Volume 10 Issue 2
May  2025
Turn off MathJax
Article Contents
Bharat Kumar Majhi. Cyanobacteria: Photosynthetic cell factories for biofuel production[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 128-144. doi: 10.1016/j.jobab.2024.10.001
Citation: Bharat Kumar Majhi. Cyanobacteria: Photosynthetic cell factories for biofuel production[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 128-144. doi: 10.1016/j.jobab.2024.10.001

Cyanobacteria: Photosynthetic cell factories for biofuel production

doi: 10.1016/j.jobab.2024.10.001
  • Available Online: 2025-05-09
  • Publish Date: 2024-10-11
  • Cyanobacteria are photoautotrophic prokaryotes that perform oxygenic photosynthesis through photo oxidation of water. They have been widely used as model organisms for studying photosynthesis. In recent decades, photosynthetic organisms, including cyanobacteria, have been chosen as potential hosts for biofuel production due to their remarkable ability to convert carbon dioxide into biofuel without the input of an external energy source. Biofuel, an excellent substitute for fossil fuels, have received a lot of attention due to their eco-friendly properties. Cyanobacteria have emerged as one of the leading potential candidates for biofuel production due to their superior growth rate over other photosynthetic organisms employed in biofuel production and the presence of a significant amount of lipids (over 50% of dry cell weight) in the cells. Furthermore, they have higher photosynthetic efficiency, especially in CO2-rich environments, making them more desirable. In addition, their inherent ability to uptake exogenous deoxyribonucleic acid (DNA) in conjunction with homologous recombination makes them ideal candidates for transformation into photosynthetic cell factories to produce biofuels. The genetic and metabolic modifications have successfully enabled biofuel production in cyanobacteria; however, major challenges such as energy-intensive downstream processing, low yield, slow growth, and cytotoxicity are impeding its scale-up. This review discusses the production of various types of biofuels in cyanobacteria, as well as the current state of global biofuel production. It also emphasizes the major challenges in biofuel production and strategies for overcoming them.

     

  • loading
  • [1]
    Abdilah, F., Troskialina, L., 2020. Lipid extraction from Aphanothece sp. using ultrasounds. J. Phys. 1450, 012004.
    [2]
    Alptekin, E., Canakci, M., Sanli, H., 2014. Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Manag. 34, 2146-2154.
    [3]
    Álvarez, X., Arévalo, O., Salvador, M., Mercado, I., Velázquez-Martí, B., 2020. Cyanobacterial biomass produced in the wastewater of the dairy industry and its evaluation in anaerobic co-digestion with cattle manure for enhanced methane production. Processes 8, 1290.
    [4]
    Andrews, F., Faulkner, M., Toogood, H.S., Scrutton, N.S., 2021. Combinatorial use of environmental stresses and genetic engineering to increase ethanol titres in cyanobacteria. Biotechnol. Biofuels 14, 240.
    [5]
    Appel, J., Hueren, V., Boehm, M., Gutekunst, K., 2020. Cyanobacterial in vivo solar hydrogen production using a photosystem I-hydrogenase (PsaD-HoxYH) fusion complex. Nat. Energy 5, 458-467.
    [6]
    Arai, S., Hayashihara, K., Kanamoto, Y., Shimizu, K., Hirokawa, Y., Hanai, T., Murakami, A., Honda, H., 2017. Alcohol-tolerant mutants of cyanobacterium Synechococcus elongatus PCC 7942 obtained by single-cell mutant screening system. Biotechnol. Bioeng. 114, 1771-1778.
    [7]
    Arias, D.B., Gomez Pinto, K.A., Cooper, K.K., Summers, M.L., 2020. Transcriptomic analysis of cyanobacterial alkane overproduction reveals stress-related genes and inhibitors of lipid droplet formation. Microb. Genom. 6, 1-14.
    [8]
    Atsumi, S., Hanai, T., Liao, J.C., 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86-89.
    [9]
    Atsumi, S., Higashide, W., Liao, J.C., 2009. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol. 27, 1177-1180.
    [10]
    Avilan, L., Roumezi, B., Risoul, V., Bernard, C.S., Kpebe, A., Belhadjhassine, M., Rousset, M., Brugna, M., Latifi, A., 2018. Phototrophic hydrogen production from a clostridial[FeFe]hydrogenase expressed in the heterocysts of the cyanobacterium Nostoc PCC 7120. Appl. Microbiol. Biotechnol. 102, 5775-5783.
    [11]
    Baebprasert, W., Jantaro, S., Khetkorn, W., Lindblad, P., Incharoensakdi, A., 2011. Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metab. Eng. 13, 610-616.
    [12]
    Baracho, D.H., Lombardi, A.T., 2023. Study of the growth and biochemical composition of 20 species of cyanobacteria cultured in cylindrical photobioreactors. Microb. Cell Fact. 22, 36.
    [13]
    Bentley, F.K., García-Cerdán, J.G., Chen, H.C., Melis, A., 2013. Paradigm of monoterpene (β-phellandrene) hydrocarbons production via photosynthesis in cyanobacteria. BioEnergy Res. 6, 917-929.
    [14]
    Bentley, F.K., Zurbriggen, A., Melis, A., 2014. Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol. Plant 7, 71-86.
    [15]
    Bernstein, H.C., McClure, R.S., Hill, E.A., Markillie, L.M., Chrisler, W.B., Romine, M.F., McDermott, J.E., Posewitz, M.C., Bryant, D.A., Konopka, A.E., Fredrickson, J.K., Beliaev, A.S., 2016. Unlocking the constraints of cyanobacterial productivity: acclimations enabling ultrafast growth. MBio 7, e00949-e00916.
    [16]
    Betterle, N., Melis, A., 2019. Photosynthetic generation of heterologous terpenoids in cyanobacteria. Biotechnol. Bioeng. 116, 2041-2051.
    [17]
    Bhatia, L., Johri, S., Ahmad, R., 2012. An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express 2, 65.
    [18]
    Böhm, J., Kauss, K., Michl, K., Engelhardt, L., Brouwer, E.M., Hagemann, M., 2023. Impact of the carbon flux regulator protein pirC on ethanol production in engineered cyanobacteria. Front. Microbiol. 14, 1238737.
    [19]
    Broussos, P.I., Romanos, G.E., Stamatakis, K., 2024. Salt and heat stress enhances hydrogen production in cyanobacteria. Photosynth. Res. 161, 117-125.
    [20]
    Cann, A.F., Liao, J.C., 2008. Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl. Microbiol. Biotechnol. 81, 89-98.
    [21]
    Carbonell, V., Vuorio, E., Aro, E.M., Kallio, P., 2019. Enhanced stable production of ethylene in photosynthetic cyanobacterium Synechococcus elongatus PCC 7942. World J. Microbiol. Biotechnol. 35, 77.
    [22]
    Castenholz, R.W., Wilmotte, A., Herdman, M., Rippka, R., Waterbury, J.B., Iteman, I., Hoffmann, L., 2001. Phylum BX. Cyanobacteria. In: Boone, D.R., Castenholz, R.W., Garrity, G.M. (Eds.). Bergey's manual of systematic bacteriology. New York: Springer, 473-599.
    [23]
    Chanquia, S.N., Vernet, G., Kara, S., 2021. Photobioreactors for cultivation and synthesis: specifications, challenges, and perspectives. Eng. Life Sci. 22, 712-724.
    [24]
    Chaves, J.E., Melis, A., 2018. Engineering isoprene synthesis in cyanobacteria. FEBS Lett. 592, 2059-2069.
    [25]
    Chokshi, K., Pancha, I., Ghosh, T., Paliwal, C., Maurya, R., Ghosh, A., Mishra, S., 2016. Green synthesis, characterization and antioxidant potential of silver nanoparticles biosynthesized from de-oiled biomass of thermotolerant oleaginous microalgae Acutodesmus dimorphus. RSC Adv. 6, 72269-72274.
    [26]
    Connor, M.R., Liao, J.C., 2008. Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. Appl. Environ. Microbiol. 74, 5769-5775.
    [27]
    Cordara, A., Re, A., Pagliano, C., Van Alphen, P., Pirone, R., Saracco, G., Branco Dos Santos, F., Hellingwerf, K., Vasile, N., 2018. Analysis of the light intensity dependence of the growth of Synechocystis and of the light distribution in a photobioreactor energized by 635 nm light. PeerJ 6, e5256.
    [28]
    Cordova, L.T., Butler, J., Alper, H.S., 2020. Direct production of fatty alcohols from glucose using engineered strains of Yarrowia lipolytica. Metab. Eng. Commun. 10, e00105.
    [29]
    Cui, Y.X., Rasul, F., Jiang, Y., Zhong, Y.Q., Zhang, S.F., Boruta, T., Riaz, S., Daroch, M., 2022. Construction of an artificial consortium of Escherichia coli and cyanobacteria for clean indirect production of volatile platform hydrocarbons from CO2. Front. Microbiol. 13, 965968.
    [30]
    Davies, F.K., Work, V.H., Beliaev, A.S., Posewitz, M.C., 2014. Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front. Bioeng. Biotechnol. 2, 21.
    [31]
    Davoodbasha, M., Pugazhendhi, A., Kim, J.W., Lee, S.Y., Nooruddin, T., 2021. Biodiesel production through transesterification of Chlorella vulgaris: synthesis and characterization of CaO nanocatalyst. Fuel 300, 121018.
    [32]
    Deepa, P., Sowndhararajan, K., Kim, S., 2023. A review of the harvesting techniques of microalgae. Water (Basel) 15, 3074.
    [33]
    Demirbas, A., Fatih Demirbas, M., 2011. Importance of algae oil as a source of biodiesel. Energy Convers. Manag. 52, 163-170.
    [34]
    Dexter, J., Fu, P.C., 2009. Metabolic engineering of cyanobacteria for ethanol production. Energy Environ. Sci. 2, 857-864.
    [35]
    Duman, F., Sahin, U., Atabani, A.E., 2019. Harvesting of blooming microalgae using green synthetized magnetic maghemite (γ-Fe2O3) nanoparticles for biofuel production. Fuel 256, 115935.
    [36]
    Dunlop, M.J., 2011. Engineering microbes for tolerance to next-generation biofuels. Biotechnol. Biofuels 4, 32.
    [37]
    Durall, C., Lindberg, P., Yu, J.P., Lindblad, P., 2020. Increased ethylene production by overexpressing phosphoenolpyruvate carboxylase in the cyanobacterium Synechocystis PCC 6803. Biotechnol. Biofuels 13, 16.
    [38]
    Edwards, K.F., Thomas, M.K., Klausmeier, C.A., Litchman, E., 2016. Phytoplankton growth and the interaction of light and temperature: a synthesis at the species and community level. Limnol. Oceanogr. 61, 1232-1244.
    [39]
    Erdrich, P., Knoop, H., Steuer, R., Klamt, S., 2014. Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling. Microb. Cell Fact. 13, 128.
    [40]
    Eungrasamee, K., Incharoensakdi, A., Lindblad, P., Jantaro, S., 2021. Overexpression of lipA or glpD_RuBisCO in the Synechocystis sp. PCC 6803 mutant lacking the Aas gene enhances free fatty-acid secretion and intracellular lipid accumulation. Int. J. Mol. Sci. 22, 11468.
    [41]
    Eungrasamee, K., Incharoensakdi, A., Lindblad, P., Jantaro, S., 2020. Synechocystis sp. PCC 6803 overexpressing genes involved in CBB cycle and free fatty acid cycling enhances the significant levels of intracellular lipids and secreted free fatty acids. Sci. Rep. 10, 4515.
    [42]
    Eungrasamee, K., Lindblad, P., Jantaro, S., 2022. Enhanced productivity of extracellular free fatty acids by gene disruptions of acyl-ACP synthetase and S-layer protein in Synechocystis sp. PCC 6803. Biotechnol. Biofuels Bioprod. 15, 99.
    [43]
    Ferreira, L.S.S., Butarelli, A.C.A., Sousa, R.C., Oliveira, M.A., Moraes, P.H.G., Ribeiro, I.S., Sousa, P.F.R., Dall'Agnol, H.M.B., Lima, A.R.J., Gonçalves, E.C., Sivonen, K., Fewer, D., Riyuzo, R., Piroupo, C.M., Silva, A.M., Setubal, J.C., Dall'Agnol, L.T., 2021. High-quality draft genome sequence of Pantanalinema sp. GBBB05, a cyanobacterium from cerrado biome. Front. Ecol. Evol. 9, 1-5.
    [44]
    Formighieri, C., Melis, A., 2014a. Carbon partitioning to the terpenoid biosynthetic pathway enables heterologous β-phellandrene production in Escherichia coli cultures. Arch. Microbiol. 196, 853-861.
    [45]
    Formighieri, C., Melis, A., 2015. A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria). Metab. Eng. 32, 116-124.
    [46]
    Formighieri, C., Melis, A., 2014b. Regulation of β-phellandrene synthase gene expression, recombinant protein accumulation, and monoterpene hydrocarbons production in Synechocystis transformants. Planta 240, 309-324.
    [47]
    Formighieri, C., Melis, A., 2016. Sustainable heterologous production of terpene hydrocarbons in cyanobacteria. Photosynth. Res. 130, 123-135.
    [48]
    Fróna, D., Szenderák, J., Harangi-Rákos, M., 2019. The challenge of feeding the world. Sustainability 11, 5816.
    [49]
    Fu, C.H., Li, Z.X., Jia, C.H., Zhang, W.L., Zhang, Y.L., Yi, C.H., Xie, S.Q., 2021. Recent advances on bio-based isobutanol separation. Energy Convers. Manag. X 10, 100059.
    [50]
    Fu, Y., Hu, F.L., Xu, Y.F., 2022. Cyanobacteria and chlorophyta in situ magnetic harvesting by goethite/magnetite nanoparticles. J. Appl. Phycol. 34, 857-869.
    [51]
    Gao, E.B., Wu, J.H., Ye, P.L., Qiu, H.Y., Chen, H.Y., Fang, Z., 2023. Rewiring carbon flow in Synechocystis PCC 6803 for a high rate of CO2-to-ethanol under an atmospheric environment. Front. Microbiol. 14, 1211004.
    [52]
    Ghosh, S., Das, D., 2015. Improvement of harvesting technology for algal biomass production. In: Das, D. (Ed.). Algal Biorefinery: An integrated approach. Cham: Springer, 169-193.
    [53]
    Giannuzzi, L., 2018. Cyanobacteria growth kinetics. In: Wong, Y.K. (Ed.). Algae. Rijeka: IntechOpen, 2.
    [54]
    Gichuki, S., Tabatabai, B., Sitther, V., 2023. Biocrude production using a novel cyanobacterium: pilot-scale cultivation and lipid extraction via hydrothermal liquefaction. Sustainability 15, 4878.
    [55]
    Goldoost, H., Vahabzadeh, F., Fallah, N., 2024. Lipids productivity of cyanobacterium Anabaena vaginicola in an internally illuminated photobioreactor using LED bar lights. Sci. Rep. 14, 6857.
    [56]
    Grand View Research, 2023. Algae Biofuel Market Size & Trends. Available at: https://www.grandviewresearch.com/industry-analysis/algae-biofuel-market.
    [57]
    Griffiths, M.J., Harrison, S.T.L., 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21, 493-507.
    [58]
    Hamida, R.S., Ali, M.A., Redhwan, A., Bin-Meferij, M.M., 2020. Cyanobacteria - A promising platform in green nanotechnology: a review on nanoparticles fabrication and their prospective applications. Int. J. Nanomedicine 15, 6033-6066.
    [59]
    Hayashi, Y., Arai, M., 2022. Recent advances in the improvement of cyanobacterial enzymes for bioalkane production. Microb. Cell Fact. 21, 256.
    [60]
    Hirokawa, Y., Kubo, T., Soma, Y., Saruta, F., Hanai, T., 2020. Enhancement of acetyl-CoA flux for photosynthetic chemical production by pyruvate dehydrogenase complex overexpression in Synechococcus elongatus PCC 7942. Metab. Eng. 57, 23-30.
    [61]
    Hirose, Y., Ohtsubo, Y., Misawa, N., Yonekawa, C., Nagao, N., Shimura, Y., Fujisawa, T., Kanesaki, Y., Katoh, H., Katayama, M., Yamaguchi, H., Yoshikawa, H., Ikeuchi, M., Eki, T., Nakamura, Y., Kawachi, M., 2021. Genome sequencing of the NIES cyanobacteria collection with a focus on the heterocyst-forming clade. DNA Res. 28, 1-11.
    [62]
    Hong, S.Y., Zurbriggen, A.S., Melis, A., 2012. Isoprene hydrocarbons production upon heterologous transformation of Saccharomyces cerevisiae. J. Appl. Microbiol. 113, 52-65.
    [63]
    Hu, P., Borglin, S., Kamennaya, N.A., Chen, L., Park, H., Mahoney, L., Kijac, A., Shan, G., Chavarría, K.L., Zhang, C.M., Quinn, N.W.T., Wemmer, D., Holman, H.Y., Jansson, C., 2013. Metabolic phenotyping of the cyanobacterium Synechocystis 6803 engineered for production of alkanes and free fatty acids. Appl. Energy 102, 850-859.
    [64]
    Hu, Y.T., Zhu, Z.W., Nielsen, J., Siewers, V., 2019. Engineering Saccharomyces cerevisiae cells for production of fatty acid-derived biofuels and chemicals. Open Biol. 9, 190049.
    [65]
    Hussein, M., Zaki, A., Abdel-Raouf, N., Alsamhary, K., Fathy, W., Abdelhameed, M., Elsayed, K., 2022. Flocculation of microalgae using calcium oxide nanoparticles; process optimization and characterization. Int. Aqua. Res. 14, 63-70.
    [66]
    International Energy Agency, 2023. Global conventional biofuel production, 2011-2023. Available at: https://www.iea.org/data-and-statistics/charts/global-conventional-biofuel-production-2011-2023.
    [67]
    Ji, X., Verspagen, J.M.H., Stomp, M., Huisman, J., 2017. Competition between cyanobacteria and green algae at low versus elevated CO2: who will win, and why? J. Exp. Bot. 68, 3815-3828.
    [68]
    Jimbo, H., Yuasa, K., Takagi, K., Hirashima, T., Keta, S.M., Aichi, M., Wada, H., 2021. Specific incorporation of polyunsaturated fatty acids into the sn-2 position of phosphatidylglycerol accelerates photodamage to photosystem II under strong light. Int. J. Mol. Sci. 22, 10432.
    [69]
    Jin, H., Chen, L., Wang, J.X., Zhang, W.W., 2014. Engineering biofuel tolerance in non-native producing microorganisms. Biotechnol. Adv. 32, 541-548.
    [70]
    Johansson, N., Persson, K.O., Norbeck, J., Larsson, C., 2017. Expression of NADH-oxidases enhances ethylene productivity in Saccharomyces cerevisiae expressing the bacterial efe. Biotechnol. Bioprocess Eng. 22, 195-199.
    [71]
    Kabir, M., Habiba, U.E., Khan, W., Shah, A., Rahim, S., de los Rios-Escalante, P.R., Farooqi, Z.U.R., Ali, L., Shafiq, M., 2023. Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review. J. King Saud Univ. Sci. 35, 102693.
    [72]
    Kaiwan-Arporn, P., Hai, P.D., Thu, N.T., Annachhatre, A.P., 2012. Cultivation of cyanobacteria for extraction of lipids. Biomass Bioenergy 44, 142-149.
    [73]
    Kämäräinen, J., Nylund, M., Aro, E.M., Kallio, P., 2018. Comparison of ethanol tolerance between potential cyanobacterial production hosts. J. Biotechnol. 283, 140-145.
    [74]
    Kannchen, D., Zabret, J., Oworah-Nkruma, R., Dyczmons-Nowaczyk, N., Wiegand, K., Löbbert, P., Frank, A., Nowaczyk, M.M., Rexroth, S., Rögner, M., 2020. Remodeling of photosynthetic electron transport in Synechocystis sp. PCC 6803 for future hydrogen production from water. Biochim. Biophys. Acta Bioenerg. 1861, 148208.
    [75]
    Kazim, M., Dauletova, A., Sandybayeva, S., Bukharbayeva, Z., Zayadan, B., 2024. Isolation and study of cyanobacterial cultures from oil refinery wastewaters. BIO Web Conf. 100, 02019.
    [76]
    Keinan, A., Clark, A.G., 2012. Recent explosive human population growth has resulted in an excess of rare genetic variants. Science 336, 740-743.
    [77]
    Khetkorn, W., Raksajit, W., Maneeruttanarungroj, C., Lindblad, P., 2023. Photobiohydrogen production and strategies for H2 yield improvements in cyanobacteria. In: Bühler, K., Lindberg, P. (Eds.). Advances in Biochemical Engineering/Biotechnology. Cham: Springer International Publishing, 253-279.
    [78]
    Kim, J., Baidoo, E.E.K., Amer, B., Mukhopadhyay, A., Adams, P.D., Simmons, B.A., Lee, T.S., 2021. Engineering Saccharomyces cerevisiae for isoprenol production. Metab. Eng. 64, 154-166.
    [79]
    Knoot, C.J., Pakrasi, H.B., 2019. Diverse hydrocarbon biosynthetic enzymes can substitute for olefin synthase in the cyanobacterium Synechococcus sp. PCC 7002. Sci. Rep. 9, 1360.
    [80]
    Kobayashi, S., Atsumi, S., Ikebukuro, K., Sode, K., Asano, R., 2022. Light-induced production of isobutanol and 3-methyl-1-butanol by metabolically engineered cyanobacteria. Microb. Cell Fact. 21, 7.
    [81]
    Kopf, M., Klähn, S., Scholz, I., Matthiessen, J.K.F., Hess, W.R., Voß, B., 2014. Comparative analysis of the primary transcriptome of Synechocystis sp. PCC 6803. DNA Res. 21, 527-539.
    [82]
    Kopka, J., Schmidt, S., Dethloff, F., Pade, N., Berendt, S., Schottkowski, M., Martin, N., Dühring, U., Kuchmina, E., Enke, H.K., Kramer, D., Wilde, A., Hagemann, M., Friedrich, A., 2017. Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002. Biotechnol. Biofuels 10, 56.
    [83]
    Kourpa, K., Manarolaki, E., Lyratzakis, A., Strataki, V., Rupprecht, F., Langer, J.D., Tsiotis, G., 2019. Proteome analysis of enriched heterocysts from two hydrogenase mutants from Anabaena sp. PCC 7120. Proteomics 19, e1800332.
    [84]
    Koyande, A.K., Loke, S.P., 2022. Microalgae harvest technology.In: Bisaria, V., (Ed.). Handbook of Biorefinery Research and Technology. Dordrecht: Springer Netherlands, 1-26.
    [85]
    Krishnan, A., McNeil, B.A., Stuart, D.T., 2020. Biosynthesis of fatty alcohols in engineered microbial cell factories: advances and limitations. Front. Bioeng. Biotechnol. 8, 610936.
    [86]
    Kumar, P., Patel, A.K., Chen, C.W., Nguyen, T.B., Chang, J.S., Pandey, A., Dong, C.D., Singhania, R.R., 2023a. Development of dopamine-based magnetite nanocomposite for effective harvesting of Chlorella sorokiniana Kh12 biomass. Environ. Technol. Innov. 29, 103008.
    [87]
    Kumar, S., Tirlangi, S., Kumar, A., Imran, M., Pillai HP, J.S., Kumar Koshariya, A., Sathish, T., Ubaidullah, M., Ayub, R., Minnam Reddy, V.R., AlAbdulaal, T.H., Algarni, H., Maiz, F., Shkir, M., 2023b. A review on the contribution of nanotechnology for biofuel production from algal biomass: a bridge to the reduction of carbon footprint. Sustain. Energy Technol. Assess. 60, 103498.
    [88]
    Kushwaha, O.S., Uthayakumar, H., Kumaresan, K., 2023. Modeling of carbon dioxide fixation by microalgae using hybrid artificial intelligence (AI) and fuzzy logic (FL) methods and optimization by genetic algorithm (GA). Environ. Sci. Pollut. Res. Int. 30, 24927-24948.
    [89]
    Lakatos, G.E., Ranglová, K., Manoel, J.C., Grivalský, T., Kopecký, J., Masojídek, J., 2019. Bioethanol production from microalgae polysaccharides. Folia Microbiol. 64, 627-644.
    [90]
    Lakshmi, N.M., Binod, P., Sindhu, R., Awasthi, M.K., Pandey, A., 2021. Microbial engineering for the production of isobutanol: current status and future directions. Bioengineered 12, 12308-12321.
    [91]
    Lau, N.S., Matsui, M., Abdullah, A.A.A., 2015. Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products. Biomed Res. Int. 2015, 754934.
    [92]
    Lee, H.W., Park, J.H., Kim, W.K., Lee, J.G., Lee, J.S., Ahn, J.O., Lee, E.G., Lee, H.W., 2020. Engineered Escherichia coli strains as platforms for biological production of isoprene. FEBS Open Bio 10, 780-788.
    [93]
    Li, T.R., Hu, J.J., Zhu, L.D., 2021. Self-flocculation as an efficient method to harvest microalgae: a mini-review. Water (Basel) 13, 2585.
    [94]
    Lidicker, W.Z., 2020. A Scientist's Warning to humanity on human population growth. Glob. Ecol. Conserv. 24, e01232.
    [95]
    Lin, P.C., Saha, R., Zhang, F.Z., Pakrasi, H.B., 2017. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocystis sp. PCC 6803. Sci. Rep. 7, 17503.
    [96]
    Lin, P.C., Zhang, F.Z., Pakrasi, H.B., 2021. Enhanced limonene production in a fast-growing cyanobacterium through combinatorial metabolic engineering. Metab. Eng. Commun. 12, e00164.
    [97]
    Lindblad, P., 2018. Hydrogen production using novel photosynthetic cell factories. Cyanobacterial hydrogen production: design of efficient organisms. In: Seibert, M., Torzillo, G. (Eds.). Comprehensive Series Photochemical & Photobiological Sciences. Cambridge: Royal Society of Chemistry, 323-334.
    [98]
    Liu, X.Y., Sheng, J., Curtiss, R., 2011. Fatty acid production in genetically modified cyanobacteria. Proc. Natl. Acad. Sci. USA 108, 6899-6904.
    [99]
    Liu, Y.L., Chen, S., Chen, J.J., Zhou, J.M., Wang, Y.Y., Yang, M.H., Qi, X.N., Xing, J.M., Wang, Q.H., Ma, Y.H., 2016. High production of fatty alcohols in Escherichia coli with fatty acid starvation. Microb. Cell Fact. 15, 129.
    [100]
    Liu, Y.G., Jeraldo, P., Herbert, W., McDonough, S., Eckloff, B., Schulze-Makuch, D., de Vera, J.P., Cockell, C., Leya, T., Baqué, M., Jen, J., Walther-Antonio, M., 2022. Whole genome sequencing of cyanobacterium Nostoc sp. CCCryo 231-06 using microfluidic single cell technology. iScience 25, 104291.
    [101]
    Luan, G.D., Lu, X.F., 2018. Tailoring cyanobacterial cell factory for improved industrial properties. Biotechnol. Adv. 36, 430-442.
    [102]
    Lupacchini, S., Appel, J., Stauder, R., Bolay, P., Klähn, S., Lettau, E., Adrian, L., Lauterbach, L., Bühler, B., Schmid, A., Toepel, J., 2021. Rewiring cyanobacterial photosynthesis by the implementation of an oxygen-tolerant hydrogenase. Metab. Eng. 68, 199-209.
    [103]
    Lynch, S., Eckert, C., Yu, J.P., Gill, R., Maness, P.C., 2016. Overcoming substrate limitations for improved production of ethylene in E. coli. Biotechnol. Biofuels 9, 3.
    [104]
    Machado, I.M.P., Atsumi, S., 2012. Cyanobacterial biofuel production. J. Biotechnol. 162, 50-56.
    [105]
    Madusanka, D.A.T., Manage, P.M., 2018. Optimising a solvent system for lipid extraction from cyanobacterium Microcystis spp.: future perspective for biodiesel production. J. Natl. Sci. Found. Sri Lanka 46, 217.
    [106]
    Majhi, B.K., Melis, A., 2024. Recombinant protein synthesis and isolation of human interferon alpha-2 in cyanobacteria. Bioresour. Technol. 400, 130664.
    [107]
    Markham, J.N., Tao, L., Davis, R., Voulis, N., Angenent, L.T., Ungerer, J., Yu, J.P., 2016. Techno-economic analysis of a conceptual biofuel production process from bioethylene produced by photosynthetic recombinant cyanobacteria. Green Chem. 18, 6266-6281.
    [108]
    Markou, G., Georgakakis, D., 2011. Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl. Energy 88, 3389-3401.
    [109]
    Marques, A.E., Barbosa, A.T., Jotta, J., Coelho, M.C., Tamagnini, P., Gouveia, L., 2011. Biohydrogen production by Anabaena sp. PCC 7120 wild-type and mutants under different conditions: light, nickel, propane, carbon dioxide and nitrogen. Biomass Bioenergy 35, 4426-4434.
    [110]
    Marston, M.F., Polson, S.W., 2020. Whole-genome sequence of the cyanobacterium Synechococcus sp. strain WH 8101. Microbiol. Resour. Announc. 9, e01593-e01519.
    [111]
    Mata, T.M., Martins, A.A., Caetano, N.S., 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14, 217-232.
    [112]
    McCormick, A.J., Bombelli, P., Lea-Smith, D.J., Bradley, R.W., Scott, A.M., Fisher, A.C., Smith, A.G., Howe, C.J., 2013. Hydrogen production through oxygenic photosynthesis using the cyanobacterium Synechocystis sp. PCC 6803 in a bio-photoelectrolysis cell (BPE) system. Energy Environ. Sci. 6, 2682-2690.
    [113]
    Miao, R., Xie, H., Lindblad, P., 2018a. Enhancement of photosynthetic isobutanol production in engineered cells of Synechocystis PCC 6803. Biotechnol. Biofuels 11, 267.
    [114]
    Miao, R., Xie, H., Ho, F.M., Lindblad, P., 2018b. Protein engineering of α-ketoisovalerate decarboxylase for improved isobutanol production in Synechocystis PCC 6803. Metab. Eng. 47, 42-48.
    [115]
    Mills, L.A., Moreno-Cabezuelo, J.Á., Włodarczyk, A., Victoria, A.J., Mejías, R., Nenninger, A., Moxon, S., Bombelli, P., Selão, T.T., McCormick, A.J., Lea-Smith, D.J., 2022. Development of a biotechnology platform for the fast-growing cyanobacterium Synechococcus sp. PCC 11901. Biomolecules 12, 872.
    [116]
    Mohammaddoost, H., Azari, A., Ansarpour, M., Osfouri, S., 2018. Experimental investigation of CO2 removal from N2 by metal oxide nanofluids in a hollow fiber membrane contactor. Int. J. Greenh. Gas Contr. 69, 60-71.
    [117]
    Mohanty, B., Majedi, S.M., Pavagadhi, S., Te, S.H., Boo, C.Y., Gin, K.Y.H., Swarup, S., 2022. Effects of light and temperature on the metabolic profiling of two habitat-dependent bloom-forming cyanobacteria. Metabolites 12, 406.
    [118]
    Mora-Sánchez, J.F., Ribes, J., González-Camejo, J., Seco, A., Ruano, M.V., 2024. Towards optimisation of microalgae cultivation through monitoring and control in membrane photobioreactor systems. Water 16, 155.
    [119]
    Munawaroh, H.S.H., Apdila, E.T., Awai, K., 2020. hetN and patS mutations enhance accumulation of fatty alcohols in the hglT mutants of Anabaena sp. PCC 7120. Front. Plant Sci. 11, 804.
    [120]
    Nogia, P., Sidhu, G.K., Mehrotra, R., Mehrotra, S., 2016. Capturing atmospheric carbon: biological and nonbiological methods. Int. J. Low Carbon Technol. 11, 266-274.
    [121]
    Nozzi, N.E., Oliver, J.W.K., Atsumi, S., 2013. Cyanobacteria as a platform for biofuel production. Front. Bioeng. Biotechnol. 1, 7.
    [122]
    Nunes, L.J.R., 2023. The rising threat of atmospheric CO2: a review on the causes, impacts, and mitigation strategies. Environments 10, 66.
    [123]
    Oncel, S., Sabankay, M., 2012. Microalgal biohydrogen production considering light energy and mixing time as the two key features for scale-up. Bioresour. Technol. 121, 228-234.
    [124]
    Park, S., Lee, S.J., Noh, W., Kim, Y.J., Kim, J.H., Back, S.M., Ryu, B.G., Nam, S.W., Park, S.H., Kim, J., 2024. Production of safe cyanobacterial biomass for animal feed using wastewater and drinking water treatment residuals. Heliyon 10, e25136.
    [125]
    Parveen, H., Yazdani, S.S., 2022. Insights into cyanobacterial alkane biosynthesis. J. Ind. Microbiol. Biotechnol. 49, 1-11.
    [126]
    Passos, L.S., de Freitas, P.N.N., Menezes, R.B., de Souza, A.O., da Silva, M.F., Converti, A., Pinto, E., 2023. Content of lipids, fatty acids, carbohydrates, and proteins in continental cyanobacteria: a systematic analysis and database application. Appl. Sci. 13, 3162.
    [127]
    Patel, A.K., Kumar, P., Chen, C.W., Tambat, V.S., Nguyen, T.B., Hou, C.Y., Chang, J.S., Dong, C.D., Singhania, R.R., 2022. Nano magnetite assisted flocculation for efficient harvesting of lutein and lipid producing microalgae biomass. Bioresour. Technol. 363, 128009.
    [128]
    Pattanaik, B., Lindberg, P., 2015. Terpenoids and their biosynthesis in cyanobacteria. Life 5, 269-293.
    [129]
    Pembroke, J.T., Ryan, M.P., 2020. Cyanobacterial biofuel production: current development, challenges and future needs. In: Yadav, A.N., Rastegari, A.A., Yadav, N., Gaur, R. (Eds.). Biofuels Production - Sustainability and advances in microbial bioresources. Cham: Springer, 35-62.
    [130]
    Phulara, S.C., Chaurasia, D., Diwan, B., Chaturvedi, P., Gupta, P., 2018. In-situ isopentenol production from Bacillus subtilis through genetic and culture condition modulation. Process. Biochem. 72, 47-54.
    [131]
    Pimentel, D., Patzek, T., Cecil, G. 2007. Ethanol production: energy, economic, and environmental losses. in: Whitacre, D.M., Ware, G.W., Nigg, H.N., Doerge, D.R., Albert, L.A., de Voogt, P., Gerba, C.P., Hutzinger, O., Knaak, J.B., Mayer, F.L., Morgan, D.P., Park, D.L., Tjeerdema, R.S., Yang, R.S.H., Gunther, F.A. (Eds.). Reviews of environmental contamination and toxicology: continuation of residue reviews. New York: Springer, 25-41.
    [132]
    Purdy, H.M., Pfleger, B.F., Reed, J.L., 2022. Introduction of NADH-dependent nitrate assimilation in Synechococcus sp. PCC 7002 improves photosynthetic production of 2-methyl-1-butanol and isobutanol. Metab. Eng. 69, 87-97.
    [133]
    Qi, F.X., Yao, L., Tan, X.M., Lu, X.F., 2013. Construction, characterization and application of molecular tools for metabolic engineering of Synechocystis sp. Biotechnol. Lett. 35, 1655-1661.
    [134]
    Racharaks, R., Arnold, W., Peccia, J., 2021. Development of CRISPR-Cas9 knock-in tools for free fatty acid production using the fast-growing cyanobacterial strain Synechococcus elongatus UTEX 2973. J. Microbiol. Methods 189, 106315.
    [135]
    Rana, M.S., Bhushan, S., Sudhakar, D.R., Prajapati, S.K., 2020. Effect of iron oxide nanoparticles on growth and biofuel potential of Chlorella spp. Algal Res. 49, 101942.
    [136]
    Ranjith Kumar, R., Hanumantha Rao, P., Arumugam, M., 2015. Lipid extraction methods from microalgae: a comprehensive review. Front. Energy Res. 2, 61.
    [137]
    Rautela, A., Kumar, S., 2022. Engineering plant family TPS into cyanobacterial host for terpenoids production. Plant Cell Rep. 41, 1791-1803.
    [138]
    Ren, H.Y., Dai, Y.Q., Kong, F.Y., Xing, D.F., Zhao, L., Ren, N.Q., Ma, J., Liu, B.F., 2020. Enhanced microalgal growth and lipid accumulation by addition of different nanoparticles under xenon lamp illumination. Bioresour. Technol. 297, 122409.
    [139]
    Rodrigues, J.S., Kovács, L., Lukeš, M., Höper, R., Steuer, R., Červený, J., Lindberg, P., Zavřel, T., 2023. Characterizing isoprene production in cyanobacteria-Insights into the effects of light, temperature, and isoprene on Synechocystis sp. PCC 6803. Bioresour. Technol. 380, 129068.
    [140]
    Roussou, S., Albergati, A., Liang, F.Y., Lindblad, P., 2021. Engineered cyanobacteria with additional overexpression of selected Calvin-Benson-Bassham enzymes show further increased ethanol production. Metab. Eng. Commun. 12, e00161.
    [141]
    Rowland, O., Domergue, F., 2012. Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications. Plant Sci. 193/194, 28-38.
    [142]
    Ruffing, A.M., 2014. Improved free fatty acid production in cyanobacteria with Synechococcus sp. PCC 7002 as host. Front. Bioeng. Biotechnol. 2, 17.
    [143]
    Ruffing, A.M., Jones, H.D.T., 2012. Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol. Bioeng. 109, 2190-2199.
    [144]
    Sadigov, R., 2022. Rapid growth of the world population and its socioeconomic results. Sci. World J. 2022, 8110229.
    [145]
    Santos-Merino, M., Torrado, A., Davis, G.A., Röttig, A., Bibby, T.S., Kramer, D.M., Ducat, D.C., 2021. Improved photosynthetic capacity and photosystem I oxidation via heterologous metabolism engineering in cyanobacteria. Proc. Natl. Acad. Sci. 118, e2021523118.
    [146]
    Santos Correa, S., Schultz, J., Lauersen, K.J., Soares Rosado, A., 2023. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. J. Adv. Res. 47, 75-92.
    [147]
    Sarkar, A., Rajarathinam, R., Kumar, P.S., Rangasamy, G., 2022. Maximization of growth and lipid production of a toxic isolate of Anabaena circinalis by optimization of various parameters with mathematical modeling and computational validation. J. Biotechnol. 357, 38-46.
    [148]
    Sattayawat, P., Yunus, I.S., Jones, P.R., 2023. Production of fatty acids and derivatives using cyanobacteria. In: Bühler, K., Lindberg, P. (Eds.). Advances in Biochemical Engineering/Biotechnology. Cham: Springer International Publishing, 145-169.
    [149]
    Sawant, K.R., Savvashe, P., Pal, D., Sarnaik, A., Lali, A., Pandit, R., 2021. Progressive transitional studies of engineered Synechococcus from laboratory to outdoor pilot-scale cultivation for production of ethylene. Bioresour. Technol. 341, 125852.
    [150]
    Schirmer, A., Rude, M.A., Li, X.Z., Popova, E., del Cardayre, S.B., 2010. Microbial biosynthesis of alkanes. Science 329, 559-562.
    [151]
    Sengupta, A., Bandyopadhyay, A., Sarkar, D., Hendry, J.I., Schubert, M.G., Liu, D., Church, G.M., Maranas, C.D., Pakrasi, H.B., 2024. Genome streamlining to improve performance of a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. MBio 15, e0353023.
    [152]
    Sengupta, A., Bandyopadhyay, A., Schubert, M.G., Church, G.M., Pakrasi, H.B., 2023. Antenna modification in a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 leads to improved efficiency and carbon-neutral productivity. Microbiol. Spectr. 11, e0050023.
    [153]
    Shen, C.R., Liao, J.C., 2012. Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. Energy Environ. Sci. 5, 9574-9583.
    [154]
    Sheng, J., Vannela, R., Rittmann, B.E., 2011. Evaluation of methods to extract and quantify lipids from Synechocystis PCC 6803. Bioresour. Technol. 102, 1697-1703.
    [155]
    Shinde, S., Singapuri, S., Jiang, Z.X., Long, B., Wilcox, D., Klatt, C., Jones, J.A., Yuan, J.S., Wang, X., 2022. Thermodynamics contributes to high limonene productivity in cyanobacteria. Metab. Eng. Commun. 14, e00193.
    [156]
    Singh, K.B., Kaushalendra, Verma, S., Lalnunpuii, R., Rajan, J.P., 2023. Current issues and developments in cyanobacteria-derived biofuel as a potential source of energy for sustainable future. Sustainability 15, 10439.
    [157]
    Sivaramakrishnan, R., Incharoensakdi, A., 2021. Cyanobacteria as renewable sources of bioenergy (biohydrogen, bioethanol, and bio-oil production). In: Rastogi, R.P. (Ed.). Ecophysiology and biochemistry of cyanobacteria. Singapore: Springer, 431-454.
    [158]
    Soo, R.M., Hemp, J., Parks, D.H., Fischer, W.W., Hugenholtz, P., 2017. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355, 1436-1440.
    [159]
    Stips, A., Macias, D., Coughlan, C., Garcia-Gorriz, E., Liang, X.S., 2016. On the causal structure between CO2 and global temperature. Sci. Rep. 6, 21691.
    [160]
    Tan, J.S., Lee, S.Y., Chew, K.W., Lam, M.K., Lim, J.W., Ho, S.H., Show, P.L., 2020. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 11, 116-129.
    [161]
    Tan, X.M., Yao, L., Gao, Q.Q., Wang, W.H., Qi, F.X., Lu, X.F., 2011. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metab. Eng. 13, 169-176.
    [162]
    Teerawanichpan, P., Robertson, A.J., Qiu, X., 2010. A fatty acyl-CoA reductase highly expressed in the head of honey bee (Apis mellifera) involves biosynthesis of a wide range of aliphatic fatty alcohols. Insect Biochem. Mol. Biol. 40, 641-649.
    [163]
    Tian, X.X., Chen, L., Wang, J.X., Qiao, J.J., Zhang, W.W., 2013. Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. J. Proteomics 78, 326-345.
    [164]
    Treves, H., Küken, A., Arrivault, S., Ishihara, H., Hoppe, I., Erban, A., Höhne, M., Moraes, T.A., Kopka, J., Szymanski, J., Nikoloski, Z., Stitt, M., 2022. Carbon flux through photosynthesis and central carbon metabolism show distinct patterns between algae, C3 and C4 plants. Nat. Plants 8, 78-91.
    [165]
    Tse, T.J., Wiens, D.J., Reaney, M.J.T., 2021. Production of bioethanol—a review of factors affecting ethanol yield. Fermentation 7, 268.
    [166]
    United States Energy Information Administration, 2023. Monthly Energy Review, Renewable Energy. Available: https://www.eia.gov/energyexplained/biofuels/.
    [167]
    Ungerer, J., Tao, L., Davis, M., Ghirardi, M., Maness, P.C., Yu, J.P., 2012. Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energy Environ. Sci. 5, 8998-9006.
    [168]
    Untiveros, D.P.M., Sanchez, L.R.S., Cao, E.P., 2023. Whole genome sequence analysis of the filamentous Nodosilinea sp. PGN35 isolated from a mining site in Tuba, Benguet, Philippines. Front. Ecol. Evol. 11, 1205557.
    [169]
    Vanthoor-Koopmans, M., Cordoba-Matson, M.V., Arredondo-Vega, B.O., Lozano-Ramírez, C., Garcia-Trejo, J.F., Rodriguez-Palacio, M.C., 2014. Microalgae and cyanobacteria production for feed and food supplements. In: Guevara-Gonzalez, R., Torres-Pacheco, I. (Eds.). Biosystems Engineering: Biofactories for Food Production in the Century XXI. Cham: Springer, 253-275.
    [170]
    Veetil, V.P., Angermayr, S.A., Hellingwerf, K.J., 2017. Ethylene production with engineered Synechocystis sp PCC 6803 strains. Microb. Cell Fact. 16, 34.
    [171]
    Velmurugan, R., Incharoensakdi, A., 2020. Heterologous expression of ethanol synthesis pathway in glycogen deficient Synechococcus elongatus PCC 7942 resulted in enhanced production of ethanol and exopolysaccharides. Front. Plant Sci. 11, 74.
    [172]
    Velmurugan, R., Incharoensakdi, A., 2022. Metabolic transformation of cyanobacteria for biofuel production. Chemosphere 299, 134342.
    [173]
    Vogt, M., Brüsseler, C., Ooyen, J.V., Bott, M., Marienhagen, J., 2016. Production of 2-methyl-1-butanol and 3-methyl-1-butanol in engineered Corynebacterium glutamicum. Metab. Eng. 38, 436-445.
    [174]
    Volgusheva, A., Kosourov, S., Lynch, F., Allahverdiyeva, Y., 2019. Immobilized heterocysts as microbial factories for sustainable nitrogen fixation. J. Biotechnol. 306, 100016.
    [175]
    Wang, J.N., Azam, W., 2024. Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries. Geosci. Front. 15, 101757.
    [176]
    Wang, M., Luan, G.D., Lu, X.F., 2020. Engineering ethanol production in a marine cyanobacterium Synechococcus sp. PCC7002 through simultaneously removing glycogen synthesis genes and introducing ethanolgenic cassettes. J. Biotechnol. 317, 1-4.
    [177]
    Wang, W.H., Liu, X.F., Lu, X.F., 2013. Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol. Biofuels 6, 69.
    [178]
    Wang, X., Liu, W., Xin, C.P., Zheng, Y., Cheng, Y.B., Sun, S., Li, R.Z., Zhu, X.G., Dai, S.Y., Rentzepis, P.M., Yuan, J.S., 2016. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations. Proc. Natl. Acad. Sci. 113, 14225-14230.
    [179]
    Wang, Y.X., Shi, M.L., Niu, X.F., Zhang, X.Q., Gao, L.J., Chen, L., Wang, J.X., Zhang, W.W., 2014. Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803. Microb. Cell Fact. 13, 151.
    [180]
    Wijffels, R.H., Kruse, O., Hellingwerf, K.J., 2013. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotechnol. 24, 405-413.
    [181]
    Wilde, A., Dienst, D., 2011. Tools for genetic manipulation of cyanobacteria. In: Peschek, G.A., Obinger, C., Renger, G. (Eds.). Bioenergetic Processes of Cyanobacteria. Netherlands: Springer, 685-703.
    [182]
    Włodarczyk, A., Selão, T.T., Norling, B., Nixon, P.J., 2020. Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production. Commun. Biol. 3, 215.
    [183]
    Wu, X.X., Li, J.W., Xing, S.F., Chen, H.T., Song, C., Wang, S.G., Yan, Z., 2021. Establishment of a resource recycling strategy by optimizing isobutanol production in engineered cyanobacteria using high salinity stress. Biotechnol. Biofuels 14, 174.
    [184]
    Xie, H., Kjellström, J., Lindblad, P., 2023. Sustainable production of photosynthetic isobutanol and 3-methyl-1-butanol in the cyanobacterium Synechocystis sp. PCC 6803. Biotechnol. Biofuels Bioprod. 16, 134.
    [185]
    Xie, H., Lindblad, P., 2022. Expressing 2-keto acid pathway enzymes significantly increases photosynthetic isobutanol production. Microb. Cell Fact. 21, 17.
    [186]
    Xue, Y., He, Q.F., 2015. Cyanobacteria as cell factories to produce plant secondary metabolites. Front. Bioeng. Biotechnol. 3, 57.
    [187]
    Yadav, G., Sekar, M., Kim, S.H., Geo, V.E., Bhatia, S.K., Sabir, J.S.M., Chi, N.T.L., Brindhadevi, K., Pugazhendhi, A., 2021. Lipid content, biomass density, fatty acid as selection markers for evaluating the suitability of four fast growing cyanobacterial strains for biodiesel production. Bioresour. Technol. 325, 124654.
    [188]
    Yadav, I., Rautela, A., Gangwar, A., Wagadre, L., Rawat, S., Kumar, S., 2023. Enhancement of isoprene production in engineered Synechococcus elongatus UTEX 2973 by metabolic pathway inhibition and machine learning-based optimization strategy. Bioresour. Technol. 387, 129677.
    [189]
    Yoshino, T., Liang, Y., Arai, D., Maeda, Y., Honda, T., Muto, M., Kakunaka, N., Tanaka, T., 2015. Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway. Appl. Microbiol. Biotechnol. 99, 1521-1529.
    [190]
    Yu, J.J., Liberton, M., Cliften, P.F., Head, R.D., Jacobs, J.M., Smith, R.D., Koppenaal, D.W., Brand, J.J., Pakrasi, H.B., 2015. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Sci. Rep. 5, 8132.
    [191]
    Yunus, I.S., Jones, P.R., 2018. Photosynthesis-dependent biosynthesis of medium chain-length fatty acids and alcohols. Metab. Eng. 49, 59-68.
    [192]
    Zavřel, T., Sinetova, M.A., Búzová, D., Literáková, P., Červený, J., 2015. Characterization of a model cyanobacterium Synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor. Eng. Life Sci. 15, 122-132.
    [193]
    Zhang, F.Z., Ouellet, M., Batth, T.S., Adams, P.D., Petzold, C.J., Mukhopadhyay, A., Keasling, J.D., 2012. Enhancing fatty acid production by the expression of the regulatory transcription factor FadR. Metab. Eng. 14, 653-660.
    [194]
    Zheng, Y.N., Li, L.L., Liu, Q., Yang, J.M., Wang, X.W., Liu, W., Xu, X., Liu, H., Zhao, G., Xian, M., 2012. Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli. Microb. Cell Fact. 11, 65.
    [195]
    Zhou, J.J., Wang, M., Saraiva, J.A., Martins, A.P., Pinto, C.A., Prieto, M.A., Simal-Gandara, J., Cao, H., Xiao, J.B., Barba, F.J., 2022. Extraction of lipids from microalgae using classical and innovative approaches. Food Chem. 384, 132236.
    [196]
    Zhou, J., Yang, F., Zhang, F.L., Meng, H.K., Zhang, Y.P., Li, Y., 2021. Impairing photorespiration increases photosynthetic conversion of CO2 to isoprene in engineered cyanobacteria. Bioresour. Bioprocess. 8, 42.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return