Citation: | Bowei Wang, Dingkun Qiu, Yihui Gu, Zhu Shan, Ruonan Shi, Jing Luo, Shuang Qi, Yilin Wang, Bo Jiang, Yongcan Jin. A lignin-based controlled/sustained release hydrogel by integrating mechanical strengthening and bioactivities of lignin[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 62-76. doi: 10.1016/j.jobab.2024.10.002 |
[1] |
An L.L., Heo J.W., Chen J.S., Kim Y.S., 2022. Water-soluble lignin quaternary ammonium salt for electrospun morphology-controllable antibacterial polyvinyl alcohol/lignin quaternary ammonium salt nanofibers. J. Clean. Prod. 368, 133219.
|
[2] |
Aro T., Fatehi P., 2017. Production and application of lignosulfonates and sulfonated lignin. ChemSusChem 10, 1861-1877.
|
[3] |
Athinarayanan J., Periasamy V.S., Qasem A.A., Alshatwi A.A., 2018. Borassus flabellifer biomass lignin: Isolation and characterization of its antioxidant and cytotoxic properties. Sustain. Chem. Pharm. 10, 89-96.
|
[4] |
Bansode N.D., Sindhu K.R., Morel C., Rémy M., Verget J., Boiziau C., Barthélémy P., 2020. A disulfide based low molecular weight gel for the selective sustained release of biomolecules. Biomater. Sci. 8, 3186-3192.
|
[5] |
Barapatre A., Aadil K.R., Tiwary B.N., Jha H., 2015. In vitro antioxidant and antidiabetic activities of biomodified lignin from Acacia nilotica wood. Int. J. Biol. Macromol. 75, 81-89.
|
[6] |
Boarino A., Wang H.Y., Olgiati F., Artusio F., Özkan M., Bertella S., Razza N., Cagno V., Luterbacher J.S., Klok H.A., Stellacci F., 2022. Lignin: a sustainable antiviral coating material. ACS Sustain. Chem. Eng. 10, 14001-14010.
|
[7] |
Cao W.X., Xia D., Zhou L.X., Liu Y., Wang D.H., Liang C.Y., Chen M.L., 2024. Antibacterial and antioxidant wound dressings with pH responsive release properties accelerate chronic wound healing. Mater. Today Phys. 40, 101316.
|
[8] |
Chang H., Tian P.F., Hao L.Z., Hu C.W., Liu B., Meng F.Z., Yi X., Pan X.H., Hu X.H., Wang H., Zhai X.Y., Cui X., Pui Yin Cheung J., Liu X.Y., Pan H.B., Bian S.Q., Zhao X.L., 2024. Antioxidative bioactive glass reinforced injectable hydrogel with reactive oxygen species scavenging capacity for diabetic wounds treatment. Chem. Eng. J. 481, 148768.
|
[9] |
Day N.B., Dalhuisen R., Loomis N.E., Adzema S.G., Prakash J., Iv C.S., 2022. Tissue-adhesive hydrogel for multimodal drug release to immune cells in skin. Acta Biomater. 150, 211-220.
|
[10] |
Dimatteo R., Darling N.J., Segura T., 2018. In situ forming injectable hydrogels for drug delivery and wound repair. Adv. Drug Deliv. Rev. 127, 167-184.
|
[11] |
Du B.Y., Li W.J., Zhu H.W., Xu J.Y., Wang Q.Y., Shou X.L., Wang X., Zhou J.H., 2023. A functional lignin for heavy metal ions adsorption and wound care dressing. Int. J. Biol. Macromol. 239, 124268.
|
[12] |
Figueiredo P., Lintinen K., Hirvonen J.T., Kostiainen M.A., Santos H.A., 2018. Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 93, 233-269.
|
[13] |
Gregorich N., Kanhere S., Stutts J., Bethel K., Tindall G., Lynn B., Ogale A.A., Thies M.C., Davis E.M., 2023. Enhanced mechanical properties of composite hydrogels containing fractionated and purified lignin. ACS Appl. Polym. Mater. 5, 201-213.
|
[14] |
Guo T.Y., Wang W.X., Song J.L., Jin Y.C., Xiao H.N., 2021. Dual-responsive carboxymethyl cellulose/dopamine/cystamine hydrogels driven by dynamic metal-ligand and redox linkages for controllable release of agrochemical. Carbohydr. Polym. 253, 117188.
|
[15] |
Han S., Wang T., Yang L., Li B., 2017. Building a bio-based hydrogel via electrostatic and host-guest interactions for realizing dual-controlled release mechanism. Int. J. Biol. Macromol. 105, 377-384.
|
[16] |
Han X., Su Y.Y., Che G.D., Wei Q.L., Zheng H., Zhou J.H., Li Y., 2022. Supramolecular hydrogel dressing: effect of lignin on the self-healing, antibacterial, antioxidant, and biological activity improvement. ACS Appl. Mater. Interfaces, 14, 50199-50214.
|
[17] |
He Z.C., Luo H.T., Wang Z.T., Chen D.F., Feng Q., Cao X.D., 2023. Injectable and tissue adhesive EGCG-laden hyaluronic acid hydrogel depot for treating oxidative stress and inflammation. Carbohydr. Polym. 299, 120180.
|
[18] |
Jia B., Li G.W., Cao E.T., Luo J.L., Zhao X., Huang H.Y., 2023. Recent progress of antibacterial hydrogels in wound dressings. Mater. Today Bio 19, 100582.
|
[19] |
Jiang B., Zhang Y., Zhao H.F., Guo T.Y., Wu W.J., Jin Y.C., 2019. Structure-antioxidant activity relationship of active oxygen catalytic lignin and lignin-carbohydrate complex. Int. J. Biol. Macromol. 139, 21-29.
|
[20] |
Jiménez H.D., Orozco E., Hernández S.L., Ramírez A.C., Velázquez J.M., Velazquez G., Del C Minjarez A., Zamudio A., Flores M.M., Velasco S.F., 2023. Evaluation of acute toxicity and antioxidant response of earthworm exposed to a lignin-modified crosslinked hydrogel. Toxics 11, 476.
|
[21] |
Kefayat A., Hamidi Farahani R., Rafienia M., Hazrati E., Hosseini Yekta N., 2022. Synthesis and characterization of cellulose nanofibers/chitosan/cinnamon extract wound dressing with significant antibacterial and wound healing properties. J. Iran. Chem. Soc. 19, 1191-1202.
|
[22] |
Kim S., Kim D.H., Cho J., Kim J., Kwon I., 2023. Charge booster tags for controlled release of therapeutics from a therapeutic carrier. Adv. Funct. Mater. 33, 2209874.
|
[23] |
Larrañeta E., Imízcoz M., Toh J.X., Irwin N.J., Ripolin A., Perminova A., Domínguez-Robles J., Rodríguez A., Donnelly R.F., 2018. Synthesis and characterization of lignin hydrogels for potential applications as drug eluting antimicrobial coatings for medical materials. ACS Sustain. Chem. Eng. 6, 9037-9046.
|
[24] |
Li J.T., Ke H.L., Lei X.C., Zhang J.X., Wen Z.C., Xiao Z.S., Chen H.B., Yao J.C., Wang X., Wei Z.N., Zhang H.R., Pan W.L., Shao Y., Zhao Y.T., Xie D.H., Zeng C., 2024. Controlled-release hydrogel loaded with magnesium-based nanoflowers synergize immunomodulation and cartilage regeneration in tendon-bone healing. Bioact. Mater. 36, 62-82.
|
[25] |
Li K.Y., Zhong W., Li P.H., Ren J.P., Jiang K.J., Wu W.J., 2023. Antibacterial mechanism of lignin and lignin-based antimicrobial materials in different fields. Int. J. Biol. Macromol. 252, 126281.
|
[26] |
Li M.F., Xu Y.H., 2023. Fractionation of industrial lignin: a review. J. For. Eng. 8, 13-20.
|
[27] |
Liang R.M., Zhao J.M., Li B., Cai P.A., Loh X.J., Xu C.H., Chen P., Kai D., Zheng L., 2020. Implantable and degradable antioxidant poly(ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials 230, 119601.
|
[28] |
Lotfy V.F., Basta A.H., 2024. Performance effectiveness of nano-lignin in production of gel with nano-chitosan for controlling release of salicylic acid. Int. J. Biol. Macromol. 265, 131098.
|
[29] |
Lourençon T.V., de Lima G.G., Ribeiro C.S.P., Hansel F.A., Maciel G.M., da Silva K., Winnischofer S.M.B., de Muniz G.I.B., Magalhães W.L.E., 2021. Antioxidant, antibacterial and antitumoural activities of kraft lignin from hardwood fractionated by acid precipitation. Int. J. Biol. Macromol. 166, 1535-1542.
|
[30] |
Lu K.Y., Li R., Hsu C.H., Lin C.W., Chou S.C., Tsai M.L., Mi F.L., 2017. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydr. Polym. 165, 410-420.
|
[31] |
Luo J., Gu Y.H., Yuan Y.F., Wu W.J., Jin Y.C., Jiang B., 2023. Lignin-induced sacrificial conjoined-network enabled strong and tough chitosan membrane for food preservation. Carbohydr. Polym. 313, 120876.
|
[32] |
Majira A., Godon B., Foulon L., van der Putten J.C., Cézard L., Thierry M., Pion F., Bado-Nilles A., Pandard P., Jayabalan T., Aguié-Béghin V., Ducrot P.H., Lapierre C., Marlair G., Gosselink R.J.A., Baumberger S., Cottyn B., 2019. Enhancing the antioxidant activity of technical lignins by combining solvent fractionation and ionic-liquid treatment. ChemSusChem 12, 4799-4809.
|
[33] |
Naahidi S., Jafari M., Logan M., Wang Y.J., Yuan Y.F., Bae H., Dixon B., Chen P., 2017. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol. Adv. 35, 530-544.
|
[34] |
Ong T.H.D., Yu N., Meenashisundaram G.K., Schaller B., Gupta M., 2017. Insight into cytotoxicity of Mg nanocomposites using MTT assay technique. Mater. Sci. Eng. C Mater. Biol. Appl. 78, 647-652.
|
[35] |
Pogostin B.H., Saenz G., Cole C.C., Euliano E.M., Hartgerink J.D., McHugh K.J., 2023. Dynamic imine bonding facilitates mannan release from a nanofibrous peptide hydrogel. Bioconjug. Chem. 34, 193-203.
|
[36] |
Qi S., Jiang B., Huang C.X., Jin Y.C., 2023. Dual regulation of sulfonated lignin to prevent and treat type 2 diabetes mellitus. Biomacromolecules 24, 841-848.
|
[37] |
Rogan H., Ilagan F., Tong X.M., Chu C.R., Yang F., 2020. Microribbon-hydrogel composite scaffold accelerates cartilage regeneration in vivo with enhanced mechanical properties using mixed stem cells and chondrocytes. Biomaterials 228, 119579.
|
[38] |
Salman S., Öz G., Felek R., Haznedar A., Turna T., Özdemir F., 2022. Effects of fermentation time on phenolic composition, antioxidant and antimicrobial activities of green, oolong, and black teas. Food Biosci. 49, 101884.
|
[39] |
Sharma A., Gupta S., Sarethy I.P., Dang S., Gabrani R., 2012. Green tea extract: possible mechanism and antibacterial activity on skin pathogens. Food Chem. 135, 672-675.
|
[40] |
Shen J.W., Li J.C., Dai J.H., Zhou M.D., Ren H., Zhang L., Hu Q., Kong Z., Liang L.J., 2020. Molecular dynamics study on the adsorption and release of doxorubicin by chitosan-decorated graphene. Carbohydr. Polym. 248, 116809.
|
[41] |
Shu F., Jiang B., Yuan Y.F., Li M.H., Wu W.J., Jin Y.C., Xiao H.N., 2021. Biological activities and emerging roles of lignin and lignin-based Products-A review. Biomacromolecules 22, 4905-4918.
|
[42] |
Sugiarto S., Leow Y., Tan C.L., Wang G., Kai D., 2022. How far is Lignin from being a biomedical material? Bioact. Mater. 8, 71-94.
|
[43] |
Wang C., Zhang J.J., Liu C., Song X.P., Zhang C.H., 2021a. Wood-inspired preparation of ligninsulfonate/trimesoylchloride nanofilm with a highly negatively charged surface for removing anionic dyes. Chem. Eng. J. 412, 128609.
|
[44] |
Wang R., Zheng L.M., Xu Q.M., Xu L., Wang D.J., Li J.Y., Lu G., Huang C.X., Wang Y., 2021b. Unveiling the structural properties of water-soluble lignin from gramineous biomass by autohydrolysis and its functionality as a bioactivator (anti-inflammatory and antioxidative). Int. J. Biol. Macromol. 191, 1087-1095.
|
[45] |
Wang Z.X., Liu J., Zheng Y.X., Zhang B.H., Hu Y., Wu Y.F., Li Y.M., Liu L., Zhu H.X., Liu Q., Yang B., 2024. Copper ion-inspired dual controllable drug release hydrogels for wound management: driven by hydrogen bonds. Small 20, e2401152.
|
[46] |
Wang Z.H., Ye Q.Z., Yu S., Akhavan B., 2023. Poly ethylene glycol (PEG)-based hydrogels for drug delivery in cancer therapy: a comprehensive review. Adv. Healthc. Mater. 12, e2300105.
|
[47] |
Xu J., Xu J.J., Lin Q.Y., Jiang L., Zhang D.T., Li Z.B., Ma B., Zhang C.W., Li L., Kai D., Yu H.D., Loh X.J., 2021a. Lignin-incorporated nanogel serving as an antioxidant biomaterial for wound healing. ACS Appl. Bio Mater. 4, 3-13.
|
[48] |
Xu L.J., Qiao Y., Qiu D., 2023. Coordinatively stiffen and toughen hydrogels with adaptable crystal-domain cross-linking. Adv. Mater. 35, e2209913.
|
[49] |
Xu Y.H., Zeng P., Li M.F., Bian J., Peng F., 2021b. γ-Valerolactone/water system for lignin fractionation to enhance antibacterial and antioxidant capacities. Sep. Purif. Technol. 279, 119780.
|
[50] |
Yang H.Q., Wu F.D., Zhu G.Y., et al., 2023. Recent progress of modification and industrialization for nanocellulose towards green building materials. J. For. Eng., 8, 11-20.
|
[51] |
Yang W.J., Fortunati E., Gao D.Q., Balestra G.M., Giovanale G., He X.Y., Torre L., Kenny J.M., Puglia D., 2018. Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials. ACS Sustain. Chem. Eng. 6, 3502-3514.
|
[52] |
Yu H., Kim J.S., Kim D.W., Park E.S., Youn Y.S., Din F.U., Kim J.O., Ku S.K., Jin S.G., Choi H.G., 2021. Novel composite double-layered dressing with improved mechanical properties and wound recovery for thermosensitive drug, Lactobacillus brevis. Compos. B Eng. 225, 109276.
|
[53] |
Yu M.Z., Yuan W.M., Li D., Schwendeman A., Schwendeman S.P., 2019. Predicting drug release kinetics from nanocarriers inside dialysis bags. J. Control. Release 315, 23-30.
|
[54] |
Yun J.Y., Wei L., Li W., Gong D.Q., Qin H.Y., Feng X.J., Li G.J., Ling Z., Wang P., Yin B.S., 2021. Isolating high antimicrobial ability lignin from bamboo kraft lignin by organosolv fractionation. Front. Bioeng. Biotechnol. 9, 683796.
|
[55] |
Zhang X., Liu W.F., Yang D.J., Qiu X.Q., 2019a. Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance. Adv. Funct. Mater. 29, 1806912.
|
[56] |
Zhang Y.W., Jiang M.M., Zhang Y.Q., Cao Q.P., Wang X., Han Y., Sun G.W., Li Y., Zhou J.H., 2019b. Novel lignin-chitosan-PVA composite hydrogel for wound dressing. Mater. Sci. Eng. C 104, 110002.
|
[57] |
Zhang Y.W., Yuan B., Zhang Y.Q., Cao Q.P., Yang C., Li Y., Zhou J.H., 2020. Biomimetic lignin/poly(ionic liquids) composite hydrogel dressing with excellent mechanical strength, self-healing properties, and reusability. Chem. Eng. J. 400, 125984.
|
[58] |
Zheng L.M., Lu G., Pei W.H., Yan W.J., Li Y.X., Zhang L., Huang C.X., Jiang Q., 2021. Understanding the relationship between the structural properties of lignin and their biological activities. Int. J. Biol. Macromol. 190, 291-300.
|
[59] |
Zhong Y.J., Seidi F., Li C.C., Wan Z.M., Jin Y.C., Song J.L., Xiao H.N., 2021. Antimicrobial/biocompatible hydrogels dual-reinforced by cellulose as ultrastretchable and rapid self-healing wound dressing. Biomacromolecules 22, 1654-1663.
|
[60] |
Zhong Y.J., Seidi F., Wang Y.L., Zheng L., Jin Y.C., Xiao H.N., 2022. Injectable chitosan hydrogels tailored with antibacterial and antioxidant dual functions for regenerative wound healing. Carbohydr. Polym. 298, 120103.
|
[61] |
Zhou M., Fakayode O.A., Ren M.N., Li H.X., Liang J.K., Zhou C.S., 2024. Green and sustainable extraction of lignin by deep eutectic solvent, its antioxidant activity, and applications in the food industry. Crit. Rev. Food Sci. Nutr. 64, 7201-7219.
|
[62] |
Zhu D.S., Li Z.H., Huang K., Caranasos T.G., Rossi J.S., Cheng K., 2021. Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair. Nat. Commun. 12, 1412.
|
[63] |
Zhu Y.N., Zhang J.M., Song J.Y., Yang J., Du Z., Zhao W.Q., Guo H.S., Wen C.Y., Li Q.S., Sui X.J., Zhang L., 2020. A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Adv. Funct. Mater. 30, 1905493.
|