Volume 10 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
Bowei Wang, Dingkun Qiu, Yihui Gu, Zhu Shan, Ruonan Shi, Jing Luo, Shuang Qi, Yilin Wang, Bo Jiang, Yongcan Jin. A lignin-based controlled/sustained release hydrogel by integrating mechanical strengthening and bioactivities of lignin[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 62-76. doi: 10.1016/j.jobab.2024.10.002
Citation: Bowei Wang, Dingkun Qiu, Yihui Gu, Zhu Shan, Ruonan Shi, Jing Luo, Shuang Qi, Yilin Wang, Bo Jiang, Yongcan Jin. A lignin-based controlled/sustained release hydrogel by integrating mechanical strengthening and bioactivities of lignin[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 62-76. doi: 10.1016/j.jobab.2024.10.002

A lignin-based controlled/sustained release hydrogel by integrating mechanical strengthening and bioactivities of lignin

doi: 10.1016/j.jobab.2024.10.002
More Information
  • The favorable antioxidant and antimicrobial activities of lignin have been shown to promote wound healing. However, the accumulation of lignin in high concentrations in the body brings about varying degrees of biotoxicity. Herein, a controlled/sustained release polyvinyl alcohol/chitosan/sulfonated lignin hydrogel (PVA-CS-L) integrated mechanical strengthening and bioactivities of lignin was developed. The lignin-induced non-covalent bond network (van der Waals force, hydrogen and electrostatic interactions) promoted energy dissipation when the hydrogel was subjected to stretching and compression. This endowed the PVA-CS-L hydrogel with improved tensile (~36 kPa) and compressive strength (~900 kPa), as well as compressive toughness (~9.0 MJ/m3), which were superior to the polyvinyl alcohol/chitosan hydrogel (PVA-CS) (31 kPa, 680 kPa, and 7.5 MJ/m3, respectively). The construction of electrostatic interaction could not only slow down the sudden release of lignin but also make the hydrogel exhibit a good pH-sensitive behavior of controlled-release lignin. Also, the developed hydrogel had good biocompatibility and the released lignin had reactive oxygen species scavenging as well as inhibitory activity against Staphylococcus aureus. Finally, preliminary evaluation of drug delivery reveals that the presence of lignin enabled the hydrogel to exhibit longer-lasting controlled/sustained epigallocatechin gallate release properties. Such lignin-based controlled/sustained release hydrogel that integrates the molecular structure and biological difunctional features of lignin gives new insight into cost-effective, easy-to-operate manufacturing of load-bearing and bioactive materials.

     

  • The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Declaration of competing interest
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2024.10.002
  • loading
  • An, L.L., Heo, J.W., Chen, J.S., Kim, Y.S., 2022. Water-soluble lignin quaternary ammonium salt for electrospun morphology-controllable antibacterial polyvinyl alcohol/lignin quaternary ammonium salt nanofibers. J. Clean. Prod. 368, 133219. doi: 10.1016/j.jclepro.2022.133219
    Aro, T., Fatehi, P., 2017. Production and application of lignosulfonates and sulfonated lignin. ChemSusChem 10, 1861–1877. doi: 10.1002/cssc.201700082
    Athinarayanan, J., Periasamy, V.S., Qasem, A.A., Alshatwi, A.A., 2018. Borassus flabellifer biomass lignin: Isolation and characterization of its antioxidant and cytotoxic properties. Sustain. Chem. Pharm. 10, 89–96. doi: 10.1016/j.scp.2018.10.001
    Bansode, N.D., Sindhu, K.R., Morel, C., Rémy, M., Verget, J., Boiziau, C., Barthélémy, P., 2020. A disulfide based low molecular weight gel for the selective sustained release of biomolecules. Biomater. Sci. 8, 3186–3192. doi: 10.1039/d0bm00508h
    Barapatre, A., Aadil, K.R., Tiwary, B.N., Jha, H., 2015. In vitro antioxidant and antidiabetic activities of biomodified lignin from Acacia nilotica wood. Int. J. Biol. Macromol. 75, 81–89. doi: 10.1016/j.ijbiomac.2015.01.012
    Boarino, A., Wang, H.Y., Olgiati, F., Artusio, F., Özkan, M., Bertella, S., Razza, N., Cagno, V., Luterbacher, J.S., Klok, H.A., Stellacci, F., 2022. Lignin: a sustainable antiviral coating material. ACS Sustain. Chem. Eng. 10, 14001–14010. doi: 10.1021/acssuschemeng.2c04284
    Cao, W.X., Xia, D., Zhou, L.X., Liu, Y., Wang, D.H., Liang, C.Y., Chen, M.L., 2024. Antibacterial and antioxidant wound dressings with pH responsive release properties accelerate chronic wound healing. Mater. Today Phys. 40, 101316. doi: 10.1016/j.mtphys.2023.101316
    Chang, H., Tian, P.F., Hao, L.Z., Hu, C.W., Liu, B., Meng, F.Z., Yi, X., Pan, X.H., Hu, X.H., Wang, H., Zhai, X.Y., Cui, X., Pui Yin Cheung, J., Liu, X.Y., Pan, H.B., Bian, S.Q., Zhao, X.L., 2024. Antioxidative bioactive glass reinforced injectable hydrogel with reactive oxygen species scavenging capacity for diabetic wounds treatment. Chem. Eng. J. 481, 148768. doi: 10.1016/j.cej.2024.148768
    Day, N.B., Dalhuisen, R., Loomis, N.E., Adzema, S.G., Prakash, J., Iv, C.S., 2022. Tissue-adhesive hydrogel for multimodal drug release to immune cells in skin. Acta Biomater. 150, 211–220. doi: 10.1016/j.actbio.2022.07.053
    Dimatteo, R., Darling, N.J., Segura, T., 2018. In situ forming injectable hydrogels for drug delivery and wound repair. Adv. Drug Deliv. Rev. 127, 167–184. doi: 10.1016/j.addr.2018.03.007
    Du, B.Y., Li, W.J., Zhu, H.W., Xu, J.Y., Wang, Q.Y., Shou, X.L., Wang, X., Zhou, J.H., 2023. A functional lignin for heavy metal ions adsorption and wound care dressing. Int. J. Biol. Macromol. 239, 124268. doi: 10.1016/j.ijbiomac.2023.124268
    Figueiredo, P., Lintinen, K., Hirvonen, J.T., Kostiainen, M.A., Santos, H.A., 2018. Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 93, 233–269. doi: 10.1504/IJPM.2018.10010239
    Gregorich, N., Kanhere, S., Stutts, J., Bethel, K., Tindall, G., Lynn, B., Ogale, A.A., Thies, M.C., Davis, E.M., 2023. Enhanced mechanical properties of composite hydrogels containing fractionated and purified lignin. ACS Appl. Polym. Mater. 5, 201–213. doi: 10.1021/acsapm.2c01433
    Guo, T.Y., Wang, W.X., Song, J.L., Jin, Y.C., Xiao, H.N., 2021. Dual-responsive carboxymethyl cellulose/dopamine/cystamine hydrogels driven by dynamic metal-ligand and redox linkages for controllable release of agrochemical. Carbohydr. Polym. 253, 117188. doi: 10.1016/j.carbpol.2020.117188
    Han, S., Wang, T., Yang, L., Li, B., 2017. Building a bio-based hydrogel via electrostatic and host-guest interactions for realizing dual-controlled release mechanism. Int. J. Biol. Macromol. 105, 377–384. doi: 10.1016/j.ijbiomac.2017.07.049
    Han, X., Su, Y.Y., Che, G.D., Wei, Q.L., Zheng, H., Zhou, J.H., Li, Y., 2022. Supramolecular hydrogel dressing: effect of lignin on the self-healing, antibacterial, antioxidant, and biological activity improvement. ACS Appl. Mater. Interfaces 14, 50199–50214. doi: 10.1021/acsami.2c15411
    He, Z.C., Luo, H.T., Wang, Z.T., Chen, D.F., Feng, Q., Cao, X.D., 2023. Injectable and tissue adhesive EGCG-laden hyaluronic acid hydrogel depot for treating oxidative stress and inflammation. Carbohydr. Polym. 299, 120180. doi: 10.1016/j.carbpol.2022.120180
    Jia, B., Li, G.W., Cao, E.T., Luo, J.L., Zhao, X., Huang, H.Y., 2023. Recent progress of antibacterial hydrogels in wound dressings. Mater. Today Bio 19, 100582. doi: 10.1016/j.mtbio.2023.100582
    Jiang, B., Zhang, Y., Zhao, H.F., Guo, T.Y., Wu, W.J., Jin, Y.C., 2019. Structure-antioxidant activity relationship of active oxygen catalytic lignin and lignin-carbohydrate complex. Int. J. Biol. Macromol. 139, 21–29. doi: 10.1016/j.ijbiomac.2019.07.134
    Jiménez, H.D., Orozco, E., Hernández, S.L., Ramírez, A.C., Velázquez, J.M., Velazquez, G., Del C Minjarez, A., Zamudio, A., Flores, M.M., Velasco, S.F., 2023. Evaluation of acute toxicity and antioxidant response of earthworm exposed to a lignin-modified crosslinked hydrogel. Toxics 11, 476. doi: 10.3390/toxics11060476
    Kefayat, A., Hamidi Farahani, R., Rafienia, M., Hazrati, E., Hosseini Yekta, N., 2022. Synthesis and characterization of cellulose nanofibers/chitosan/cinnamon extract wound dressing with significant antibacterial and wound healing properties. J. Iran. Chem. Soc. 19, 1191–1202. doi: 10.1007/s13738-021-02374-x
    Kim, S., Kim, D.H., Cho, J., Kim, J., Kwon, I., 2023. Charge booster tags for controlled release of therapeutics from a therapeutic carrier. Adv. Funct. Mater. 33, 2209874. doi: 10.1002/adfm.202209874
    Larrañeta, E., Imízcoz, M., Toh, J.X., Irwin, N.J., Ripolin, A., Perminova, A., Domínguez-Robles, J., Rodríguez, A., Donnelly, R.F., 2018. Synthesis and characterization of lignin hydrogels for potential applications as drug eluting antimicrobial coatings for medical materials. ACS Sustain. Chem. Eng. 6, 9037–9046. doi: 10.1021/acssuschemeng.8b01371
    Li, J.T., Ke, H.L., Lei, X.C., Zhang, J.X., Wen, Z.C., Xiao, Z.S., Chen, H.B., Yao, J.C., Wang, X., Wei, Z.N., Zhang, H.R., Pan, W.L., Shao, Y., Zhao, Y.T., Xie, D.H., Zeng, C., 2024. Controlled-release hydrogel loaded with magnesium-based nanoflowers synergize immunomodulation and cartilage regeneration in tendon-bone healing. Bioact. Mater. 36, 62–82.
    Li, K.Y., Zhong, W., Li, P.H., Ren, J.P., Jiang, K.J., Wu, W.J., 2023. Antibacterial mechanism of lignin and lignin-based antimicrobial materials in different fields. Int. J. Biol. Macromol. 252, 126281. doi: 10.1016/j.ijbiomac.2023.126281
    Li, M.F., Xu, Y.H., 2023. Fractionation of industrial lignin: a review. J. For. Eng. 8, 13–20. doi: 10.1117/12.2649911
    Liang, R.M., Zhao, J.M., Li, B., Cai, P.A., Loh, X.J., Xu, C.H., Chen, P., Kai, D., Zheng, L., 2020. Implantable and degradable antioxidant poly(ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials 230, 119601. doi: 10.1016/j.biomaterials.2019.119601
    Lotfy, V.F., Basta, A.H., 2024. Performance effectiveness of nano-lignin in production of gel with nano-chitosan for controlling release of salicylic acid. Int. J. Biol. Macromol. 265, 131098. doi: 10.1016/j.ijbiomac.2024.131098
    Lourençon, T.V., de Lima, G.G., Ribeiro, C.S.P., Hansel, F.A., Maciel, G.M., da Silva, K., Winnischofer, S.M.B., de Muniz, G.I.B., Magalhães, W.L.E., 2021. Antioxidant, antibacterial and antitumoural activities of kraft lignin from hardwood fractionated by acid precipitation. Int. J. Biol. Macromol. 166, 1535–1542. doi: 10.1016/j.ijbiomac.2020.11.033
    Lu, K.Y., Li, R., Hsu, C.H., Lin, C.W., Chou, S.C., Tsai, M.L., Mi, F.L., 2017. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydr. Polym. 165, 410–420. doi: 10.1016/j.carbpol.2017.02.065
    Luo, J., Gu, Y.H., Yuan, Y.F., Wu, W.J., Jin, Y.C., Jiang, B., 2023. Lignin-induced sacrificial conjoined-network enabled strong and tough chitosan membrane for food preservation. Carbohydr. Polym. 313, 120876. doi: 10.1016/j.carbpol.2023.120876
    Majira, A., Godon, B., Foulon, L., van der Putten, J.C., Cézard, L., Thierry, M., Pion, F., Bado-Nilles, A., Pandard, P., Jayabalan, T., Aguié-Béghin, V., Ducrot, P.H., Lapierre, C., Marlair, G., Gosselink, R.J.A., Baumberger, S., Cottyn, B., 2019. Enhancing the antioxidant activity of technical lignins by combining solvent fractionation and ionic-liquid treatment. ChemSusChem 12, 4799–4809. doi: 10.1002/cssc.201901916
    Naahidi, S., Jafari, M., Logan, M., Wang, Y.J., Yuan, Y.F., Bae, H., Dixon, B., Chen, P., 2017. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol. Adv. 35, 530–544. doi: 10.1016/j.biotechadv.2017.05.006
    Ong, T.H.D., Yu, N., Meenashisundaram, G.K., Schaller, B., Gupta, M., 2017. Insight into cytotoxicity of Mg nanocomposites using MTT assay technique. Mater. Sci. Eng. C Mater. Biol. Appl. 78, 647–652. doi: 10.1016/j.msec.2017.04.129
    Pogostin, B.H., Saenz, G., Cole, C.C., Euliano, E.M., Hartgerink, J.D., McHugh, K.J., 2023. Dynamic imine bonding facilitates mannan release from a nanofibrous peptide hydrogel. Bioconjug. Chem. 34, 193–203. doi: 10.1021/acs.bioconjchem.2c00461
    Qi, S., Jiang, B., Huang, C.X., Jin, Y.C., 2023. Dual regulation of sulfonated lignin to prevent and treat type 2 diabetes mellitus. Biomacromolecules 24, 841–848. doi: 10.1021/acs.biomac.2c01267
    Rogan, H., Ilagan, F., Tong, X.M., Chu, C.R., Yang, F., 2020. Microribbon-hydrogel composite scaffold accelerates cartilage regeneration in vivo with enhanced mechanical properties using mixed stem cells and chondrocytes. Biomaterials 228, 119579. doi: 10.1016/j.biomaterials.2019.119579
    Salman, S., Öz, G., Felek, R., Haznedar, A., Turna, T., Özdemir, F., 2022. Effects of fermentation time on phenolic composition, antioxidant and antimicrobial activities of green, oolong, and black teas. Food Biosci. 49, 101884. doi: 10.1016/j.fbio.2022.101884
    Sharma, A., Gupta, S., Sarethy, I.P., Dang, S., Gabrani, R., 2012. Green tea extract: possible mechanism and antibacterial activity on skin pathogens. Food Chem. 135, 672–675. doi: 10.1016/j.foodchem.2012.04.143
    Shen, J.W., Li, J.C., Dai, J.H., Zhou, M.D., Ren, H., Zhang, L., Hu, Q., Kong, Z., Liang, L.J., 2020. Molecular dynamics study on the adsorption and release of doxorubicin by chitosan-decorated graphene. Carbohydr. Polym. 248, 116809. doi: 10.1016/j.carbpol.2020.116809
    Shu, F., Jiang, B., Yuan, Y.F., Li, M.H., Wu, W.J., Jin, Y.C., Xiao, H.N., 2021. Biological activities and emerging roles of lignin and lignin-based Products-A review. Biomacromolecules 22, 4905–4918. doi: 10.1021/acs.biomac.1c00805
    Sugiarto, S., Leow, Y., Tan, C.L., Wang, G., Kai, D., 2022. How far is Lignin from being a biomedical material? Bioact. Mater. 8, 71–94.
    Wang, C., Zhang, J.J., Liu, C., Song, X.P., Zhang, C.H., 2021a. Wood–inspired preparation of ligninsulfonate/trimesoylchloride nanofilm with a highly negatively charged surface for removing anionic dyes. Chem. Eng. J. 412, 128609. doi: 10.1016/j.cej.2021.128609
    Wang, R., Zheng, L.M., Xu, Q.M., Xu, L., Wang, D.J., Li, J.Y., Lu, G., Huang, C.X., Wang, Y., 2021b. Unveiling the structural properties of water-soluble lignin from gramineous biomass by autohydrolysis and its functionality as a bioactivator (anti-inflammatory and antioxidative). Int. J. Biol. Macromol. 191, 1087–1095. doi: 10.1016/j.ijbiomac.2021.09.124
    Wang, Z.X., Liu, J., Zheng, Y.X., Zhang, B.H., Hu, Y., Wu, Y.F., Li, Y.M., Liu, L., Zhu, H.X., Liu, Q., Yang, B., 2024. Copper ion-inspired dual controllable drug release hydrogels for wound management: driven by hydrogen bonds. Small 20, e2401152. doi: 10.1002/smll.202401152
    Wang, Z.H., Ye, Q.Z., Yu, S., Akhavan, B., 2023. Poly ethylene glycol (PEG)-based hydrogels for drug delivery in cancer therapy: a comprehensive review. Adv. Healthc. Mater. 12, e2300105. doi: 10.1002/adhm.202300105
    Xu, J., Xu, J.J., Lin, Q.Y., Jiang, L., Zhang, D.T., Li, Z.B., Ma, B., Zhang, C.W., Li, L., Kai, D., Yu, H.D., Loh, X.J., 2021a. Lignin-incorporated nanogel serving as an antioxidant biomaterial for wound healing. ACS Appl. Bio Mater. 4, 3–13. doi: 10.1021/acsabm.0c00858
    Xu, L.J., Qiao, Y., Qiu, D., 2023. Coordinatively stiffen and toughen hydrogels with adaptable crystal-domain cross-linking. Adv. Mater. 35, e2209913. doi: 10.1002/adma.202209913
    Xu, Y.H., Zeng, P., Li, M.F., Bian, J., Peng, F., 2021b. γ-Valerolactone/water system for lignin fractionation to enhance antibacterial and antioxidant capacities. Sep. Purif. Technol. 279, 119780. doi: 10.1016/j.seppur.2021.119780
    Yang, H.Q., Wu, F.D., Zhu, G.Y., et al., 2023. Recent progress of modification and industrialization for nanocellulose towards green building materials. J. For. Eng. 8, 11–20. doi: 10.1117/12.3014057
    Yang, W.J., Fortunati, E., Gao, D.Q., Balestra, G.M., Giovanale, G., He, X.Y., Torre, L., Kenny, J.M., Puglia, D., 2018. Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials. ACS Sustain. Chem. Eng. 6, 3502–3514. doi: 10.1021/acssuschemeng.7b03782
    Yu, H., Kim, J.S., Kim, D.W., Park, E.S., Youn, Y.S., Din, F.U., Kim, J.O., Ku, S.K., Jin, S.G., Choi, H.G., 2021. Novel composite double-layered dressing with improved mechanical properties and wound recovery for thermosensitive drug, Lactobacillus brevis. Compos. B Eng. 225, 109276. doi: 10.1016/j.compositesb.2021.109276
    Yu, M.Z., Yuan, W.M., Li, D., Schwendeman, A., Schwendeman, S.P., 2019. Predicting drug release kinetics from nanocarriers inside dialysis bags. J. Control. Release 315, 23–30. doi: 10.1016/j.jconrel.2019.09.016
    Yun, J.Y., Wei, L., Li, W., Gong, D.Q., Qin, H.Y., Feng, X.J., Li, G.J., Ling, Z., Wang, P., Yin, B.S., 2021. Isolating high antimicrobial ability lignin from bamboo kraft lignin by organosolv fractionation. Front. Bioeng. Biotechnol. 9, 683796. doi: 10.3389/fbioe.2021.683796
    Zhang, X., Liu, W.F., Yang, D.J., Qiu, X.Q., 2019a. Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance. Adv. Funct. Mater. 29, 1806912. doi: 10.1002/adfm.201806912
    Zhang, Y.W., Jiang, M.M., Zhang, Y.Q., Cao, Q.P., Wang, X., Han, Y., Sun, G.W., Li, Y., Zhou, J.H., 2019b. Novel lignin-chitosan-PVA composite hydrogel for wound dressing. Mater. Sci. Eng. C 104, 110002. doi: 10.1016/j.msec.2019.110002
    Zhang, Y.W., Yuan, B., Zhang, Y.Q., Cao, Q.P., Yang, C., Li, Y., Zhou, J.H., 2020. Biomimetic lignin/poly(ionic liquids) composite hydrogel dressing with excellent mechanical strength, self-healing properties, and reusability. Chem. Eng. J. 400, 125984. doi: 10.1016/j.cej.2020.125984
    Zheng, L.M., Lu, G., Pei, W.H., Yan, W.J., Li, Y.X., Zhang, L., Huang, C.X., Jiang, Q., 2021. Understanding the relationship between the structural properties of lignin and their biological activities. Int. J. Biol. Macromol. 190, 291–300. doi: 10.1016/j.ijbiomac.2021.08.168
    Zhong, Y.J., Seidi, F., Li, C.C., Wan, Z.M., Jin, Y.C., Song, J.L., Xiao, H.N., 2021. Antimicrobial/biocompatible hydrogels dual-reinforced by cellulose as ultrastretchable and rapid self-healing wound dressing. Biomacromolecules 22, 1654–1663. doi: 10.1021/acs.biomac.1c00086
    Zhong, Y.J., Seidi, F., Wang, Y.L., Zheng, L., Jin, Y.C., Xiao, H.N., 2022. Injectable chitosan hydrogels tailored with antibacterial and antioxidant dual functions for regenerative wound healing. Carbohydr. Polym. 298, 120103. doi: 10.1016/j.carbpol.2022.120103
    Zhou, M., Fakayode, O.A., Ren, M.N., Li, H.X., Liang, J.K., Zhou, C.S., 2024. Green and sustainable extraction of lignin by deep eutectic solvent, its antioxidant activity, and applications in the food industry. Crit. Rev. Food Sci. Nutr. 64, 7201–7219. doi: 10.1080/10408398.2023.2181762
    Zhu, D.S., Li, Z.H., Huang, K., Caranasos, T.G., Rossi, J.S., Cheng, K., 2021. Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair. Nat. Commun. 12, 1412. doi: 10.1038/s41467-021-21682-7
    Zhu, Y.N., Zhang, J.M., Song, J.Y., Yang, J., Du, Z., Zhao, W.Q., Guo, H.S., Wen, C.Y., Li, Q.S., Sui, X.J., Zhang, L., 2020. A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Adv. Funct. Mater. 30, 1905493. doi: 10.1002/adfm.201905493
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (76) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return