, H.J., Ganster, J., 2001. Structure formation of regenerated cellulose materials from NMMO-solutions. Prog. Polym. Sci. 26, 1473–1524. doi: 10.1016/S0079-6700(01)00025-9
    Focher, B., Marzetti, A., Marsano, E., Conio, G., Tealdi, A., Cosani, A., Terbojevich, M., 1998. Regenerated and graft copolymer fibers from steam-exploded wheat straw: characterization and properties. J. Appl. Polym. Sci. 67, 961–974. doi: 10.1002/(SICI)1097-4628(19980207)67:6<961::AID-APP1>3.0.CO;2-K
    Forfora, N., Azuaje, I., Vivas, K.A., Vera, R.E., Brito, A., Venditti, R., Kelley, S., Tu, Q.S., Woodley, A., Gonzalez, R., 2024. Evaluating biomass sustainability: why below-ground carbon sequestration matters. J. Clean. Prod. 439, 140677. doi: 10.1016/j.jclepro.2024.140677
    Frazier, R.M., Vivas, K.A., Azuaje, I., Vera, R., Pifano, A., Forfora, N., Jameel, H., Ford, E., Pawlak, J.J., Venditti, R., Gonzalez, R., 2024. Beyond cotton and polyester: an evaluation of emerging feedstocks and conversion methods for the future of fashion industry. J. Bioresour. Bioprod. 9, 130–159.
    Guo, S.C., Li, X., Zhao, R.M., Gong, Y., 2021. Comparison of life cycle assessment between lyocell fiber and viscose fiber in China. Int. J. Life Cycle Assess. 26, 1545–1555. doi: 10.1007/s11367-021-01916-y
    Harlin, A., 2019. Cellulose Carbamate: Production and Applications. VTT Technical Research Centre of Finland, Finland.
    Hauru, L.K.J., Hummel, M., Michud, A., Sixta, H., 2014. Dry jet-wet spinning of strong cellulose filaments from ionic liquid solution. Cellulose 21, 4471–4481. doi: 10.1007/s10570-014-0414-0
    Hermanutz, F., Vocht, M.P., Panzier, N., Buchmeiser, M.R., 2019. Processing of cellulose using ionic liquids. Macromol. Mater. Eng. 304, 1800450. doi: 10.1002/mame.201800450
    Hu, J.W., Li, R.J., Zhu, S.T., Zhang, G.Q., Zhu, P., 2021. Facile preparation and performance study of antibacterial regenerated cellulose carbamate fiber based on N-halamine. Cellulose 28, 4991–5003. doi: 10.1007/s10570-021-03836-4
    Huang, C.X., Sun, R.K., Chang, H.M., Yong, Q., Jameel, H., Phillips, R., 2019a. Production of dissolving grade pulp from tobacco stalk through SO2ethanol-water fractionation, alkaline extraction, and bleaching processes. BioResources 14, 5544–5558. doi: 10.15376/biores.14.3.5544-5558
    Huang, T.X., Chen, C., Li, D.F., Ek, M., 2019b. Hydrophobic and antibacterial textile fibres prepared by covalently attaching betulin to cellulose. Cellulose 26, 665–677. doi: 10.1007/s10570-019-02265-8
    Imura, Y., Hogan, R.M.C., Jaffe, M., 2014. Dry spinning of synthetic polymer fibers. In: Advances in Filament Yarn Spinning of Textiles and Polymers. Elsevier, Amsterdam, pp. 187–202.
    Isogai, A., Saito, T., Fukuzumi, H., 2011. TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85. doi: 10.1039/C0NR00583E
    Jackson, W., Caldwell, J., 1967. Antiplasticization. Ⅱ. characteristics of antiplasticizers. J. Appl. Polym. Sci. 11, 211–226. doi: 10.1002/app.1967.070110205
    Jahan, M.S., Rahman, M.M., Ni, Y.H., 2021. Alternative initiatives for non-wood chemical pulping and integration with the biorefinery concept: a review. Biofuels Bioprod. Biorefin. 15, 100–118. doi: 10.1002/bbb.2143
    Jayaprakash, K., Osama, A., Rajagopal, R., Goyette, B., Karthikeyan, O.P., 2022. Agriculture waste biomass repurposed into natural fibers: a circular bioeconomy perspective. Bioengineering 9, 296. doi: 10.3390/bioengineering9070296
    Jiang, W., Sun, L.F., Hao, A.Y., Yan Chen, J., 2011. Regenerated cellulose fibers from waste bagasse using ionic liquid. Text. Res. J. 81, 1949–1958. doi: 10.1177/0040517511414974
    Jiang, X.Y., Bai, Y.Y., Chen, X.F., Liu, W., 2020. A review on raw materials, commercial production and properties of lyocell fiber. J. Bioresour. Bioprod. 5, 16–25. doi: 10.1016/j.jobab.2020.03.002
    Kayseri, G.O., Bozdoğan, F., Hes, L., 2010. Performance properties of regenerated cellulose fibers. Textile Apparel 20, 208–212.
    Kim, T., Kim, D., Park, Y., 2022. Recent progress in regenerated fibers for "green" textile products. J. Clean. Prod. 376, 134226. doi: 10.1016/j.jclepro.2022.134226
    Köpcke, V., 2010. Conversion of Wood and Non-Wood Paper-Grade Pulps to Dissolving-Grade Pulps. Royal Institute of Technology, Stockholm.
    Kotek, R., 2006. Regenerated cellulose fibers. 11. Available at: https://doi.org/10.1201/9781420015270.ch10.
    Kreze, T., Malej, S., 2003. Structural characteristics of new and conventional regenerated cellulosic fibers. Text. Res. J. 73, 675–684. doi: 10.1177/004051750307300804
    Kuo, C.J., Lan, W.L., 2014. Gel spinning of synthetic polymer fibres. In: Advances in Filament Yarn Spinning of Textiles and Polymers. Elsevier, Amsterdam, pp. 100–112.
    Laivins, G. V, Scallan, A.M., 1993. The mechanism of hornification of wood pulps. Trans. of the Xth Fund. Res. Symp. Oxford 1, 1235–1260. doi: 10.15376/frc.1993.2.1235
    Lawson, L., Degenstein, L.M., Bates, B., Chute, W.D., King, D., Dolez, P.I., 2022. Cellulose textiles from hemp biomass: opportunities and challenges. Sustainability 14, 15337. doi: 10.3390/su142215337
    Li, D.F., Ibarra, D., Köpcke, V., Ek, M., 2012. Production of dissolving grade pulps from wood and non-wood paper-grade pulps by enzymatic and chemical pretreatments. In: Functional Materials from Renewable Sources. American Chemical Society, Washington, DC, pp. 167–189.
    Li, J.J., Lian, C.P., Wu, J.Y., Zhong, T.H., Zou, Y.P., Chen, H., 2023. Morphology, chemical composition and thermal stability of bamboo parenchyma cells and fibers isolated by different methods. Cellulose 30, 2007–2021. doi: 10.1007/s10570-022-05030-6
    Li, Z., 2003. Rheology of Lyocell Solutions from Different Cellulosic Sources Rheology of Lyocell Solutions from Different Cellulosic Sources and Development of Regenerated Cellulosic Microfibers. University of Tennessee, Knoxville.
    Lord, P.R., 2003. Textile products and fiber production. In: Handbook of Yarn Production. Elsevier, Amsterdam, pp. 18–55.
    Lundahl, M.J., Klar, V., Wang, L., Ago, M., Rojas, O.J., 2017. Spinning of cellulose nanofibrils into filaments: a review. Ind. Eng. Chem. Res. 56, 8–19. doi: 10.1021/acs.iecr.6b04010
    Ma, Y., Hummel, M., Kontro, I., Sixta, H., 2018. High performance man-made cellulosic fibres from recycled newsprint. Green Chem 20, 160–169. doi: 10.1039/C7GC02896B
    Ma, Y.B., You, X., Rissanen, M., Schlapp-Hackl, I., Sixta, H., 2021. Sustainable cross-linking of man-made cellulosic fibers with poly(carboxylic acids) for fibrillation control. ACS Sustainable Chem. Eng. 9, 16749–16756. doi: 10.1021/acssuschemeng.1c06101
    Mahmud, M.M., Perveen, A., Jahan, R.A., Matin, M.A., Wong, S.Y., Li, X., Arafat, M.T., 2019. Preparation of different polymorphs of cellulose from different acid hydrolysis medium. Int. J. Biol. Macromol. 130, 969–976. doi: 10.1016/j.ijbiomac.2019.03.027
    Mark, H.F., Atlas, S.M., Cernia, E., 1968. Man-made fibers. Science and Technology, Ⅱ. John Wiley & Sons, Singapore.
    Meister, F., 2021. TITK: First lyocell fibre made from non- wood-based pulp. Textile Network. Available at: https://textile-network.com/en/Technical-Textiles/FasernGarne/TITK-First-lyocell-fibre-made-from-non-wood-based-pulp/(gallery)/2.
    Mertaniemi, H., Escobedo-Lucea, C., Sanz-Garcia, A., Gandía, C., Mäkitie, A., Partanen, J., Ikkala, O., Yliperttula, M., 2016. Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 82, 208–220. doi: 10.1016/j.biomaterials.2015.12.020
    Michud, A., Hummel, M., Sixta, H., 2016. Influence of process parameters on the structure formation of man-made cellulosic fibers from ionic liquid solution. J. Appl. Polym. Sci. 133, e43718. doi: 10.1002/app.43718
    Mongkhonsiri, G., Gani, R., Malakul, P., Assabumrungrat, S., 2018. Integration of the biorefinery concept for the development of sustainable processes for pulp and paper industry. Comput. Chem. Eng. 119, 70–84. doi: 10.1016/j.compchemeng.2018.07.019
    Moriam, K., Sawada, D., Nieminen, K., Hummel, M., Ma, Y.B., Rissanen, M., Sixta, H., 2021. Towards regenerated cellulose fibers with high toughness. Cellulose 28, 9547–9566. doi: 10.1007/s10570-021-04134-9
    Mouritz, A., 2012. Introduction to Aerospace Materials. Elsevier, Amsterdam, pp. 268–302.
    Nguyen, N.A., Kim, K., Bowland, C.C., Keum, J.K., Kearney, L.T., André, N., Labbé, N., Naskar, A.K., 2019. A fundamental understanding of whole biomass dissolution in ionic liquid for regeneration of fiber by solution-spinning. Green Chem 21, 4354–4367. doi: 10.1039/c9gc00774a
    Ochica Larrota, A.F., Vera-Graziano, R., López-Córdoba, A., Gómez-Pachón, E.Y., 2021. Electrospun ultrafine cationic cellulose fibers produced from sugarcane bagasse for potential textile applications. Polymers 13, 3927. doi: 10.3390/polym13223927
    Opperskalski, S., Franz, A., Patane, A., Siew, S., Tan, E., 2022. Preferred Fiber & Materials Market Report 2022. Available at: https://textileexchange.org/knowledge-center/reports/materials-market-report-2022/.
    Opperskalski, S., Ridler, S., Siew, S., Tan, E., 2021. Preferred fiber & materials market report 2021. Available at: https://textileexchange.org/app/uploads/ 2021/08/Textile-Exchange_Preferred-Fiber-and-Materials-Market-Report_2021. pdf.
    Park, H.J., Han, J.S., Son, H.N., Seo, Y.B., 2013. Study of cotton linter pre-treatment process for producing high quality regenerated fibers for fabrics. J. Korea TAPPI 45, 27–35.
    Paunonen, S., Kamppuri, T., Katajainen, L., Hohenthal, C., Heikkilä, P., Harlin, A., 2019. Environmental impact of cellulose carbamate fibers from chemically recycled cotton. J. Clean. Prod. 222, 871–881. doi: 10.1016/j.jclepro.2019.03.063
    Peter, Z., 2021. Order in cellulosics: historical review of crystal structure research on cellulose. Carbohydr. Polym. 254, 117417. doi: 10.1016/j.carbpol.2020.117417
    Puspasari, T., 2018. Versatile High-Performance Regenerated Cellulose Membranes Prepared using Trimethylsilyl Cellulose as a Precursor. King Abdullah University of Science and Technology, Saudi Arabia.
    Qi, G.X., Xiong, L., Wang, B., Lin, X.Q., Zhang, H.R., Li, H.L., Huang, C., Chen, X.F., Wang, C., Chen, X.D., 2017. Improvement and characterization in enzymatic hydrolysis of regenerated wheat straw dissolved by LiCl/DMAc solvent system. Appl. Biochem. Biotechnol. 181, 177–191. doi: 10.1007/s12010-016-2206-5
    Quintana, E., Valls, C., Roncero, M.B., 2024. Dissolving-gradepulp: a sustainable source for fiber production. Wood Sci. Technol. 58, 23–85. doi: 10.1007/s00226-023-01519-w
    Rajan, K., Elder, T., Abdoulmoumine, N., Carrier, D.J., Labbé, N., 2020. Understanding the in situ state of lignocellulosic biomass during ionic liquids-based engineering of renewable materials and chemicals. Green Chem 22, 6748–6766. doi: 10.1039/d0gc02582h
    Rasooly-Garmaroody, E., Ebadi, S., Ramezani, O., Behrooz, R., 2022. Insights into activation of dissolving pulp preceding cellulose acetylation. BioResources 17, 2157–2175. doi: 10.15376/biores.17.2.2157-2175
    Reddy, N., Yang, Y.Q., 2007. Preparation and characterization of long natural cellulose fibers from wheat straw. J. Agric. Food Chem. 55, 8570–8575. doi: 10.1021/jf071470g
    Reddy, N., Yang, Y.Q., 2015. Innovative Biofibers from Renewable Resources. Springer, Berlin.
    Reyes, G., Ajdary, R., Yazdani, M.R., Rojas, O.J., 2022. Hollow filaments synthesized by dry-jet wet spinning of cellulose nanofibrils: structural properties and thermoregulation with phase-change infills. ACS Appl. Polym. Mater. 4, 2908–2916. doi: 10.1021/acsapm.2c00177
    Rutter, T., Hutton-Prager, B., 2018. Investigation of hydrophobic coatings on cellulose-fiber substrates with in situ polymerization of silane/siloxane mixtures. Int. J. Adhes. Adhes. 86, 13–21. doi: 10.1016/j.ijadhadh.2018.07.008
    Rydholm, S.A., 1965. Pulping Processes. Interscience Publishers, London.
    Saloni, D., 2023. From a sustainability perspective, why should bioplastics be used for additive manufacturing? Polym. Sci. Peer Rev. J. 4, 000594.
    Sarkar, A.M., Nayeem, J., Rahaman, M.M., Jahan, M.S., 2021. Dissolving pulp from non-wood plants by prehydrolysispotassium hydroxide process. Cellulose Chem. Technol. 55, 117–124. doi: 10.35812/CelluloseChemTechnol.2021.55.12
    Sasaki, M., Morita, H., Sakakibara, H., Saruhashi, M., Matsumoto, Y.T., 1989. Hollow cellulose fibers, method for making, and fluid processing apparatus using same. Available at: https://patents.google.com/patent/EP0359636B1/en.
    Saxell, H., Rantamaki, P., Ekman, K., 2014. Method for making cellulose carbamate. Available at: https://patents.google.com/patent/WO2015198218A1/en.
    Sayyed, A.J., Deshmukh, N.A., Pinjari, D.V., 2019. A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26, 2913–2940. doi: 10.1007/s10570-019-02318-y
    Schultz, T., Suresh, A., 2017. Life cycle assessment comparing ten sources of manmade cellulose fiber. Available at: www.SCSglobalServices.com.
    Shaker, K., Nawab, Y., 2022. Lignocellulosic Fibers Sustainable Biomaterials for Green Composites. Springer, Berlin.
    Shen, L., Patel, M.K., 2010. Life cycle assessment of man-made cellulose fibres. Lenzinger Berichte 88, 1–59. doi: 10.1145/1900354.1900356
    Shen, L., Worrell, E., Patel, M.K., 2010. Environmental impact assessment of man-made cellulose fibres. Resour. Conserv. Recycl. 55, 260–274. doi: 10.1016/j.resconrec.2010.10.001
    Singh, S., Dutt, D., Tyagi, C.H., 2010. Complete characterization of wheat straw (Triticum aestivum PBW-343 L. Emend. Fiori & Paul. ): a renewable source of fibers for pulp and paper making. BioResources 6, 154–177. doi: 10.15376/biores.6.1.154-177
    Sixta, H., 2006. Handbook of Pulp. Wiley, London.
    Sixta, H., Iakovlev, M., Testova, L., Roselli, A., Hummel, M., Borrega, M., van Heiningen, A., Froschauer, C., Schottenberger, H., 2013. Novel concepts of dissolving pulp production. Cellulose 20, 1547–1561. doi: 10.1007/s10570-013-9943-1
    Sjöholm, E., Gustafsson, K., Eriksson, B., Brown, W., Colmsjö, A., 2000. Aggregation of cellulose in lithium chloride/N, N-dimethylacetamide. Carbohydr. Polym. 41, 153–161. doi: 10.1016/S0144-8617(99)00080-6
    Skinner, M.W., Qian, C.B., Grigoras, S., Halloran, D.J., Zimmerman, B.L., 1999. Fundamental aspects of aminoalkyl siloxane softeners by molecular modeling and experimental methods. Text. Res. J. 69, 935–943. doi: 10.1177/004051759906901209
    Smith, P., Lemstra, P.J., Booij, H.C., 1981. Ultradrawing of high-molecular-weight polyethylene cast from solution. Ⅱ. Influence of initial polymer concentration. J. Polym. Sci. Polym. Phys. Ed. 19, 877–888. doi: 10.1002/pol.1981.180190514
    Solala, I., 2015. Mechanochemical Reactions in Lignocellulosic Materials. Aalto University, Helsinki.
    Spinnova, 2023. Spinnova: product. Available at: https://spinnova.com/product/.
    Strunk, P., Lindgren, Å., Agnemo, R., Eliasson, B., 2012. Properties of cellulose pulps and their influence on the production of a cellulose ether. Nord. Pulp Pap. Res. J. 27, 24–34. doi: 10.3183/npprj-2012-27-01-p024-034
    Sun, Q.Y., Lutz-Bueno, V., Zhou, J.T., Yuan, Y., Fischer, P., 2022. Polymer induced liquid crystal phase behavior of cellulose nanocrystal dispersions. Nanoscale Adv 4, 4863–4870. doi: 10.1039/d2na00303a
    Suresh, A., 2022. Identifying low carbon sources of man-made cellulosic fibres (MMCF). Fashion for climate. Available at: https://unfccc.int/documents/630806.
    Takashima, K., Taniguchi, H., Xudong, H., 2016. Cellulose acetate fiber, production method therefor, and filter tow for cigarettes. Available at: https://patents.google.com/patent/WO2016140307A1/en.
    Teng, Y., Yu, G.M., Fu, Y.F., Yin, C.Y., 2018. The preparation and study of regenerated cellulose fibers by cellulose carbamate pathway. Int. J. Biol. Macromol. 107, 383–392. doi: 10.1016/j.ijbiomac.2017.09.006
    Textile Exchange, 2023. Materials Market Report. Available at: https://textileexchange.org/knowledge-center/documents/materials-market-report-2023/.
    Tian, C., Zheng, L.Q., Miao, Q.X., Nash, C., Cao, C.Y., Ni, Y.H., 2013. Improvement in the Fock test for determining the reactivity of dissolving pulp. Novemb 12, 21–26 2013. doi: 10.32964/tj12.11.21
    Valta, K., Sivonen, E., 2005. Method for manufacturing cellulose carbamate. Available at: https://patents.google.com/patent/US20050054848A1/en#:~:text=In/20the/20method/2C/20an/20auxiliary,urea/20into/20cellulose/2C/20and/20the.
    Vasiljević, J., Gorjanc, M., Tomšič, B., Orel, B., Jerman, I., Mozetič, M., Vesel, A., Simončič, B., 2013. The surface modification of cellulose fibres to create super-hydrophobic, oleophobic and self-cleaning properties. Cellulose 20, 277–289. doi: 10.1007/s10570-012-9812-3
    Ven, T., Godbout, L., 2013. Cellulose: Fundamental Aspects. InTech, London.
    Vera, R.E., Vivas, K.A., Urdaneta, F., Franco, J., Sun, R.K., Forfora, N., Frazier, R., Gongora, S., Saloni, D., Fenn, L., Zhu, J.Y., Chang, H.M., Jameel, H., Gonzalez, R., 2023a. Transforming non-wood feedstocks into dissolving pulp via organosolv pulping: an alternative strategy to boost the share of natural fibers in the textile industry. J. Clean. Prod. 429, 139394. doi: 10.1016/j.jclepro.2023.139394
    Vera, R.E., Zambrano, F., Marquez, R., Vivas, K.A., Forfora, N., Bedard, J., Farrell, M., Ankeny, M., Pal, L., Jameel, H., Gonzalez, R., 2023b. Environmentally friendly oxidation pretreatments to produce sugar-based building blocks from dyed textile wastes via enzymatic hydrolysis. Chem. Eng. J. 467, 143321. doi: 10.1016/j.cej.2023.143321
    Vera, R.E., Zambrano, F., Suarez, A., Pifano, A., Marquez, R., Farrell, M., Ankeny, M., Jameel, H., Gonzalez, R., 2022. Transforming textile wastes into biobased building blocks via enzymatic hydrolysis: a review of key challenges and opportunities. Clean. Circ. Bioecon. 3, 100026.
    Vergara, M.C.A., 2018. Obtaining Viscose Rayon from Fique with Potential Application in the Colombian Textile Sector. Pontifical Bolivarian University, Colombia.
    Vocht, M.P., Beyer, R., Thomasic, P., Müller, A., Ota, A., Hermanutz, F., Buchmeiser, M.R., 2021. High-performance cellulosic filament fibers prepared via dry-jet wet spinning from ionic liquids. Cellulose 28, 3055–3067. doi: 10.1007/s10570-021-03697-x
    Wada, M., Heux, L., Sugiyama, J., 2004. Polymorphism of cellulose Ⅰ family: reinvestigation of cellulose IVI. Biomacromolecules 5, 1385–1391. doi: 10.1021/bm0345357
    Wang, Q., Zhao, H., Zhao, L., Huang, M., Tian, D., Deng, S., Hu, J., Zhang, X., Shen, F., 2023. Fabrication of regenerated cellulose fibers using phosphoric acid plus hydrogen peroxide treated wheat straw in DMAc/LiCl solvent system. Cellulose 30, 6187–6201. doi: 10.1007/s10570-023-05263-z
    Wang, S., Lu, A., Zhang, L.N., 2016. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 53, 169–206. doi: 10.1016/j.progpolymsci.2015.07.003
    Wei, Y.J., Zhou, M., Yao, A.R., Zhu, P.X., 2020. Preparation of microfibrillated cellulose from wood pulp through carbamate modification and colloid milling. Appl. Sci. 10, 1977. doi: 10.3390/app10061977
    Win Win Textiles, 2018. Introduction to regenerated cellulosic fibres. Available at: https://win-win.info/sustainable-concepts/regenerated-cellulosic-fibres/.
    Woodings, C., 2003. Fibers, regenerated cellulose. Kirk Othmer Encycl. Chem. Technol. 246–285.
    Wu, J.Y., Zhong, T.H., Zhang, W.F., Shi, J.J., Fei, B.H., Chen, H., 2021. Comparison of colors, microstructure, chemical composition and thermal properties of bamboo fibers and parenchyma cells with heat treatment. J. Wood Sci. 67, 56. doi: 10.1109/ateee54283.2021.00020
    Yang, B., Qin, X.Y., Hu, H.C., Duan, C., He, Z.B., Ni, Y.H., 2020. Using ionic liquid (EmimAc)-water mixture in selective removal of hemicelluloses from a paper-grade bleached hardwood kraft pulp. Cellulose 27, 9653–9661. doi: 10.1007/s10570-020-03423-z
    Yuan, Z., 2017. Understanding Hemicellulose and Silica Removal from Bamboo. University of British Columbia, Vancouver.
    Yue, Y.Y., Han, G.P., Wu, Q.L., 2013. Transitional properties of cotton fibers from cellulose Ⅰ to cellulose Ⅱ structure. BioResources 8, 6460–6471.
    Zainul Armir, N.A., Zulkifli, A., Gunaseelan, S., Palanivelu, S.D., Salleh, K.M., Che Othman, M.H., Zakaria, S., 2021. Regenerated cellulose products for agricultural and their potential: a review. Polymers 13, 3586. doi: 10.3390/polym13203586
    Zhang, S.K., Chen, C.X., Duan, C., Hu, H.C., Li, H.L., Li, J.G., Liu, Y.S., Ma, X.J., Stavik, J., Ni, Y.H., 2018. Regenerated cellulose by the Lyocell process, a brief review of the process and properties. BioResources 13, 4577–4592. doi: 10.15376/biores.13.2.zhang
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (194) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return