Volume 9 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Yarong Li, Zhiguang Tang, Xiaohan Zhou, Junhua Zhang, Xueping Song, Kai Li, Wei Liu, Zhanying Zhang. Development of Methylene Bis-Benzotriazolyl Tetramethylbutylphenol-grafted lignin sub-microspheres loaded with TiO2 for sunscreen applications[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 534-547. doi: 10.1016/j.jobab.2024.09.003
Citation: Yarong Li, Zhiguang Tang, Xiaohan Zhou, Junhua Zhang, Xueping Song, Kai Li, Wei Liu, Zhanying Zhang. Development of Methylene Bis-Benzotriazolyl Tetramethylbutylphenol-grafted lignin sub-microspheres loaded with TiO2 for sunscreen applications[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 534-547. doi: 10.1016/j.jobab.2024.09.003

Development of Methylene Bis-Benzotriazolyl Tetramethylbutylphenol-grafted lignin sub-microspheres loaded with TiO2 for sunscreen applications

doi: 10.1016/j.jobab.2024.09.003
Funds:

The authors are grateful for the financial support for this work by Natural Science Foundation of Guangxi Province, China (No.2021GXNSFDA196006),National Natural Science Foundation of China(No.22268007

No.21766002), and Guangxi Innovation Driven Development Special Fund Project, China (No.AA17204092).

  • Available Online: 2024-10-26
  • Publish Date: 2024-09-21
  • Lignin serves as a promising Ultraviolet (UV) absorber within sunscreen industry. However, the commercial development of lignin-containing sunscreens faces challenges due to their low sun protection factor (SPF) and dark color in cosmetics industry. In this study, dual modifications on the chemical and physical structures of lignin were conducted to address these challenges. Initially, methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT) was grafted onto alkali lignin (AL) through an atom transfer radical polymerization reaction, resulting in a polymer of AL-graft-MBBT3 (AL-g-MBBT3). The sunscreen prepared with 10% AL-g-MBBT3 displays outstanding sun protection performance with a SPF of 42.93 and a light color with a color difference value (ΔE) of 45.6, in contrast to 10% AL with a SPF of 4.74 and a ΔE value of 49.5. Subsequently, AL-g-MBBT3 was transformed into normal submicron spheres (AL-g-MBBT3N) and TiO2-loading submicron spheres (AL-g-MBBT3/TiO2). The sun protection performances of 10% AL-g-MBBT3N@C and AL-g-MBBT3/TiO2@C sunscreens obviously surpass that of AL-g-MBBT3@C sunscreen, achieving SPFs of 60.38 and 66.20, respectively. Additionally, there is a considerable improvement in the color of these sunscreens, with ΔE values of 41.8 and 36.3, respectively. These results provide valuable insights into exploring lignin's high-value applications in sunscreen.

     

  • loading
  • [1]
    Baker, L.A., Marchetti, B., Karsili, T.N.V., Stavros, V.G., Ashfold, M.N.R., 2017. Photoprotection: extending lessons learned from studying natural sunscreens to the design of artificial sunscreen constituents. Chem. Soc. Rev. 46, 3770-3791.
    [2]
    Bencherif, S.A., Gao, H.F., Srinivasan, A., Siegwart, D.J., Hollinger, J.O., Washburn, N.R., Matyjaszewski, K., 2009. Cell-adhesive star polymers prepared by ATRP. Biomacromolecules 10, 1795-1803.
    [3]
    Chen, X.R, Han, X., Zhang, C.X., Ou, X., Liu, X.L., Zhang, J.H., Liu, W., Ragauskas, A.J., Song, X.P., Zhang, Z.Y., 2024. Synthesis of red, green, and blue carbon quantum dots and construction of multicolor cellulose-based light-emitting diodes. Small Struct 5, 2300449.
    [4]
    Chen, K., Wang, S.Y., Qi, Y.G., Guo, H., Guo, Y.Z., Li, H.M., 2021. State-of-the-art: applications and industrialization of lignin micro/nano particles. ChemSusChem 14, 1284-1294.
    [5]
    Chen, K., Zhou, X.Y., Wang, D., Li, J.W., Qi, D.M., 2022. Synthesis and characterization of a broad-spectrum TiO2@lignin UV-protection agent with high antioxidant and emulsifying activity. Int. J. Biol. Macromol. 218, 33-43.
    [6]
    Chio, C., Sain, M., Qin, W.S., 2019. Lignin utilization: a review of lignin depolymerization from various aspects. Renew. Sustain. Energy Rev. 107, 232-249.
    [7]
    Cozzi, A.C., Perugini, P., Gourion-Arsiquaud, S., 2018. Comparative behavior between sunscreens based on free or encapsulated UV filters in term of skin penetration, retention and photo-stability. Eur. J. Pharm. Sci. 121, 309-318.
    [8]
    Darmawan, M.A., Ramadhani, N.H., Hubeis, N.A., Ramadhan, M.Y.A., Sahlan, M., Abd-Aziz, S., Gozan, M., 2022. Natural sunscreen formulation with a high Sun protection factor (SPF) from tengkawang butter and lignin. Ind. Crops Prod. 177, 114466.
    [9]
    Dou, J.Z., Sui, M.M., Malinen, K., Pesonen, T., Isohanni, T., Vuorinen, T., 2022. Spruce bark stilbenes as a nature-inspired Sun blocker for sunscreens. Green Chem. 24, 2962-2974.
    [10]
    Erdem, B., Hunsicker, R.A., Simmons, G.W., Sudol, E.D., Dimonie, V.L., El-Aasser, M.S., 2001. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17, 2664-2669.
    [11]
    Figueiredo, P., Lintinen, K., Hirvonen, J.T., Kostiainen, M.A., Santos, H.A., 2018. Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 93, 233-269.
    [12]
    Kai, D., Chua, Y.K., Jiang, L., Owh, C., Chan, S.Y., Loh, X.J., 2016. Dual functional anti-oxidant and SPF enhancing lignin-based copolymers as additives for personal and healthcare products. RSC Adv. 6, 86420-86427.
    [13]
    Lee, S.C., Tran, T.M.T., Choi, J.W., Won, K., 2019. Lignin for white natural sunscreens. Int. J. Biol. Macromol. 122, 549-554.
    [14]
    Li, M.S., Reimers, J.R., Ford, M.J., Kobayashi, R., Amos, R.D., 2021. Accurate prediction of the properties of materials using the CAM-B3LYP density functional. J. Comput. Chem. 42, 1486-1497.
    [15]
    Li, Y.R., Zhao, S.Y., Hu, D.B., Ragauskas, A.J., Cao, D.Y., Liu, W.Q., Si, C.L., Xu, T., Zhao, P.T., Song, X.P., Li, K., 2022. Role evaluation of active groups in lignin on UV-shielding performance. ACS Sustain. Chem. Eng. 10, 11856-11866.
    [16]
    Li, Y.R., Zhao, S.Y., Li, Y.H., Ragauskas, A.J., Song, X.P., Li, K., 2022. Revealing the relationship between molecular weight of lignin and its color, UV-protecting property. Int. J. Biol. Macromol. 223, 1287-1296.
    [17]
    Li, Y.R., Zhao, S.Y., Song, X.P., Cao, D.Y., Li, K., Hassanpour, M., Zhang, Z.Y., 2022. UV-shielding performance and color of lignin and its application to sunscreen. Macromol. Mater. Eng. 307, 2100628.
    [18]
    Liu, X.H., Wang, J.F., Yu, J., Zhang, M.M., Wang, C.P., Xu, Y.Z., Chu, F.X., 2013. Preparation and characterization of lignin based macromonomer and its copolymers with butyl methacrylate. Int. J. Biol. Macromol. 60, 309-315.
    [19]
    Liu, Z.H., Hao, N.J., Wang, Y.Y., Dou, C., Lin, F.R., Shen, R.C., Bura, R., Hodge, D.B., Dale, B.E., Ragauskas, A.J., Yang, B., Yuan, J.S., 2021. Transforming biorefinery designs with ‘Plug-in processes of lignin’ to enable economic waste valorization. Nat. Commun. 12, 3912.
    [20]
    Liu, X.L., Zhao, S.Y., Chen, X.R., Han, X., Zhang, J.H., Wu, M., Song, X.P., Zhang, Z.Y., 2024. The effect of lignin molecular weight on the formation and properties of carbon quantum dots. Green Chem 26, 3190-3201.
    [21]
    Mennucci, B., Tomasi, J., Cammi, R., Cheeseman, J.R., Frisch, M.J., Devlin, F.J., Gabriel, S., Stephens, P.J., 2002. Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J. Phys. Chem. A 106, 6102-6113.
    [22]
    Mondal, S., Jatrana, A., Maan, S., Sharma, P., 2023. Lignin modification and valorization in medicine, cosmetics, environmental remediation and agriculture: a review. Environ. Chem. Lett. 21, 2171-2197.
    [23]
    Muzata, T.S., Gebrekrstos, A., Orasugh, J.T., Ray, S.S., 2023. An overview of recent advances in polymer composites with improved UV-shielding properties. J. Appl. Polym. Sci. 140, e53693.
    [24]
    Österberg, M., Sipponen, M.H., Mattos, B.D., Rojas, O.J., 2020. Spherical lignin particles: a review on their sustainability and applications. Green Chem. 22, 2712-2733.
    [25]
    Pan, X.J., Kadla, J.F., Ehara, K., Gilkes, N., Saddler, J.N., 2006. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J. Agric. Food Chem. 54, 5806-5813.
    [26]
    Qian, Y., Qiu, X.Q., Zhu, S.P., 2015. Lignin: a nature-inspired Sun blocker for broad-spectrum sunscreens. Green Chem. 17, 320-324.
    [27]
    Qian, Y., Qiu, X.Q., Zhu, S.P., 2016. Sunscreen performance of lignin from different technical resources and their general synergistic effect with synthetic sunscreens. ACS Sustain. Chem. Eng. 4, 4029-4035.
    [28]
    Qian, Y., Zhong, X.W., Li, Y., Qiu, X.Q., 2017. Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high Sun protection factor. Ind. Crops Prod. 101, 54-60.
    [29]
    Schneider, W.D.H., Dillon, A.J.P., Camassola, M., 2021. Lignin nanoparticles enter the scene: a promising versatile green tool for multiple applications. Biotechnol. Adv. 47, 107685.
    [30]
    Tejado, A., Peña, C., Labidi, J., Echeverria, J.M., Mondragon, I., 2007. Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour. Technol. 98, 1655-1663.
    [31]
    Tirado-Rives, J., Jorgensen, W.L., 2008. Performance of B3LYP density functional methods for a large set of organic molecules. J. Chem. Theory Comput. 4, 297-306.
    [32]
    Tortora, M., Cavalieri, F., Mosesso, P., Ciaffardini, F., Melone, F., Crestini, C., 2014. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules. Biomacromolecules 15, 1634-1643.
    [33]
    Tran, M.H., Phan, D.P., Lee, E.Y., 2021. Review on lignin modifications toward natural UV protection ingredient for lignin-based sunscreens. Green Chem. 23, 4633-4646.
    [34]
    Tsuzuki, S., Uchimaru, T., 2020. Accuracy of intermolecular interaction energies, particularly those of hetero-atom containing molecules obtained by DFT calculations with Grimme's D2, D3 and D3BJ dispersion corrections. Phys. Chem. Chem. Phys. 22, 22508-22519.
    [35]
    Ugartondo, V., Mitjans, M., Vinardell, M.P., 2008. Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour. Technol. 99, 6683-6687.
    [36]
    Wang, J.Y., Chen, W.H., Yang, D.J., Fang, Z.Q., Liu, W.F., Xiang, T., Qiu, X.Q., 2022. Photonic lignin with tunable and stimuli-responsive structural color. ACS Nano 16, 20705-20713.
    [37]
    Wang, T.Y., Zhao, J.Y., Yang, Z., Xiong, L.D., Li, L., Gu, Z.P., Li, Y.W., 2022. Polyphenolic sunscreens for photoprotection. Green Chem. 24, 3605-3622.
    [38]
    Wang, W.T., Wang, F., Zhang, C., Tang, J.N., Zeng, X.R., Wan, X.J., 2021. Versatile value-added application of hyperbranched lignin derivatives: water-resistance adhesive, UV protection coating, self-healing and skin-adhesive sensing. Chem. Eng. J. 404, 126358.
    [39]
    Wen, J.L., Xue, B.L., Xu, F., Sun, R.C., Pinkert, A., 2013. Unmasking the structural features and property of lignin from bamboo. Ind. Crops Prod. 42, 332-343.
    [40]
    Wu, X.W., Zhou, M.S., Ouyang, X.P., Qiu, X.Q., Qian, Y., 2024. Whiten lignin-based sunscreen via fractionation and ultrasonic cavitation. ACS Sustain. Chem. Eng. 12, 6539-6546.
    [41]
    Wu, Y., Qian, Y., Lou, H.M., Yang, D.J., Qiu, X.Q., 2019. Enhancing the broad-spectrum adsorption of lignin through methoxyl activation, grafting modification, and reverse self-assembly. ACS Sustain. Chem. Eng. 7, 15966-15973.
    [42]
    Wu, Y., Qian, Y., Zhang, A.C., Lou, H.M., Yang, D.J., Qiu, X.Q., 2020. Light color dihydroxybenzophenone grafted lignin with high UVA/UVB absorbance ratio for efficient and safe natural sunscreen. Ind. Eng. Chem. Res. 59, 17057-17068.
    [43]
    Yu, J., Wang, J.F., Wang, C.P., Liu, Y.P., Xu, Y.Z., Tang, C.B., Chu, F.X., 2015. UV-absorbent lignin-based multi-arm star thermoplastic elastomers. Macromol. Rapid Commun. 36, 398-404.
    [44]
    Zhang, H., Chen, F.G., Liu, X.X., Fu, S.Y., 2018. Micromorphology influence on the color performance of lignin and its application in guiding the preparation of light-colored lignin sunscreen. ACS Sustain. Chem. Eng. 6, 12532-12540.
    [45]
    Zhang, H., Liu, X.X., Fu, S.Y., Chen, Y.C., 2019. High-value utilization of kraft lignin: color reduction and evaluation as sunscreen ingredient. Int. J. Biol. Macromol. 133, 86-92.
    [46]
    Zhang, Y., Naebe, M., 2021. Lignin: a review on structure, properties, and applications as a light-colored UV absorber. ACS Sustain. Chem. Eng. 9, 1427-1442.
    [47]
    Zhao, Y., Truhlar, D.G., 2008. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215-241.
    [48]
    Zhou, Y.J., Qian, Y., Wang, J.Y., Qiu, X.Q., Zeng, H.B., 2020. Bioinspired lignin-polydopamine nanocapsules with strong bioadhesion for long-acting and high-performance natural sunscreens. Biomacromolecules 21, 3231-3241.
    [49]
    Zhu, J.D., Yan, C.Y., Zhang, X., Yang, C., Jiang, M.J., Zhang, X.W., 2020. A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors. Prog. Energy Combust. Sci. 76, 100788.
    [50]
    Zollinger, H., 2003. Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments. Hoboken: John Wiley & Sons.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (17) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return