Volume 9 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Fatima-Zahra Azar, Achraf El Kasmi, Maria Ángeles Lillo-Ródenas, Maria del Carmen Román-Martínez, Haichao Liu. Selective biomass conversion over novel designed tandem catalyst[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 508-517. doi: 10.1016/j.jobab.2024.09.001
Citation: Fatima-Zahra Azar, Achraf El Kasmi, Maria Ángeles Lillo-Ródenas, Maria del Carmen Román-Martínez, Haichao Liu. Selective biomass conversion over novel designed tandem catalyst[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 508-517. doi: 10.1016/j.jobab.2024.09.001

Selective biomass conversion over novel designed tandem catalyst

doi: 10.1016/j.jobab.2024.09.001
More Information
  • Corresponding author: E-mail address: fatima-zahra.azar@um6p.ma (F.-Z. Azar)
  • Available Online: 2024-09-05
  • Publish Date: 2024-11-01
  • Selective conversion of biomass into targeted molecules like polyols, especially, from cellulosic compounds, is being widely investigated as a sustainable process to produce biodiesel and bio-additives. The known process involves two steps, namely hydrolysis and hydrogenation. Thus, it requires two different catalytic materials or bifunctional catalysts. In this context, the present work reports a new catalytic approach based on the use of tandem catalysts, consisting of the combination of an acid solid catalyst (active for hydrolysis) and a supported metal catalyst (active for hydrogenation). Two different functionalized activated carbons and the resin Amberlyst 15 have been tested as solid acid catalysts, and Ru nanoparticles supported on the original activated carbon (SA) are the metal catalyst part of the tandem. All the tested tandem catalysts exhibited higher activity than the supported Ru catalyst did. The highest cellulose conversion and selectivity to sorbitol (70% and 86%, respectively) have been obtained over a novel tandem catalyst, which resulted from a physical mixture between a sulfuric acid modified SA carbon (SASu) and Ru loaded SA (Ru/SA), leading to a tandem catalyst (Ru/SA+SASu). This novel-designed tandem catalyst is reusable. Based on tandem catalysts with a solid-solid system combination, the adopted novel-designed catalytic approach is cost-efficient and sustainable, and can be considered promising for the green production of high-added-value chemicals.

     

  • Declaration of Competing Interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2024.09.001.
  • loading
  • Adsuar-García, M.D., Flores-Lasluisa, J.X., Azar, F.Z., Román-Martínez, M.C., 2018. Carbon-black-supported Ru catalysts for the valorization of cellulose through hydrolytic hydrogenation. Catalysts 8, 572. doi: 10.3390/catal8120572
    Adsuar-García, M.D., 2017. Catalizadores bifuncionales Para la hidrogenación hidrolítica de la celulosa. Universidad de Alicante, Alicante.
    Arunajatesan, V., Chen, B.S., Möbus, K., Ostgard, D.J., Tacke, T., Wolf, D., 2008. Carbon-supported catalysts for the chemical industry. Carbon. Mater. Catal. 535–572. doi: 10.1002/9780470403709.ch15
    Auer, E., Freund, A., Pietsch, J., Tacke, T., 1998. Carbons as supports for industrial precious metal catalysts. Appl. Catal. A Gen. 173, 259–271. doi: 10.1016/S0926-860X(98)00184-7
    Avolio, R., Bonadies, I., Capitani, D., Errico, M.E., Gentile, G., Avella, M., 2012. A multitechnique approach to assess the effect of ball milling on cellulose. Carbohydr. Polym. 87, 265–273. doi: 10.1016/j.carbpol.2011.07.047
    Azar, F.Z., 2019. Catalytic conversion of cellulose and biomass into high added-value chemicals using carbon materials and Ru catalysts. Universidad de Alicante, Alicante.
    Azar, F.Z., El Kasmi, A., Cruz Junior, O.F., Lillo-Ródenas, M. Á., del Carmen Román-Martínez, M., 2023. Direct cost-efficient hydrothermal conversion of Amazonian lignocellulosic biomass residue. Biomass Convers. Biorefin. 1–9.
    Azar, F.Z., Lillo-Ródenas, M. Á., Román-Martínez, M.C., 2020. Mesoporous activated carbon supported Ru catalysts to efficiently convert cellulose into sorbitol by hydrolytic hydrogenation. Energies 13, 4394. doi: 10.3390/en13174394
    Azar, F.Z., Lillo-Ródenas, M.A., Román-Martínez, M.C., 2019. Cellulose hydrolysis catalysed by mesoporous activated carbons functionalized under mild conditions. SN Appl. Sci. 1, 1739. doi: 10.1007/s42452-019-1776-6
    Balasubramanian, S., Venkatachalam, P., 2022. Green synthesis of carbon solid acid catalysts using methane sulfonic acid and its application in the conversion of cellulose to platform chemicals. Cellulose 29, 1509–1526. doi: 10.1007/s10570-022-04419-7
    Boehm, H.P., Diehl, E., Heck, W., Sappok, R., 1964. Surface oxides of carbon. Angew. Chem. Int. Ed. 3, 669–677. doi: 10.1002/anie.196406691
    Cano-Serrano, E., Blanco-Brieva, G., Campos-Martin, J.M., Fierro, J.L.G., 2003. Acid-functionalized amorphous silica by chemical grafting–quantitative oxidation of thiol groups. Langmuir 19, 7621–7627. doi: 10.1021/la034520u
    Chen, H.Z., 2015. Lignocellulose biorefinery conversion engineering. In: Lignocellulose Biorefinery Engineering. Elsevier, Amsterdam, pp. 87–124.
    Chheda, J.N., Huber, G.W., Dumesic, J.A., 2007. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed Engl. 46, 7164–7183. doi: 10.1002/anie.200604274
    Chung, P.W., Charmot, A., Gazit, O.M., Katz, A., 2012. Glucan adsorption on mesoporous carbon nanoparticles: effect of chain length and internal surface. Langmuir 28, 15222–15232. doi: 10.1021/la3030364
    Climent, M.J., Corma, A., Iborra, S., 2011. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem. Rev. 111, 1072–1133. doi: 10.1021/cr1002084
    Ernst, M.A., Sloof, W.G., 2008. Unraveling the oxidation of Ru using XPS. Surf. Interface Anal. 40, 334–337. doi: 10.1002/sia.2675
    Figueiredo, J.L., Pereira, M.F.R., Freitas, M.M.A., Órfão, J.J.M., 1999. Modification of the surface chemistry of activated carbons. Carbon 37, 1379–1389. doi: 10.1016/S0008-6223(98)00333-9
    Geboers, J., van de Vyver, S., Carpentier, K., de Blochouse, K., Jacobs, P., Sels, B., 2010. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. Chem. Commun. 46, 3577–3579. doi: 10.1039/c001096k
    Geboers, J., Van de Vyver, S., Carpentier, K., Jacobs, P., Sels, B., 2011. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem. Commun. 47, 5590–5592. doi: 10.1039/c1cc10422e
    Gregg, S J, Sing, K.S.W., 1999. Adsorption, Surface Area and Porosity. Academic Press, New York, p. 114.
    Han, J.W., Lee, H., 2012. Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution. Catal. Commun. 19, 115–118. doi: 10.3901/JME.2012.10.115
    He, L.J., Chen, L., Zheng, B.H., Zhou, H., Wang, H., Li, H., Zhang, H., Xu, C.C., Yang, S., 2023. Deep eutectic solvents for catalytic biodiesel production from liquid biomass and upgrading of solid biomass into 5-hydroxymethylfurfural. Green Chem 25, 7410–7440. doi: 10.1039/d3gc02816j
    Huang, H., Denard, C.A., Alamillo, R., Crisci, A.J., Miao, Y.R., Dumesic, J.A., Scott, S.L., Zhao, H.M., 2014. Tandem catalytic conversion of glucose to 5-hydroxymethylfurfural with an immobilized enzyme and a solid acid. ACS Catal 4, 2165–2168. doi: 10.1021/cs500591f
    Huang, Y.B., Fu, Y., 2013. Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem 15, 1095–1111. doi: 10.1039/c3gc40136g
    Isikgor, F.H., Becer, C.R., 2015. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497–4559. doi: 10.1039/C5PY00263J
    Jofre, F.M., Bordini, F.W., de Andrade Bianchini, I., de Souza Queiroz, S., da Silva Boaes, T., Hernández-Pérez, A.F., das Graças de Almeida Felipe, M., 2022. Xylitol and sorbitol: production routes, challenges and opportunities in biorefineries integration. Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources. Elsevier, Amsterdam, pp. 233–268.
    Kamm, B., Patrick, R.G., Michael, K., 2016. Biorefineries – Industrial Processes and Products. Ullmann's Encyclopedia of Industrial Chemistry. John Wiley & Sons, Inc, Weinheim, pp. 1–38. .
    Li, H., Fang, Z., Smith, R.L., Yang, S., 2016. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Prog. Energy Combust. Sci. 55, 98–194. doi: 10.11648/j.ajce.20160403.16
    Li, N., Ma, X.L., Zha, Q.F., Kim, K., Chen, Y.S., Song, C.S., 2011. Maximizing the number of oxygen-containing functional groups on activated carbon by using ammonium persulfate and improving the temperature-programmed desorption characterization of carbon surface chemistry. Carbon 49, 5002–5013. doi: 10.1016/j.carbon.2011.07.015
    Machado, B.F., Oubenali, M., Rosa Axet, M., Trang NGuyen, T., Tunckol, M., Girleanu, M., Ersen, O., Gerber, I.C., Serp, P., 2014. Understanding the surface chemistry of carbon nanotubes: Toward a rational design of Ru nanocatalysts. J. Catal. 309, 185–198. doi: 10.1016/j.jcat.2013.09.016
    Messou, D., Vivier, L., Especel, C., 2018. Sorbitol transformation into biofuels over bimetallic platinum based catalysts supported on SiO2-Al2O3–Effect of the nature of the second metal. Fuel Process. Technol. 177, 159–169. doi: 10.1016/j.fuproc.2018.04.030
    Morgan, D.J., 2015. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 47, 1072–1079. doi: 10.1002/sia.5852
    Muranaka, Y., Suzuki, T., Sawanishi, H., Hasegawa, I., Mae, K., 2014. Effective production of levulinic acid from biomass through pretreatment using phosphoric acid, hydrochloric acid, or ionic liquid. Ind. Eng. Chem. Res. 53, 11611–11621. doi: 10.1021/ie501811x
    Negoi, A., Triantafyllidis, K., Parvulescu, V.I., Coman, S.M., 2014. The hydrolytic hydrogenation of cellulose to sorbitol over M (Ru, Ir, Pd, Rh)-BEA-zeolite catalysts. Catal. Today 223, 122–128. doi: 10.1016/j.cattod.2013.07.007
    Oh, Y.J., Yoo, J.J., Kim, Y.I., Yoon, J.K., Yoon, H.N., Kim, J.H., Bin Park, S., 2014. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim. Acta 116, 118–128. doi: 10.1016/j.electacta.2013.11.040
    Onda, A., Ochi, T., Yanagisawa, K., 2008. Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10, 1033–1037. doi: 10.1039/b808471h
    Palkovits, R., Tajvidi, K., Procelewska, J., Rinaldi, R., Ruppert, A., 2010. Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts. Green Chem 12, 972–978. doi: 10.1039/c000075b
    Pang, J.F., Wang, A.Q., Zheng, M.Y., Zhang, T., 2010. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chem. Commun. 46, 6935–6937. doi: 10.1039/c0cc02014a
    Peng, G., Gramm, F., Ludwig, C., Vogel, F., 2015. Effect of carbon surface functional groups on the synthesis of Ru/C catalysts for supercritical water gasification. Catal. Sci. Technol. 5, 3658–3666. doi: 10.1039/C5CY00352K
    Perera, F., 2017. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int. J. Environ. Res. Public Health 15, 16. doi: 10.3390/ijerph15010016
    Reyes-Luyanda, D., Flores-Cruz, J., Morales-Pérez, P.J., Encarnación-Gómez, L.G., Shi, F.Y., Voyles, P.M., Cardona-Martínez, N., 2012. Bifunctional materials for the catalytic conversion of cellulose into soluble renewable biorefinery feedstocks. Top. Catal. 55, 148–161. doi: 10.1007/s11244-012-9791-5
    Ribeiro, L.S., Delgado, J.J., de Melo Órfão, J.J., Pereira, M.F.R., 2017a. Direct conversion of cellulose to sorbitol over ruthenium catalysts: Influence of the support. Catal. Today 279, 244–251. doi: 10.1016/j.cattod.2016.05.028
    Ribeiro, L.S., Órfão, J.J.M., Pereira, M.F.R., 2017b. Direct catalytic production of sorbitol from waste cellulosic materials. Bioresour. Technol. 232, 152–158. doi: 10.1016/j.biortech.2017.02.008
    Ribeiro, L.S., Órfão, J.J.M., Pereira, M.F.R., 2015. Enhanced direct production of sorbitol by cellulose ball-milling. Green Chem 17, 2973–2980. doi: 10.1039/C5GC00039D
    Rodríguez-Reinoso, F., 1989. Microporous structure of activated carbons as revealed by adsorption methods. In: Thrower, P. (Ed. ), Chemistry and Physics of Carbon. Marcel Dekker Inc, New York.
    Sachs, W., Santarius, T., 2014. Fair Future: Resource Conflicts, Security and Global Justice: A Report of the Wuppertal Institute for Climate. Environment and Energy. Zed Books, London.
    Serrano-Ruiz, J.C., Dumesic, J.A., 2011. Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ. Sci. 4, 83–99. doi: 10.1039/C0EE00436G
    Shen, F., Smith Jr, R.L., Li, L.Y., Yan, L.L., Qi, X.H., 2017. Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst. ACS Sustainable Chem. Eng. 5, 2421–2427. doi: 10.1021/acssuschemeng.6b02765
    Shirai, H., Ikeda, S., Qian, E.W., 2017. One-pot production of 5-hydroxymethylfurfural from cellulose using solid acid catalysts. Fuel Process. Technol. 159, 280–286. doi: 10.1016/j.fuproc.2016.10.005
    Shrotri, A., Kobayashi, H., Fukuoka, A., 2018. Cellulose depolymerization over heterogeneous catalysts. Acc. Chem. Res. 51, 761–768. doi: 10.1021/acs.accounts.7b00614
    Stöcker, M., 2008. Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew. Chem. Int. Ed Engl. 47, 9200–9211. doi: 10.1002/anie.200801476
    Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., Hara, M., 2008. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J. Am. Chem. Soc. 130, 12787–12793. doi: 10.1021/ja803983h
    Suzuki, S., Takeoka, Y., Rikukawa, M., Yoshizawa-Fujita, M., 2018. Brønsted acidic ionic liquids for cellulose hydrolysis in an aqueous medium: structural effects on acidity and glucose yield. RSC Adv 8, 14623–14632. doi: 10.1039/c8ra01950a
    Takagaki, A., Takahashi, M., Nishimura, S., Ebitani, K., 2011. One-pot synthesis of 2,5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts. ACS Catal 1, 1562–1565. doi: 10.1021/cs200456t
    Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W., 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069. doi: 10.1515/pac-2014-1117
    Tyufekchiev, M., Duan, P., Schmidt-Rohr, K., Granados Focil, S., Timko, M.T., Emmert, M.H., 2018. Cellulase-inspired solid acids for cellulose hydrolysis: structural explanations for high catalytic activity. ACS Catal 8, 1464–1468. doi: 10.1021/acscatal.7b04117
    Velo-Gala, I., López-Peñalver, J.J., Sánchez-Polo, M., Rivera-Utrilla, J., 2014. Surface modifications of activated carbon by gamma irradiation. Carbon 67, 236–249. doi: 10.1016/j.carbon.2013.09.087
    Vu, A., Wickramasinghe, S.R., Qian, X.H., 2018. Polymeric solid acid catalysts for lignocellulosic biomass fractionation. Ind. Eng. Chem. Res. 57, 4514–4525. doi: 10.1021/acs.iecr.7b05286
    Yabushita, M., Kobayashi, H., Fukuoka, A., 2014. Catalytic transformation of cellulose into platform chemicals. Appl. Catal. B Environ. 145, 1–9. doi: 10.1016/j.apcatb.2013.01.052
    Yamaguchi, D., Kitano, M., Suganuma, S., Nakajima, K., Kato, H., Hara, M., 2009. Hydrolysis of cellulose by a solid acid catalyst under optimal reaction conditions. J. Phys. Chem. C 113, 3181–3188. doi: 10.1021/jp808676d
    Yan, Q., Wu, X., Jiang, H., Wang, H., Xu, F., Li, H., Zhang, H., Yang, S., 2024. Transition metals-catalyzed amination of biomass feedstocks for sustainable construction of N-heterocycles. Coord. Chem. Rev. 502, 215622. doi: 10.1016/j.ccr.2023.215622
    Yao, C., Tian, H., Hu, Z.M., Yin, Y.S., Chen, D.L., Yan, X.Z., 2018. Characteristics and kinetics analyses of different genus biomass pyrolysis. Korean J. Chem. Eng. 35, 511–517. doi: 10.1007/s11814-017-0298-4
    Yu, F., Zhong, R.Y., Chong, H., Smet, M., Dehaen, W., Sels, B.F., 2017. Fast catalytic conversion of recalcitrant cellulose into alkyl levulinates and levulinic acid in the presence of soluble and recoverable sulfonated hyperbranched poly(arylene oxindole)s. Green Chem 19, 153–163. . doi: 10.1039/C6GC02130A
    Zhang, J., Li, J.B., Wu, S.B., Liu, Y., 2013. Advances in the catalytic production and utilization of sorbitol. Ind. Eng. Chem. Res. 52, 11799–11815. doi: 10.1021/ie4011854
    Zheng, B.H., Chen, L., He, L.J., Wang, H., Li, H., Zhang, H., Yang, S., 2024. Facile synthesis of chitosan-derived sulfonated solid acid catalysts for realizing highly effective production of biodiesel. Ind. Crops Prod. 210, 118058. doi: 10.1016/j.indcrop.2024.118058
    Zhou, J.H., Sui, Z.J., Zhu, J., Li, P., Chen, D., Dai, Y.C., Yuan, W.K., 2007. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 45, 785–796. doi: 10.1016/j.carbon.2006.11.019
    Zhu, W.W., Yang, H.M., Chen, J.Z., Chen, C., Guo, L., Gan, H.M., Zhao, X.G., Hou, Z.S., 2014. Efficient hydrogenolysis of cellulose into sorbitol catalyzed by a bifunctional catalyst. Green Chem 16, 1534–1542. doi: 10.1039/c3gc41917g
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (124) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return