Volume 9 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Rosaria Ciriminna, Giuseppe Angellotti, Giovanna Li Petri, Francesco Meneguzzo, Cristina Riccucci, Gabriella Di Carlo, Mario Pagliaro. Cavitation as a zero-waste circular economy process to convert citrus processing waste into biopolymers in high demand[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 486-494. doi: 10.1016/j.jobab.2024.09.002
Citation: Rosaria Ciriminna, Giuseppe Angellotti, Giovanna Li Petri, Francesco Meneguzzo, Cristina Riccucci, Gabriella Di Carlo, Mario Pagliaro. Cavitation as a zero-waste circular economy process to convert citrus processing waste into biopolymers in high demand[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 486-494. doi: 10.1016/j.jobab.2024.09.002

Cavitation as a zero-waste circular economy process to convert citrus processing waste into biopolymers in high demand

doi: 10.1016/j.jobab.2024.09.002
More Information
  • Cavitation in water only, no matter whether hydrodynamic or acoustic, is a zero-waste circular economy process to convert industrial citrus processing waste into high-performance polysaccharides in high demand in a single-step at room temperature and ambient pressure using a modest amount of electricity as the only energy input. Following previous reports in which we used hydrodynamic cavitation, we now use an industrial acoustic sonicator to demonstrate the general viability of cavitation to convert biowaste residue of the industrial squeezing of pigmented sweet orange (Citrus sinensis) into highly bioactive "IntegroPectin" pectin and micronized cellulose "CytroCell". From biomedicine through advanced composite membranes, said biomaterials hold great applicative potential. We conclude discussing the economic and technical feasibility of industrial implementation of the "CytroCav" process.

     

  • Availability of data
    Data available on request from the corresponding authors.
    Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    CRediT authorship contribution statement
    Rosaria Ciriminna: Conceptualization, Supervision, Writing – review & editing, Resources, Methodology. Giuseppe Angellotti: Formal analysis, Investigation, Software. Giovanna Li Petri: Formal analysis, Investigation, Software. Francesco Meneguzzo: Conceptualization, Resources, Methodology. Cristina Riccucci: Formal analysis, Investigation, Software. Gabriella Di Carlo: Formal analysis, Investigation, Methodology. Mario Pagliaro: Conceptualization, Writing – original draft, Methodology, Supervision.
  • loading
  • Al Jitan, S., Scurria, A., Albanese, L., Pagliaro, M., Meneguzzo, F., Zabini, F., Al Sakkaf, R., Yusuf, A., Palmisano, G., Ciriminna, R., 2022. Micronized cellulose from Citrus processing waste using water and electricity only. Int. J. Biol. Macromol. 204, 587–592. doi: 10.1016/j.ijbiomac.2022.02.042
    Bhattacharjee, S., 2016. DLS and Zeta potential–what they are and what they are not? J. Control. Release 235, 337–351. doi: 10.1016/j.jconrel.2016.06.017
    Butera, V., Ciriminna, R., Valenza, C., Li Petri, G., Angellotti, G., Barone, G., Meneguzzo, F., Di Liberto, V., Bonura, A., Pagliaro, M., 2024. Citrus IntegroPectin: a computational insight. ChemRxiv doi: 10.26434/chemrxiv-2024-hs24g.
    Capozzi, L., Trout, B.L., Pisano, R., 2019. From batch to continuous: freeze-drying of suspended vials for pharmaceuticals in unit-doses. Ind. Eng. Chem. Res. 58, 1635–1649. doi: 10.1021/acs.iecr.8b02886
    Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., Abert-Vian, M., 2017. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. Ultrason. Sonochem 34, 540–560. doi: 10.1016/j.ultsonch.2016.06.035
    Chemat, F., Vian, M.A., Cravotto, G., 2012. Green extraction of natural products: concept and principles. Int. J. Mol. Sci. 13, 8615–8627. doi: 10.3390/ijms13078615
    Cichosz, S., Masek, A., 2020. IR study on cellulose with the varied moisture contents: insight into the supramolecular structure. Materials 13, 4573. doi: 10.3390/ma13204573
    Ciriminna, R., Albanese, L., Meneguzzo, F., Pagliaro, M., 2021. IntegroPectin: a new Citrus pectin with uniquely high biological activity. In: The 2nd International Electronic Conference on Foods—“Future Foods and Food Technologies for a Sustainable World. MDPI, Basel Switzerland..
    Ciriminna, R., Angellotti, G., Luque, R., Formenti, M., Della Pina, C., Pagliaro, M., 2024. Learning from hype en route to fulfill the industrial potential of nanocellulose. Carbohydr. Polym. Technol. Appl. 7, 100512.
    Clements, R.L., 1964. Organic acids in Citrus fruits. I. varietal differencesa. J. Food Sci. 29, 276–280. doi: 10.1111/j.1365-2621.1964.tb01731.x
    Fontananova, E., Ciriminna, R., Talarico, D., Galiano, F., Figoli, A., Di Profio, G., Mancuso, R., Gabriele, B., Angellotti, G., Li Petri, G., Meneguzzo, F., Pagliaro, M., 2024. CytroCell@PIL: a new Citrus nanocellulose-polymeric ionic liquid composite for enhanced anion exchange membrane alkaline water electrolysis. ChemRxiv doi: 10.26434/chemrxiv-2024-q0xtq.
    Gohil, R.M., 2011. Synergistic blends of natural polymers, pectin and sodium alginate. J. Appl. Polym. Sci. 120, 2324–2336. doi: 10.1002/app.33422
    Khubber, S., Chaturvedi, K., Thakur, N., Sharma, N., Yadav, S.K., 2021. Low-methoxyl pectin stabilizes low-fat set yoghurt and improves their physicochemical properties, rheology, microstructure and sensory liking. Food Hydrocoll 111, 106240. doi: 10.1016/j.foodhyd.2020.106240
    Kratchanov, C., Marev, K., Kirchev, N., Bratanoff, A., 1986. Improving pectin technology: extraction using pulsating hydrodynamic action. Int. J. Food Sci. Technol. 21, 751–762. doi: 10.1111/ijfs1986216751
    Krysa, M., Szymańska-Chargot, M., Zdunek, A., 2022. FT-IR and FT-Raman fingerprints of flavonoids–a review. Food Chem. 393, 133430. doi: 10.1016/j.foodchem.2022.133430
    Legua, P., Modica, G., Porras, I., Conesa, A., Continella, A., 2022. Bioactive compounds, antioxidant activity and fruit quality evaluation of eleven blood orange cultivars. J. Sci. Food Agric. 102, 2960–2971. doi: 10.1002/jsfa.11636
    Lo Piero, A.R., 2015. The state of the art in biosynthesis of anthocyanins and its regulation in pigmented sweet oranges (Citrus sinensis) L. osbeck. J. Agric. Food Chem. 63, 4031–4041. doi: 10.1021/acs.jafc.5b01123
    Meneguzzo, F., Brunetti, C., Fidalgo, A., Ciriminna, R., Delisi, R., Albanese, L., Zabini, F., Gori, A., dos Santos Nascimento, L., De Carlo, A., Ferrini, F., Ilharco, L., Pagliaro, M., 2019. Real-scale integral valorization of waste orange peel via hydrodynamic cavitation. Processes 7, 581. doi: 10.3390/pr7090581
    Meneguzzo, F., Ciriminna, R., Zabini, F., Pagliaro, M., 2020. Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. Processes 8, 549. doi: 10.3390/pr8050549
    Muhidinov, Z.K., Khurshed, I., Ikromi, I., Jonmurodov, A.S., Nasriddinov, A.S., Usmanova, S.R., Bobokalonov, J.T., Strahan, G.D., Liu, L.S., 2021. Structural characterization of pectin obtained by different purification methods. Int. J. Biol. Macromol. 183, 2227–2237. doi: 10.1016/j.ijbiomac.2021.05.094
    Nuzzo, D., Cristaldi, L., Sciortino, M., Albanese, L., Scurria, A., Zabini, F., Lino, C., Pagliaro, M., Meneguzzo, F., Di Carlo, M., Ciriminna, R., 2020. Exceptional antioxidant, non-cytotoxic activity of integral lemon pectin from hydrodynamic cavitation. ChemistrySelect 5, 5066–5071. doi: 10.1002/slct.202000375
    Nuzzo, D., Picone, P., Giardina, C., Scordino, M., Mudò, G., Pagliaro, M., Scurria, A., Meneguzzo, F., Ilharco, L.M., Fidalgo, A., Alduina, R., Presentato, A., Ciriminna, R., Di Liberto, V., 2021a. New neuroprotective effect of lemon IntegroPectin on neuronal cellular model. Antioxidants 10, 669. doi: 10.3390/antiox10050669
    Nuzzo, D., Scordino, M., Scurria, A., Giardina, C., Giordano, F., Meneguzzo, F., Mudò, G., Pagliaro, M., Picone, P., Attanzio, A., Raimondo, S., Ciriminna, R., Di Liberto, V., 2021b. Protective, antioxidant and antiproliferative activity of grapefruit IntegroPectin on SH-SY5Y cells. Int. J. Mol. Sci. 22, 9368. doi: 10.3390/ijms22179368
    Nuzzo, D., Scurria, A., Picone, P., Guiducci, A., Pagliaro, M., Pantaleo, G., Albanese, L., Meneguzzo, F., Ciriminna, R., 2022. A gluten-free biscuit fortified with lemon IntegroPectin. ChemistrySelect 7, e202104247. doi: 10.1002/slct.202104247
    Panchev, I., Kirchev, N., Kratchanov, C., 1988. Improving pectin technology. Int. J. Food Sci. Technol. 23, 337–341. doi: 10.1111/j.1365-2621.1988.tb00587.x
    Pandit, A.V., Sarvothaman, V.P., Ranade, V.V., 2021. Estimation of chemical and physical effects of cavitation by analysis of cavitating single bubble dynamics. Ultrason. Sonochem. 77, 105677. doi: 10.1016/j.ultsonch.2021.105677
    Panwar, D., Panesar, P.S., Chopra, H.K., 2023. Ultrasound-assisted extraction of pectin from Citrus limetta peels: optimization, characterization, and its comparison with commercial pectin. Food Biosci. 51, 102231. doi: 10.1016/j.fbio.2022.102231
    Pfaltzgraff, L.A., De bruyn, M., Cooper, E.C., Budarin, V., Clark, J.H., 2013. Food waste biomass: a resource for high-value chemicals. Green Chem. 15, 307–314. doi: 10.1039/c2gc36978h
    Piacenza, E., Presentato, A., Alduina, R., Scurria, A., Pagliaro, M., Albanese, L., Meneguzzo, F., Ciriminna, R., Chillura Martino, D.F., 2022. Cross-linked natural IntegroPectin films from Citrus biowaste with intrinsic antimicrobial activity. Cellulose 29, 5779–5802. doi: 10.1007/s10570-022-04627-1
    Pinjari, D.V., Pandit, A.B., 2010. Cavitation milling of natural cellulose to nanofibrils. Ultrason. Sonochem. 17, 845–852. doi: 10.1016/j.ultsonch.2010.03.005
    Ricci, A., Olejar, K.J., Parpinello, G.P., Kilmartin, P.A., Versari, A., 2015. Application of Fourier transform infrared (FTIR) spectroscopy in the characterization of tannins. Appl. Spectrosc. Rev. 50, 407–442. doi: 10.1080/05704928.2014.1000461
    Satari, B., Karimi, K., 2018. Citrus processing wastes: environmental impacts, recent advances, and future perspectives in total valorization. Resour. Conserv. Recycl. 129, 153–167. doi: 10.1016/j.resconrec.2017.10.032
    Scurria, A., Albanese, L., Pagliaro, M., Zabini, F., Giordano, F., Meneguzzo, F., Ciriminna, R., 2021a. CytroCell: valued cellulose from Citrus processing waste. Molecules 26, 596. doi: 10.3390/molecules26030596
    Scurria, A., Sciortino, M., Albanese, L., Nuzzo, D., Zabini, F., Meneguzzo, F., Alduina, R., Presentato, A., Pagliaro, M., Avellone, G., Ciriminna, R., 2021b. Flavonoids in lemon and grapefruit IntegroPectin. ChemistryOpen 10, 1055–1058. doi: 10.1002/open.202100223
    Seisun, D., Zalesny, N., 2021. Strides in food texture and hydrocolloids. Food Hydrocoll. 117, 106575. doi: 10.1016/j.foodhyd.2020.106575
    Suri, S., Singh, A., Nema, P.K., 2022. Current applications of Citrus fruit processing waste: a scientific outlook. Appl. Food Res. 2, 100050. doi: 10.1016/j.afres.2022.100050
    Trache, D., Hussin, M.H., Hui Chuin, C.T., Sabar, S., Fazita, M.R., Taiwo, O.F.A., Hassan, T.M., Haafiz, M.K., 2016. Microcrystalline cellulose: isolation, characterization and bio-composites application-a review. Int. J. Biol. Macromol. 93, 789–804. doi: 10.1016/j.ijbiomac.2016.09.056
    Wang, W.J., Wu, X.Z., Chantapakul, T., Wang, D.L., Zhang, S., Ma, X.B., Ding, T., Ye, X.Q., Liu, D.H., 2017. Acoustic cavitation assisted extraction of pectin from waste grapefruit peels: a green two-stage approach and its general mechanism. Food Res. Int. 102, 101–110. doi: 10.1016/j.foodres.2017.09.087
    Xu, Y.T., Zhang, L.F., Bailina, Y., Ge, Z., Ding, T., Ye, X.Q., Liu, D.H., 2014. Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. J. Food Eng. 126, 72–81. doi: 10.1016/j.jfoodeng.2013.11.004
    Yao, W.Q., Weng, Y.Y., Catchmark, J.M., 2020. Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose 27, 5563–5579. doi: 10.1007/s10570-020-03177-8
    Yohana Chaerunisaa, A., Sriwidodo, S., Abdassah, M., 2020. Microcrystalline cellulose as pharmaceutical excipient. Pharmaceutical Formulation Design: Recent Practices. IntechOpen, London.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (149) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return