Volume 9 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Xinchuan Yuan, Guannan Shen, Juncheng Huo, Sitong Chen, Wenyuan Shen, Chengcheng Zhang, Mingjie Jin. Enhanced biomass densification pretreatment using binary chemicals for efficient lignocellulosic valorization[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 548-564. doi: 10.1016/j.jobab.2024.09.004
Citation: Xinchuan Yuan, Guannan Shen, Juncheng Huo, Sitong Chen, Wenyuan Shen, Chengcheng Zhang, Mingjie Jin. Enhanced biomass densification pretreatment using binary chemicals for efficient lignocellulosic valorization[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 548-564. doi: 10.1016/j.jobab.2024.09.004

Enhanced biomass densification pretreatment using binary chemicals for efficient lignocellulosic valorization

doi: 10.1016/j.jobab.2024.09.004
More Information
  • Corresponding author: E-mail address: jinmingjie@njust.edu.cn (M. Jin)
  • Available Online: 2024-11-01
  • Publish Date: 2024-11-01
  • Many effective pretreatment methods (such as dilute acid, dilute alkali, ionic liquids, etc.) have been developed for lignocellulose upgrading, but several defaults of low working mass, high sugar loss and extra cost of solid-liquid separation and water washing hinder their large-scale application in industry. Besides, the valorization of lignin-rich residue from pretreated biomass after hydrolysis or fermentation greatly contributes to the economy and sustainability of lignocellulosic biorefinery, which is usually underestimated. This study developed a densification pretreatment with binary chemicals (densifying lignocellulosic biomass with sulfuric acid (SA) and metal salt (MS) followed by autoclave treatment ((DLCA(SA-MS)), which was conducted under mild condition (121 ℃) with a biomass working mass as high as 400 kg/m3. The DLCA(SA-MS) biomass achieved over 95% sugar retention, 90% enzymatic sugar conversion and a high concentration of fermentable sugar (212.3 g/L) with superior fermentability. Furthermore, bio-adsorbent derived from DLCA(SA-MS) biomass residue was highly adsorptive and suitable for dyeing wastewater treatment, providing a feasible and eco-friendly method for lignin-rich residue valorization. These findings indicated that DLCA(SA-MS) pretreatment enables the full-component utilization of biomass and boosts the economic viability of lignocellulosic biorefinery.

     

  • Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2024.09.004
    1 Xinchuan Yuan and Guannan Shen contributed equally to this work and should be considered co-first authors.
  • loading
  • Business Analytiq, 2024. Activated Carbon price August 2024 and Outlook. Available at: https://businessanalytiq.com/procurementanalytics/index/activated-carbon-prices/.
    Bai, H.J., Chen, J.H., Zhou, X.Y., Hu, C.Z., 2020. Single and binary adsorption of dyes from aqueous solutions using functionalized microcrystalline cellulose from cotton fiber. Korean J. Chem. Eng. 37, 1926–1932. doi: 10.1007/s11814-020-0621-3
    Bedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J.J., Belver, C., 2020. Review on activated carbons by chemical activation with FeCl3. J. Carbon Res. 6, 21. doi: 10.3390/c6020021
    Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. doi: 10.1016/0003-2697(76)90527-3
    Chandra, R.P., Wu, J., Saddler, J.N., 2019. The application of fiber quality analysis (FQA) and cellulose accessibility measurements to better elucidate the impact of fiber curls and kinks on the enzymatic hydrolysis of fibers. ACS Sustainable Chem. Eng. 7, 8827–8833. doi: 10.1021/acssuschemeng.9b00783
    Chen, K., He, Z.J., Liu, Z.H., Ragauskas, A.J., Li, B.Z., Yuan, Y.J., 2022. Emerging modification technologies of lignin-based activated carbon toward advanced applications. ChemSusChem 15, e202201284. doi: 10.1002/cssc.202201284
    Chen, L.H., Chen, R., Fu, S.Y., 2015. FeCl3 Pretreatment of three lignocellulosic biomass for ethanol production. ACS Sustainable Chem. Eng. 3, 1794–1800. doi: 10.1021/acssuschemeng.5b00377
    Chen, X.X., Yuan, X.C., Chen, S.T., Yu, J.M., Zhai, R., Xu, Z.X., Jin, M.J., 2021. Densifying Lignocellulosic biomass with alkaline Chemicals (DLC) pretreatment unlocks highly fermentable sugars for bioethanol production from corn stover. Green Chem. 23, 4828–4839. doi: 10.1039/d1gc01362a
    Chen, X.X., Zhai, R., Shi, K.Q., Yuan, Y., Dale, B.E., Gao, Z., Jin, M.J., 2018. Mixing alkali pretreated and acid pretreated biomass for cellulosic ethanol production featuring reduced chemical use and decreased inhibitory effect. Ind. Crops Prod. 124, 719–725. doi: 10.1016/j.indcrop.2018.08.056
    Chu, D.Q., Deng, H.B., Zhang, X.X., Zhang, J., Bao, J., 2012. A simplified filter paper assay method of cellulase enzymes based on HPLC analysis. Appl. Biochem. Biotechnol. 167, 190–196. doi: 10.1007/s12010-012-9673-0
    Chu, Q.L., Tong, W.Y., Wu, S.F., Jin, Y.C., Hu, J.G., Song, K., 2021. Eco-friendly additives in acidic pretreatment to boost enzymatic saccharification of hardwood for sustainable biorefinery applications. Green Chem. 23, 4074–4086. doi: 10.1039/d1gc00738f
    Foo, K.Y., Hameed, B.H., 2010. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10. doi: 10.1016/j.cej.2009.09.013
    Fritz, C., Ferrer, A., Salas, C., Jameel, H., Rojas, O.J., 2015. Interactions between cellulolytic enzymes with native, autohydrolysis, and technical lignins and the effect of a polysorbate amphiphile in reducing nonproductive binding. Biomacromolecules 16, 3878–3888. doi: 10.1021/acs.biomac.5b01203
    Guo, H.L., Zhao, Y., Chang, J.S., Lee, D.J., 2023. Enzymes and enzymatic mechanisms in enzymatic degradation of lignocellulosic biomass: a mini-review. Bioresour. Technol. 367, 128252. doi: 10.1016/j.biortech.2022.128252
    Hames, B., Ruiz, R., Scarlata, C., Sluiter, A., Sluiter, J., Templeton, D., 2008. Preparation of samples for compositional analysis: laboratory analytical procedure (LAP). Available at: https://www.nrel.gov/docs/gen/fy08/42620.pdf.
    Hans, M., Pellegrini, V.O.A., Filgueiras, J.G., de Azevedo, E.R., Guimaraes, F.E.C., Chandel, A.K., Polikarpov, I., Chadha, B.S., Kumar, S., 2023. Optimization of dilute acid pretreatment for enhanced release of fermentable sugars from sugarcane bagasse and validation by biophysical characterization. BioEnergy Res. 16, 416–434. doi: 10.1007/s12155-022-10474-6
    Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process. Biochem. 34, 451–465. doi: 10.1016/S0032-9592(98)00112-5
    Hu, F., Jung, S., Ragauskas, A., 2013. Impact of pseudolignin versus dilute acid-pretreated lignin on enzymatic hydrolysis of cellulose. ACS Sustainable Chem. Eng. 1, 62–65. doi: 10.1021/sc300032j
    Huang, Y., Sun, S.L., Huang, C., Yong, Q., Elder, T., Tu, M.B., 2017. Stimulation and inhibition of enzymatic hydrolysis by organosolv lignins as determined by zeta potential and hydrophobicity. Biotechnol. Biofuels 10, 162. doi: 10.1186/s13068-017-0853-6
    Kang, K.E., Park, D.H., Jeong, G.T., 2013. Effects of inorganic salts on pretreatment of Miscanthus straw. Bioresour. Technol. 132, 160–165. doi: 10.1016/j.biortech.2013.01.012
    Kim, T.H., Oh, K.K., Ryu, H.J., Lee, K.H., Kim, T.H., 2014. Hydrolysis of hemicellulose from barley straw and enhanced enzymatic saccharification of cellulose using acidified zinc chloride. Renew. Energy 65, 56–63. doi: 10.1016/j.renene.2013.07.011
    Kruger, N.J., 2009. The Bradford method for protein quantitation. In: Walker, J.M. (Ed.), The Protein Protocols Handbook. Humana Press, Totowa, pp. 17–24.
    Kumar, B., Verma, P., 2019. Optimization of microwave-assisted pretreatment of rice straw with FeCl3 in combination with H3PO4 for improving enzymatic hydrolysis. In: Kundu, R.T., Narula, R. (Eds.), Advances in Plant & Microbial Biotechnology. Springer, Singapore, pp. 41–48.
    Kumar, R., Hu, F., Sannigrahi, P., Jung, S., Ragauskas, A.J., Wyman, C.E., 2013. Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol. Bioeng. 110, 737–753. doi: 10.1002/bit.24744
    Lara-Serrano, M., Morales-delaRosa, S., Campos-Martín, J.M., Fierro, J.L.G., 2020. High enhancement of the hydrolysis rate of cellulose after pretreatment with inorganic salt hydrates. Green Chem. 22, 3860–3866. doi: 10.1039/d0gc01066a
    Lin, C.Q., Chai, C.Q., Li, Y.Z., Chen, J., Lu, Y.Y., Wu, H.L., Zhao, L.L., Cao, F., Chen, K.Q., Wei, P., Ouyang, P.K., 2021. CaCl2 molten salt hydrate-promoted conversion of carbohydrates to 5-hydroxymethylfurfural: an experimental and theoretical study. Green Chem. 23, 2058–2068. doi: 10.1039/d0gc04356g
    Liu, G., Bao, J., 2017. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: competing with corn ethanol. Bioresour. Technol. 245, 18–26. doi: 10.1117/12.2253436
    Liu, G., Zhang, J., Bao, J., 2016. Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess Biosyst. Eng. 39, 133–140. doi: 10.1007/s00449-015-1497-1
    Liu, L., Sun, J.S., Li, M., Wang, S.H., Pei, H.S., Zhang, J.S., 2009. Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresour. Technol. 100, 5853–5858. doi: 10.1016/j.biortech.2009.06.040
    Liu, Q., Kawai, T., Inukai, Y., Aoki, D., Feng, Z.H., Xiao, Y.H., Fukushima, K., Lin, X.Y., Shi, W.M., Busch, W., Matsushita, Y., Li, B.H., 2023. A lignin-derived material improves plant nutrient bioavailability and growth through its metal chelating capacity. Nat. Commun. 14, 4866. doi: 10.1038/s41467-023-40497-2
    Liu, Y.Z., Deak, N., Wang, Z.W., Yu, H.P., Hameleers, L., Jurak, E., Deuss, P.J., Barta, K., 2021. Tunable and functional deep eutectic solvents for lignocellulose valorization. Nat. Commun. 12, 5424. doi: 10.1038/s41467-021-25117-1
    Loow, Y.L., Wu, T.Y., Tan, K.A., Lim, Y.S., Siow, L.F., Jahim, J.M., Mohammad, A.W., Teoh, W.H., 2015. Recent advances in the application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars. J. Agric. Food Chem. 63, 8349–8363. doi: 10.1021/acs.jafc.5b01813
    Lynd, L.R., Beckham, G.T., Guss, A.M., Jayakody, L.N., Karp, E.M., Maranas, C., McCormick, R.L., Amador-Noguez, D., Bomble, Y.J., Davison, B.H., Foster, C., Himmel, M.E., Holwerda, E.K., Laser, M.S., Ng, C.Y., Olson, D.G., Román-Leshkov, Y., Trinh, C.T., Tuskan, G.A., Upadhayay, V., Vardon, D.R., Wang, L., Wyman, C.E., 2022. Toward low-cost biological and hybrid biological/catalytic conversion of cellulosic biomass to fuels. Energy Environ. Sci. 15, 938–990. doi: 10.1039/d1ee02540f
    Meng, X.Z., Pu, Y.Q., Li, M., Ragauskas, A.J., 2020. A biomass pretreatment using cellulose-derived solvent Cyrene. Green Chem. 22, 2862–2872. doi: 10.1039/d0gc00661k
    Moodley, P., Sewsynker-Sukai, Y., Gueguim Kana, E.B., 2020. Progress in the development of alkali and metal salt catalysed lignocellulosic pretreatment regimes: potential for bioethanol production. Bioresour. Technol. 310, 123372. doi: 10.1016/j.biortech.2020.123372
    Müller, R.H., Rühl, D., Lück, M., Paulke, B.R., 1997. Influence of fluorescent labelling of polystyrene particles on phagocytic uptake, surface hydrophobicity, and plasma protein adsorption. Pharm. Res. 14, 18–24. doi: 10.1023/A:1012043131081
    Nakasu, P.Y.S., Pin, T.C., Hallett, J.P., Rabelo, S.C., Costa, A.C., 2021. In-depth process parameter investigation into a protic ionic liquid pretreatment for 2G ethanol production. Renew. Energy 172, 816–828. doi: 10.1016/j.renene.2021.03.004
    Pedersen, J.N., Pérez, B., Guo, Z., 2019. Stability of cellulase in ionic liquids: correlations between enzyme activity and COSMO-RS descriptors. Sci. Rep. 9, 17479. doi: 10.1038/s41598-019-53523-5
    Periyasamy, S., Beula Isabel, J., Kavitha, S., Karthik, V., Mohamed, B.A., Gizaw, D.G., Sivashanmugam, P., Aminabhavi, T.M., 2023. Recent advances in consolidated bioprocessing for conversion of lignocellulosic biomass into bioethanol–A review. Chem. Eng. J. 453, 139783. doi: 10.1016/j.cej.2022.139783
    Rabelo, S.C., Nakasu, P.Y.S., Scopel, E., Araújo, M.F., Cardoso, L.H., Costa, A.C.D., 2023. Organosolv pretreatment for biorefineries: current status, perspectives, and challenges. Bioresour. Technol. 369, 128331. doi: 10.1016/j.biortech.2022.128331
    Rezania, S., Oryani, B., Cho, J., Talaiekhozani, A., Sabbagh, F., Hashemi, B., Rupani, P.F., Mohammadi, A.A., 2020. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy 199, 117457. doi: 10.1016/j.energy.2020.117457
    Roy, S., Chundawat, S.P.S., 2023. Ionic liquid–based pretreatment of lignocellulosic biomass for bioconversion: a critical review. BioEnergy Res. 16, 263–278. doi: 10.1007/s12155-022-10425-1
    Sheng, Y.Q., Liu, M.Q., Xia, C.L., Song, J.L., Ge, S.B., Cai, L.P., Lam, S.S., Sonne, C., 2021a. Using nucleophilic naphthol derivatives to suppress biomass lignin repolymerization in fermentable sugar production. Chem. Eng. J. 420, 130258. doi: 10.1016/j.cej.2021.130258
    Sheng, Y.Q., Tan, X., Gu, Y.J., Zhou, X., Tu, M.B., Xu, Y., 2021b. Effect of ascorbic acid assisted dilute acid pretreatment on lignin removal and enzyme digestibility of agricultural residues. Renew. Energy 163, 732–739. doi: 10.1016/j.renene.2020.08.135
    Singh, N., Mathur, A.S., Tuli, D.K., Gupta, R.P., Barrow, C.J., Puri, M., 2017. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring. Biotechnol. Biofuels 10, 73. doi: 10.4103/2249-4863.214987
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D., 2012. Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP). Available at: https://www.nrel.gov/docs/gen/fy13/42618.pdf.
    Solarte-Toro, J.C., Romero-García, J.M., Martínez-Patiño, J.C., Ruiz-Ramos, E., Castro-Galiano, E., Cardona-Alzate, C.A., 2019. Acid pretreatment of lignocellulosic biomass for energy vectors production: a review focused on operational conditions and techno-economic assessment for bioethanol production. Renew. Sustain. Energy Rev. 107, 587–601. doi: 10.1016/j.rser.2019.02.024
    Song, G.J., Sun, C.H., Madadi, M., Dou, S.H., Yan, J.S., Huan, H.L., Aghbashlo, M., Tabatabaei, M., Sun, F.B., Ashori, A., 2024. Dual assistance of surfactants in glycerol organosolv pretreatment and enzymatic hydrolysis of lignocellulosic biomass for bioethanol production. Bioresour. Technol. 395, 130358. doi: 10.1016/j.biortech.2024.130358
    Tang, W., Wu, X.X., Huang, C.X., Ling, Z., Lai, C.H., Yong, Q., 2021. Revealing the influence of metallic chlorides pretreatment on chemical structures of lignin and enzymatic hydrolysis of waste wheat straw. Bioresour. Technol. 342, 125983. doi: 10.1016/j.biortech.2021.125983
    Tian, D.Q., Xu, Z.H., Zhang, D.F., Chen, W.F., Cai, J.L., Deng, H.X., Sun, Z.H., Zhou, Y.W., 2019. Micro–mesoporous carbon from cotton waste activated by FeCl3/ZnCl2: preparation, optimization, characterization and adsorption of methylene blue and eriochrome black T. J. Solid State Chem. 269, 580–587. doi: 10.1016/j.jssc.2018.10.035
    Uppugundla, N., da Costa Sousa, L., Chundawat, S.P., Yu, X.R., Simmons, B., Singh, S., Gao, X.D., Kumar, R., Wyman, C.E., Dale, B.E., Balan, V., 2014. A comparative study of ethanol production using dilute acid, ionic liquid and AFEX™ pretreated corn stover. Biotechnol. Biofuels 7, 72. doi: 10.1186/1754-6834-7-72
    Wang, Y.X., Wang, J.X., Zhang, X.F., Bhattacharyya, D., Sabolsky, E.M., 2022. Quantifying environmental and economic impacts of highly porous activated carbon from lignocellulosic biomass for high-performance supercapacitors. Energies 15, 351. doi: 10.3390/en15010351
    Wei, W.Q., Jin, Y.C., Wu, S.B., Yuan, Z.Y., 2019. Improving corn stover enzymatic saccharification via ferric chloride catalyzed dimethyl sulfoxide pretreatment and various additives. Ind. Crops Prod. 140, 111663. doi: 10.1016/j.indcrop.2019.111663
    Wen, J.L., Sun, S.L., Xue, B.L., Sun, R.C., 2013. Quantitative structures and thermal properties of birch lignins after ionic liquid pretreatment. J. Agric. Food Chem. 61, 635–645. doi: 10.1021/jf3051939
    Xiros, C., Olsson, L., 2014. Comparison of strategies to overcome the inhibitory effects in high-gravity fermentation of lignocellulosic hydrolysates. Biomass Bioenergy 65, 79–90. doi: 10.1016/j.biombioe.2014.03.060
    Xu, J.X., Xu, J.M., Zhang, S., Xia, J., Liu, X.Y., Chu, X.Z., Duan, J.N., Li, X.Q., 2018. Synergistic effects of metal salt and ionic liquid on the pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. Bioresour. Technol. 249, 1058–1061. doi: 10.1016/j.biortech.2017.10.018
    Yao, M.Z., Bi, X.Y., Wang, Z.H., Yu, P., Dufresne, A., Jiang, C., 2022. Recent advances in lignin-based carbon materials and their applications: a review. Int. J. Biol. Macromol. 223, 980–1014. doi: 10.1016/j.ijbiomac.2022.11.070
    Yoo, C.G., Zhang, S.T., Pan, X.J., 2017. Effective conversion of biomass into bromomethylfurfural, furfural, and depolymerized lignin in lithium bromide molten salt hydrate of a biphasic system. RSC Adv. 7, 300–308. doi: 10.1039/C6RA25025D
    Yu, J.M., Xu, Z.X., Chen, S.T., Yu, Y., Zhang, C.C., Chen, X.X., Jin, M.J., 2022. DLCA (ch) pretreatment brings economic benefits to both biomass logistics and biomass conversion for low cost cellulosic ethanol production. Fuel, 311, 122603. doi: 10.1016/j.fuel.2021.122603
    Yuan, X.C., Chen, X.X., Shen, G.N., Chen, S.T., Yu, J.M., Zhai, R., Xu, Z.X., Jin, M.J., 2022a. Densifying lignocellulosic biomass with sulfuric acid provides a durable feedstock with high digestibility and high fermentability for cellulosic ethanol production. Renew. Energy 182, 377–389. doi: 10.1016/j.renene.2021.10.015
    Yuan, X.C., Shen, G.N., Chen, S.T., Chen, X.X., Zhang, C.C., Liu, S.M., Jin, M.J., 2022b. Modified simultaneous saccharification and co-fermentation of DLC pretreated corn stover for high-titer cellulosic ethanol production without water washing or detoxifying pretreated biomass. Energy 247, 123488. doi: 10.1016/j.energy.2022.123488
    Yuan, X.C., Shen, G.N., Chen, S.T., Shen, W.Y., Chen, X.X., Liu, S.M., Jin, M.J., 2023. Elucidating the mechanism of densifying lignocellulosic biomass with acidic chemicals (DLC) for lignocellulosic biorefinery. Green Chem. 25, 6759–6773. doi: 10.1039/d3gc01703f
    Zhai, R., Hu, J.G., Saddler, J.J.N., 2018. Extent of enzyme inhibition by phenolics derived from pretreated biomass is significantly influenced by the size and carbonyl group content of the phenolics. ACS Sustainable Chem. Eng. 6, 3823–3829. doi: 10.1021/acssuschemeng.7b04178
    Zhao, C.B., Mai, S.Y., Fan, M.S., Xie, J., Zhang, H.D., 2023. Effects of metal chloride salt pretreatment and additives on enzymatic hydrolysis of poplar. Fermentation 9, 1022. doi: 10.3390/fermentation9121022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (115) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return